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Abstract— This paper considers tracking control for a n-
th order system with unknown nonlinearities. A performance-
dependent self-organizing approximation approach is proposed.
The self-organizing approximation based controller monitors
the tracking performance and adds basis elements only as
needed to achieve the tracking specification. The tracking
performance is guaranteed not only in steady state but also
in transient with a L1 bound. The low-pass filter used in
this control design avoids the high-frequency oscillation while
ensuring transient performance. To show the effectiveness of
the proposed controller, a numerical example is included.

I. INTRODUCTION

On-line approximation based control has been consid-
ered extensively during past decades in e.g., [1, 2, 7–10, 12,
14, 18–21, 24, 25, 27]. The design and analysis of adaptive
controllers, which involve on-line approximation to achieve
stability and accurate trajectory tracking in the presence of
unknown or partially unknown nonlinear dynamics, has been
well developed.

For on-line approximation, under reasonable assumptions
on the function to be approximated and the basis functions,
for any given ϵ∗ > 0 and for a known compact set of
approximation, if the approximator has a sufficiently large
number of nodes, then ϵ∗ approximation accuracy can be
achieved by proper selection of the approximator structure
and parameters [11, 22]. Thus, to satisfy ϵ∗ approximation ac-
curacy, one approach is to allocate a sufficient large number
of learning elements with an appropriate network structure,
at the design stage. However, this is not as straightforward
as it may appear, as the appropriate number of nodes and the
network structure cannot be defined for an arbitrary unknown
function. Allocating too many learning elements bears the
danger of over-parameterizing the approximation and may
have computational and performance penalties.

An alternative approach is to define the approximator
structure automatically during operation. Adaptive controller-
s employing self-organizing function approximators have
been discussed in several articles [1, 2, 8, 10, 12, 17–21, 24,
25, 27].

In each of the articles [1, 2, 8, 12, 17–21, 24, 25], the struc-
ture self-organization is exploration-based: if none of the
existing nodal functions is excited sufficiently, then a new
node is allocated. Therefore, excess nodes may be allocated
in regions of state space where they are not needed to support
the control objective. Pruning methods are considered in
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various articles to remove unneeded nodes [2, 17–19, 24].
In articles [17, 18, 24], the self-organization is based on
exploration along with other criteria, such as a threshold on
the size of the error for adding new nodes; however, there is
no theoretical basis for the selection of the threshold. In the
method proposed in [10, 27], the structure self-organization
is derived within the Lyapunov context which provides a
theoretical basis for a performance-based self-organization.
In this approach, new nodes are only added if necessary
to achieve the performance objective; therefore, pruning
methods are not required.

Notice that none of the papers cited above provided
transient performance guarantees, which is also a challenging
issue in applications of on-line approximation-based adaptive
controllers. To ensure the boundedness of transient in Model
Reference Adaptive Control (MRAC) scheme, a filtered ver-
sion of MRAC, termed as L1 adaptive control, was developed
recently in [3, 4, 6]. This kind of controller ensures output
tracking not only in steady state but also on transient. L1

Neural Network Adaptive Control Architecture is proposed
in [5], for the case where the number of neural nodes is
predesigned and fixed during the control process.

The main contribution of the article is the development of a
self-organizing approximation based controller with L1 tran-
sient bound. The development requires a major reformulation
of the analysis in [3–5, 10, 26–28]. The final result is that the
controller adjusts the on-line approximation (the number of
nodes, definition of basis set, parameters) as necessary to
ultimately achieve a prespecified tracking error. During the
training and self-organizing transient, the method guarantees
certain bounds on the tracking error. Simulation results are
included to demonstrate the effectiveness of the approach.

For the analysis in this article, the following basic def-
initions and facts from linear system theory will be useful
[13, 15, 29]: ∥ξ∥L∞ and ∥ξt∥L∞ denote the L∞ norm and
truncated L∞ norm of a signal ξ(t) : [0,∞) 7→ Rn. The L1

gain of a stable, proper, single-input single-output system
with impulse response h(t) is defined to be ∥h(t)∥L1 . Let
v(t) = ζ⊤u(t) where ζ ∈ Rn is a constant vector and then
the L1 gain from u(t) to v(t) is defined to be ∥ζ⊤∥L1 =
maxi=1,...,n(|ζi|), where ζi is the ith component of ζ⊤.

II. PROBLEM FORMULATION

The following SISO system dynamics [5] are considered:

ẋ(t) = Ax(t) + b
(
u(t)− f(x(t))

)
,

y(t) = c⊤x(t), x(0) = x0 = 0 (1)
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where x(t) : R 7→ Rn is the system state vector assumed
to be measured and available, u(t) : R 7→ R is the control
signal, b, c ∈ Rn are known constant vectors, A is a known
n × n matrix with (A, b) controllable, y : R 7→ R is
the tracking output, and f(x) : Rn 7→ R is an unknown
continuous function, with Lipschitz constant L [15].

It is assumed that the upper bound for f(0) is known

|f(0)| ≤ B. (2)

Control Objective: The control objective is to design an
adaptive controller to ensure that y(t) tracks a bounded
continuous reference signal r(t), with known upper bound of
∥r∥L∞ . This tracking should be satisfied both in transient and
steady state, while all other error signals remain bounded.

More rigorously, the control objective can be stated as
design of a control signal u(t) to achieve

∥y(t)− yd(t)∥L∞ ≤ B1, (3)

where a design constant B1 is specified before the control
operation, and yd(t) is defined as the inverse Laplace trans-
formation of Yd(s), where Yd(s) = D(s)R(s),

and D(s) is a strictly proper stable LTI system that
specifies the desired transient and steady-state performance
while R(s) is the Laplace transform of r(t).

III. SELF-ORGANIZING APPROXIMATION-BASED L1

ADAPTIVE CONTROLLER

Within the control structure developed in [3], we design
and analyze a self-organizing control approach that achieves
the control objective specified in Section II.

Let the control signal be

u(t) = u1(t) + u2(t), where u1(t) = −K⊤x(t), (4)

u2(t) is an adaptive controller to be determined later, and
K ∈ Rn is a design gain that ensures Am = A − bK⊤ is
Hurwitz. Equivalently, that Ho(s) = (sI−Am)−1b is stable.
Notice that if A is Hurwitz, then we can set K = 0. The
following dynamics can be derived with the control signal
in (4):

ẋ(t) = Amx(t) + b
(
u2(t)− f(x(t))

)
y(t) = c⊤x(t); x(0) = x0. (5)

For this system, the following state predictor is introduced ,

˙̂x(t) = Amx̂(t) + b
(
u2(t)− f̂(x(t))

)
ŷ(t) = c⊤x̂(t); x̂(0) = x0, (6)

where f̂(x(t)) = Ŵ⊤ϕ(x) is an approximation of f(x).
To approximate the unknown function f(x), in this article
we define a approach to self-organize the Locally Weighted
Learning (LWL). See Section IV.

Letting r̄(t) = f̂
(
x(t)

)
and R̄(s) = L[r̄(t)], we consider

the following control design for (6):

U2(s) = C(s)R̄(s) + kgR(s), (7)

where U2(s) is the Laplace transform of u2(t), C(s) is a
stable and strictly proper system with DC gain C(0) = 1
and kg = −1/c⊤A−1

m b.

With the control signal defined in (7), the closed-loop state
predictor in (6) can be viewed as an LTI system with two
inputs r̄(t) and r(t):

X̂(s) = Ḡ(s)R̄(s) +G(s)R(s),

where X̂(s) is the Laplace transform of x̂(t), Ḡ(s) =
Ho(s)

(
C(s) − 1

)
and G(s) = kgHo(s). Let ḡ(t), g(t)

and ho(t) be the inverse Laplace transformations of Ḡ(s),
G(s) and Ho(s), respectively. Notice that Ḡ(s) and G(s) are
strictly proper stable systems, since both Ho(s) and C(s) are
strictly proper stable systems.

The following performance requirement (i.e. the
L1−gain requirement) will ensure boundedness of the
entire system and desired transient performance [5].

∥ḡ(t)∥L1
<

1

L
, (8)

where L is the Lipschitz constant defined in Section II.
Define a compact operational region Dx

Dx =
{
x
∣∣∥x∥∞ ≤ γr + γ0 + γ1 + σ

}
(9)

where σ > 0 is an arbitrary positive constant, and γr, γ0 and
γ1 are bounds to be defined later in eqn. (16-18).

Remark 1: From eqn. (2), (9) and the Lipschitz condition,
it is straightforward to get the upperbound of f(x) over Dx

|f(x)| ≤ |f(0)|+ L∥x∥∞ ≤ Bf , x ∈ Dx,

where Bf = B + L(γr + γ1 + γ0 + σ). △

IV. LOCALLY SUPPORTED FUNCTION APPROXIMATION

This article uses Locally Weighted Learning (LWL) to
approximate f(x), i.e., construct f̂(x) = Ŵϕ(x). In this
section, the details of LWL are presented. In LWL, the
approximation to f(x) at a point x is formed from the
normalized weighted average of local approximators f̂k(x)
such that

f̂(x) =

∑
k ωk(x)f̂k(x)∑

k ωk(x)
(10)

where each ωk is nonzero only on a set denoted by Sk

(defined in eqn. (11)) over which f̂k will be adapted to
improve its accuracy relative to f . Herein, we only state
the main characteristics that we require. Additional detail is
presented in [1, 9, 10, 25, 26].

A. Weighting Functions

We define a continuous, non-negative and locally support-
ed weighting function ωk(x) for the k-th local approximator,
with k ∈ 1, . . . , N(t), where N(t) is the total number of
local approximators at time t. Denote the support of ωk(x)
by

Sk =
{
x ∈ Dx | ωk(x) ̸= 0

}
. (11)

Let S̄k denote the closure of Sk. Note that S̄k is compact.
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An example of a compactly supported weighting function
is the biquadratic kernel defined as

ωk(x) =


(
1−

(
||x−ck||

µ

)2
)2

, if ||x− ck|| < µ

0, otherwise.

where ck ∈ Rn is the center location of the k-th weighting
function and µ ∈ R is a constant which represents the radius
of the region of support Sk. In this example, the region of
support is

Sk =
{
x ∈ Dx | ∥x− ck∥ < µ

}
.

Since the approximator is self-organizing, N(t) is not
constant. Conditions for increasing N(t) at discrete instants
of time are presented in Section V-C. Since N(t) is time
varying, the region over which the approximator defined
in eqn. (10) can have a nonzero value is also time vary-
ing. This region is defined as AN(t) =

∪
1≤k≤N(t) Sk.

When x(t) ∈ AN(t), there exists at least one k such that
ωk(x) ̸= 0. The normalized weighting functions are defined
as ω̄k(x) = ωk(x)/

∑N(t)
k=1 ωk(x). The set of non-negative

functions {ω̄k(x)}N(t)
k=1 forms a partition of unity on AN(t):∑N(t)

k=1 ω̄k(x) = 1, for all x ∈ AN(t). Note that the support
of ωk(x) is exactly the same as the support of ω̄k(x).

When x(t) /∈ AN(t), all ωk(x) for 1 ≤ k ≤ N(t) are zero.
Therefore, to complete the approximator definition of eqn.
(10) to be valid for any x ∈ Dx:

f̂(x) =


N(t)∑
k=1

ω̄k(x)f̂k(x) if x ∈ AN(t)

0 if x ∈ Dx −AN(t).

(12)

In the reminder of this section, we will only consider the
case when x(t) ∈ AN(t) to give all definitions for the LWL
algorithm.

B. Optimal Local Approximators

We define

f̂k(x) = Φ⊤
k θ̂fk (13)

where Φk is a vector of continuous basis functions. For
example, it can be selected as Φ⊤

k = [1, x − ck] for k ∈
[1, N(t)]. For the function f(x), the vector θ∗fk denotes the
unknown optimal parameter estimates for x ∈ S̄k:

θ∗fk = argmin
θ̂fk

(∫
S̄k

∣∣∣f(x)− f̂k(x)
∣∣∣2 dx) .

Note that θ∗fk is well defined for each k because f and
f̂k are smooth enough on compact S̄k (from the Lipschitz
continuous condition). Therefore, f∗

k = Φ⊤
k θ

∗
fk

will be
referred to as the optimal local approximator to f on S̄k.

Let the optimal approximation error to f on S̄k be
denoted as ϵfk : ϵfk(x) = f(x)− f∗

k (x). Since in subsequent
expressions ϵfk only appears as a product with ωk(x), the

value of ϵfk(x) is immaterial outside S̄k. In order for ϵfk to
be defined everywhere, let

ϵfk(x) =

{
f(x)− f∗

k (x), on S̄k,
0, otherwise.

The controller will use a known design constant ϵ∗ > 0. We
make the following assumptions.

Assumption 1: The basis set Φk and µ are selected such
that |ϵfk(x)| ≤ ϵ̄f for x ∈ S̄k for some (unknown) positive
constant ϵ̄f < ϵ∗.

For any x ∈ AN(t), f(x) can be represented as the
weighted sum of the local optimal approximators:

f(x) =
∑
k

ω̄k(x)f
∗
k (x) + ϵ(x). (14)

This expression defines the optimal approximation error ϵ(x)
on AN(t) which satisfies |ϵ(x)| ≤ ϵ̄f [9, 27, 28]. Therefore,
if each local optimal model fk(x) has accuracy ϵ̄f on S̄k,
then the global accuracy of

∑
k ω̄k(x)fk(x) on AN(t) also

achieves at least accuracy ϵ∗. The ϵ(x) term in (14) is the
inherent approximation error of f̂(x) for f(x).

Since we have assumed that f(x) is unknown, the pa-
rameter vector θ∗fk is unknown for each k. The control law
will, therefore, be written using an approximated function
defined by (12) and locally on S̄k by (13). The controller
will be adaptive in the sense that the local parameter vectors
θ̂fk will be adjusted to improve the controller performance
while the controller is in operation.

We further assume that a compact convex set ΩN(t) is a
known priori such that the optimal weight

W = [ θ∗⊤f1 · · · · · · θ∗⊤fN(t)
] ∈ ΩN(t),

where ΩN(t) = Θ1×· · ·×ΘN(t) and Θk are known compact
convex sets such that θfk ∈ Θk.

Thus, based on (12), to approximate f(x), we have

f̂(x) =

{
Ŵ⊤ϕ(x) if x ∈ AN(t)

0 if x ∈ Dx −AN(t).

where Ŵ = [ θ̂⊤f1 · · · · · · θ̂⊤fN(t)
]⊤ is the approximate weight

and ϕ(x) = [ ω̄1Φ
⊤
1 · · · · · · ω̄N(t)Φ

⊤
N(t) ]⊤ is the function

approximation basis.
The adaptive law for Ŵ is that for x(t) ∈ AN(t),

˙̂
W (t) =

{
ΓcProj

(
Ŵ (t), x̃⊤(t)Pbϕ(x)

)
, if x ∈ AN(t)

0, otherwise .
(15)

where Ŵ (0) = Ŵ0 and x̃(t) = x̂(t) − x(t) is the predictor
error, Γc ∈ R+ is the adaptation gain, Proj(·, ·) denotes the
projection operator [16], and P = P⊤ > 0 is the solution
of the algebraic Lyapunov equation A⊤

mP + PAm = −Q,
where Q > 0 is selected by the designer.

In Self-Organizing LWL approximation, the number of lo-
cal approximators, i.e. N(t), is not constant but can increase
automatically based on some criteria, in order to satisfy the
prespecified approximation accuracy requirement adaptively.
In V-C, these criteria are specified.
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V. ANALYSIS OF SELF-ORGANIZING
APPROXIMATION-BASED L1 ADAPTIVE CONTROLLER

A. Notations

Based on the notation introduced above, a set of bounds
are defined as follows [5],

γr =
(
∥g(t)∥L1∥r∥L∞ + ∥ḡ(t)∥L1(B + ϵ∗)

+∥ho(t)∥L1

)
/
(
1− L∥ḡ(t)∥L1

)
(16)

γ0 =

√
λ̄(P )

λ(P )

(
2∥Pb∥ϵ∗
λ(Q)

)2

+
Wmax

λ(P )Γc
(17)

γ1 =
5ϵ∗∥ḡ(t)∥L1 + ∥ho(t)∥L1ϵ

∗ +
(
1 + ∥q1(t)∥L1

)
γ0

1− L∥ḡ(t)∥L1

(18)

where q1(t) , L−1
[
C(s) − 1

]
and Wmax ,

maxW∈ΩN(t) 4∥W∥2, where W is the optimal weight for
the approximation to f(x).

B. Without approximation

When x(t) ∈ Dx −AN(t) (i.e., f̂ = 0), from (5) and (6)
it follows that x̃ = x̂− x satisfies

˙̃x(t) = Amx̃(t) + bf(x(t)), x̃(0) = 0. (19)

Consider the Lyapunov function V0(t) = x̃⊤(t)Px̃(t), whose
time derivative along solutions of (19) is

V̇0 = −x̃⊤(t)Qx̃(t) + 2b⊤Px̃(t)f(x). (20)

For all x such that |f(x)| ≤ ϵ∗, when x̃⊤(t)Qx̃(t) >
2b⊤Px̃(t)ϵ∗, it will be ensured that V̇0 ≤ 0.

If V0 increases while x̃⊤(t)Qx̃(t) > 2b⊤Px̃(t)ϵ∗, then
it must be true that |f(x)| > ϵ∗. Therefore, the Lyapunov
function V0 provides a mechanism to detect those locations
along the trajectory x(t) ̸∈ AN(t) where |f(x(t))| > ϵ∗.
This motivates the following criterion for augmenting the
approximator structure.

C. Structure Adaptation

We initialize the approximation of f in (12) by f̂ with no
local approximators, i.e., N(0) = 0; therefore, the set A0 is
initially empty.

We define the following criteria for adding a new local
approximator to the approximation structure. A local approx-
imator f̂k is added and N(t) is increased by one:

1) if the present operating point x(t) does not acti-
vate any of the existing local approximators (i.e.,
max1≤k≤N(t)(ωk(x)) = 0); and

2) V̇0(t) ≥ 0 while x̃⊤(t)Qx̃(t) > 2b⊤Px̃(t)ϵ∗.
With the above criteria, N(t) is non-decreasing. The struc-
ture of f̂ in (12) and the region AN(t) changes as N(t)
increases. These criteria are motivated by eqn. (20).

For i ≥ 1, we denote the time at which the i-th lo-
cal approximator is added as Ti (i.e., N(Ti) = i and
limϵ→0 N(Ti − ϵ) = i − 1). With this notation, N(t) is
constant with value i for t ∈ [Ti, Ti+1). It is possible that
for some i, the approximator has sufficient approximation

capability, in which case Ti+1 = ∞. The center location
of the new local approximator is denoted as ci. At t = Ti,
when the i-th node is added, it is the case that x(t) ̸∈ Sk

for k = 1, ..., N(Ti) − 1. The center location cN(Ti) ∈ Dx

will be selected such that x(Ti) ∈ SN(Ti) and cN(Ti) ̸∈ Sj ,
∀j ∈ [1, N(Ti)].

D. Reference System for Self-organizing Adaptive Controller

To specify the reference system that the Self-Organizing
controller in (4) and (6)-(7) tracks, consider the ideal adaptive
controller in (4) and (7):

ur(s) = kgr(s) + η(s)−K⊤xr(s) (21)

where η(s) is the filtered output of W⊤ϕ(xr(t)) by C(s),
i.e. η(s) = C(s)η1(s). η1(s) is the Laplace transformation of
W⊤ϕ(xr(t)) and xr(s) is introduced to denote the Laplace
transformation of the closed-loop system state with the
controller (21).

For xr(t) ∈ Dx, the control law in (21) leads to the
following closed-loop dynamics:

xr(s) = G(s)r(s) + Ḡ(s)η1(s)−Ho(s)ϵr(s)

yr(s) = c⊤xr(s) (22)

where ϵr(s) is the Laplace transformation of ϵ(xr(t)) =
f(xr(t))−W⊤ϕ(xr(t)), and xr(0) = x0.

E. Theorem 1

With the notation and analysis above, the following theo-
rem can be proved.

Theorem 1: The system defined in (1) with the Self-
organizing L1 adaptive controller has the following prop-
erties:

1) The number of allocated approximators N(t) is finite
∀t ≥ 0.

2) The closed-loop system in (5) is stable with Ŵ , x, x̃,
xr ∈ L∞. In fact, ∥xr∥L∞ ≤ γr where γr is defined
in (16).

3) The state-prediction error ∥x̃∥ ≤ 2ϵ∗∥Pb∥/λ(Q).
Proof: The proof proceeds in an inductive fashion.

1) The controller starts at t = 0 with N(0) = 0 (i.e.
f̂(x) = 0, no approximation). By the analysis in Subsection
V-B, V̇0 = −x̃⊤Qx̃ + 2b⊤Px̃f(x). The controller monitors
V0(t) = x̃⊤Px̃. If V0(t) is decreasing for all t ≥ 0,
then the proof is complete. If x̃⊤(t)Qx̃(t) ≤ 2b⊤Px̃ϵ∗,
then ∥x̃(t)∥ ≤ 2ϵ∗∥Pb∥/λ(Q), which achieves the per-
formance specification whether or not V0(t) increases. If
x̃⊤(t)Qx̃(t) > 2b⊤Px̃ϵ∗ and V0(t) increases for some
t = T1, then the Self-organizing process is initiated with
N(T1) = 1 and A1 = S1.

2) For i ≥ 1 and t ≥ Ti, define BN(Ti) = Dx − AN(Ti),
where AN(t) =

∪
1≤k≤N(t) Sk. Define the Lyapunov func-

tion
Vi = x̃⊤Px̃+ W̃⊤W̃/Γc.

Using (15), we have

V̇i = −x̃⊤(t)Qx̃(t) + 2b⊤Px̃(t)f(x), ∀x ∈ BN(Ti),
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V̇i ≤ −x̃⊤(t)Qx̃(t) + 2|b⊤Px̃(t)|ϵ∗, ∀x ∈ AN(Ti).

Thus, when x̃⊤(t)Qx̃(t) ≥ 2|b⊤Px̃(t)|ϵ∗, V̇i ≤ 0, ∀x ∈
AN(Ti). The projection function in (15) ensures that Ŵ ∈ Ω,
∀x ∈ AN(Ti). For all t � x(t) ∈ BN(Ti), adaptation is off;
therefore, V̇i(t) = V̇0(t) and the controller monitors V0(t).
If V0(t) is decreasing ∀t > Ti � x(t) ∈ BN(Ti), then Vi(t) is
also decreasing and the proof is complete with Ti+1 = ∞.
If x̃⊤(t)Qx̃(t) ≤ 2b⊤Px̃ϵ∗, then ∥x̃(t)∥ ≤ 2ϵ∗∥Pb∥/λ(Q).
If x̃⊤(t)Qx̃(t) > 2b⊤Px̃ϵ∗ and V0(t) increases at some t =
Ti+1, then N(Ti) = i + 1 and the approximation region
expands AN(Ti+1) = AN(Ti)

∪
SN(Ti+1). To complete the

proof we now need to show that the process must terminate
with N(t) being finite.

In this paragraph, we prove that N(t) and Wmax are finite.
For this purpose, assume that N(t) tends to infinity. Then
there exists a infinite sequence of center locations {ci}∞i=1

with each ci ∈ Dx. From Bolzano-Weierstrass theorem
[23], any bounded infinite sequence on a compact set has
a convergent subsequence. Let {cik}∞i=1 be a convergent
subsequence of {ci}∞i=1, then by the definition of a con-
vergent subsequence there exists an integer N̄ such that for
ik > N̄ , ∥cik∥ < µ. But ∥ci − cj∥ > µ (∀i, j) by the
structure adaptation algorithm because ci ̸∈ Sj and vice
versa. Therefore, we have a contradiction which implies that
N(t) must remain finite. Because the approximation is self-
organizing, N(t) can increase during the control process,
expanding the dimension of the compact set ΩN(t). However,
it is trivial to show that Wmax is still finite because of the
fact checked above that N(t) is finite.

3) The proof of ∥xr∥L∞ ≤ γr now follows by the same
logic of Lemma 5 in [5].

F. Boundedness and Guaranteed Transient Performance

Theorem 2:

∥x− xr∥L∞ ≤ γ1

∥y − yr∥L∞ ≤ ∥c⊤∥L1γ1

∥u− ur∥L∞ ≤ γ2

where γ1 is defined in (18), and

γ2 = ∥q2(t)∥L1γ0+3∥c(t)∥L1ϵ
∗+

(
∥c(t)∥L1L+∥K⊤∥L1

)
γ1

where q2(t) , L−1
[
C(s) 1

c⊤o Ho(s)
c⊤o

]
, c(t) = L−1

[
C(s)],

∥c⊤∥L1 and ∥K⊤∥L1 are the L1 gains of constant vector c⊤

and K⊤ ∈ Rn.
Proof: The proof follows by the same logic of Theorem

1 in [5].
Corollary 1: Given the system in (1) and the Self-

Organizing adaptive controller defined via (4) and (6)-(7),
we have

lim
Γc→∞,ϵ∗→0

(
x(t)− xr(t)

)
= 0 ∀t ≤ 0

lim
Γc→∞,ϵ∗→0

(
y(t)− yr(t)

)
= 0 ∀t ≤ 0

lim
Γc→∞,ϵ∗→0

(
u(t)− ur(t)

)
= 0 ∀t ≤ 0

From Corollary 2, if the adaptive gain is selected suffi-
ciently large and the Self-Organizing approximation is accu-
rate enough, that x(t), y(t) and u(t) track xr(t), yr(t) and
ur(t) not only asymptotically but also during the transient.
Therefore, the control objective is reduced to designing K
and C(s) to ensure that the reference system has the desired
response, D(s) from r(t) to yr.

VI. DESIGN OF THE SELF-ORGANIZING CONTROLLER

To design K and C(s) ensuring the desired response D(s),
consider the following signals:

yd(s) , c⊤xd(s) , c⊤G(s)r(s) = kgc
⊤Ho(s)r(s) (23)

where xd(0) = x0 and

ud(s) , kgr(s)−K⊤xd(s) + C(s)η7(s) (24)

where η7(s) is the Laplace transformation of f(xd). Since
r(t) is bounded and G(s) is stable, xd(t) is also bounded
and we can straightforwardly derive its upperbound:

∥xd∥L∞ ≤ ∥g(t)∥L1∥r∥L∞ .

It follows that xd(t) ∈ Dx for any t ≥ 0.
Lemma 1: Given the system in (1), the reference system

in (21) and (22), and the Self-Organizing adaptive controller
defined via (4), (6)-(7), subject to (8), we have

∥xr − xd∥L∞ ≤ γ3 (25)
∥yr − yd∥L∞ ≤ ∥c⊤∥L1γ3

∥ur − ud∥L∞ ≤
(
∥K⊤∥L1

+ ∥c(t)∥L1
L
)
γ3

+∥c(t)∥L1ϵ
∗

where γ3 = ∥ḡ(t)∥L1

(
B + Lγr + ϵ∗

)
+ ∥ho(t)∥L1ϵ

∗.
Proof: The proof follows by the same logic of the proof

of Lemma 6 in [5].
From Lemma 1, the condition in (8) is crucial for charac-

terization of the transient performance. For this purpose, the
control design is reduced to finding a strictly proper stable
C(s) and a gain K to satisfy the performance requirement
in (8). It follows from (25) that for achieving that yr tracks
yd, it is desirable to ensure ∥ḡ(t)∥L1 small enough [5].

From [4], we have the following lemma
Lemma 2: Let C(s) = ω/(s + ω). For any sin-

gle input n-output strictly proper stable system Ho(s),
limω→∞ ∥ḡ(t)∥L1 = 0.

Lemma 2 states that if one chooses D(s) = kgc
⊤Ho(s),

then by increasing the bandwidth of the low-pass system
C(s), it is possible to render ∥ḡ(t)∥L1 arbitrarily small, and,
hence yr(s) ≈ yd(s) = D(s)r(s).

Remark 2: Otherwise, ∥ḡ(t)∥L1 can also be decreased via
higher order filter design method, rather than increasing the
bandwidth of C(s) [4]. In the following simulation, a third
order filter is used for controller design. △

Corollary 2: From Theorem 2 and Lemma 1, it is straight-
forward to get the upperbound B1 in eqn. (3),

∥y(t)− yd(t)∥L∞ ≤ B1 = ∥c⊤∥L1(γ1 + γ3).
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Corollary 2 implies that the control objective specified in
section II is satisfied. Notice that B1 can be rendered
arbitrarily small by decreasing ∥ḡ(t)∥L1 and increasing the
accuracy of function approximation.

Remark 3: Notice that zero initial condition is assumed
for the convenience of analysis in this article. By accommo-
dating the operational region Dx defined by (9) to ensure
the property 2) in Theorem 1, this approach can be extended
to nonzero initial conditions. Additional details can also be
derived by following the discussion in Remark 9 [5]. △

VII. SIMULATION

Consider the following nonlinear system

ẋ(t) = Ax(t)− f
(
x(t)

)
+ bu(t), x(0) = x0 = [0, 0]⊤

where
A =

[
0 1
0 0

]
, b =

[
0
1

]
,

and x = [x1 x2]
⊤ is the measured state vector, u is the

control signal, and f(x) : Rn 7→ R is an unknown nonlinear
function. The control objective is to design a Self-Organizing
adaptive controller to ensure that y = x1(t) tracks any
continuous r(t), subject to |r(t)| ≤ 1, both in transient and
steady state with bound B1 = 0.138 (see eqn. (3)).

To demonstrate that the self-organizing function approxi-
mation assigns local approximators only as needed to achieve
the specification, the simulation uses

f(x) =

 −0.44 · tan(−1.4), x1 < −3.5
−0.44 · tan(0.4 · x1), x1 ∈ [−3.5, 3.5]
−0.44 · tan(1.4), x1 > 3.5.

This f(x) has Lipschitz constant L = 1 and B = 0. Note
that |f(x)| < ϵ∗ = 0.05 for |x1| < 0.283, which is shaded
in Fig. 2.

We choose K = [2, 3]⊤ for eqn. (4) to make Am =
A− bK⊤ is Hurwitz and Ŵ⊤(t) is updated following eqn.
(15). Choosing Q = 50 · I2×2, yields

P =

[
62.5 12.5
12.5 12.5

]
.

The adaptation is initialized with N = 0, Ŵ (0) = Ŵ0 = 0
and uses Γc = 5000.

The adaptive component of control law u(t) (i.e. u2(t)) is
implemented following eqn. (7) with a third-order low-pass
filter [4, 5].

C(s) =
3ω2s+ w3

(s+ ω)3

and ω = 10.
We define the reference input r(t) as a bipolar square

wave, with magnitude 3 and a 14-second period. Fig. 1
shows that the system output y(t) tracks the reference input
r(t) and satisfies transient bound B1, due to the size of Γc

and the accuracy of the self-organizing approximation. Fig.
2 shows the distribution of local approximations assigned
by the Self-organizing Adaptive Controller. Notice that in
the middle of Fig. 2, there is a blank zone where no nodes

are assigned. This blank zone includes the region where
|f(x)| < ϵ∗, which is unknown to the controller. Fig. 3 shows
f(x) and f̂(x) versus time. The approximation f̂ converges
rapidly toward f(x(t)), due to the size of Γc. The high
variation in f̂ versus time is due to the size of Γc and x(t)
moving through Sk. As x(t) passes through the region Sk,
the currently active local approximator switches. The k− th
approximator is adapting locally dependent on the training
experience received over the past history of x(t) ∈ Sk. The
control signal u(t) is plotted in Fig. 4 which shows that there
is no high-frequency oscillation in the controller output, due
to the filter C(s).

Fig. 1. Top: performance of L1 SO Adaptive Controller: r(t)(red, solid),
y(t)(blue, solid) and yd(t)(black, dashed). Bottom: tracking error versus
time satisfies eqn. (3): B1(red), |y − yd|(blue).
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Fig. 2. Phase plane plot of x1 versus x2 for t ∈ [0, 28]s. The ×′s
indicate the assigned center locations and the small square around each
center location represents the associated region of support.

VIII. CONCLUSION

In this article, a self-organizing approximation based con-
trol method, which has L1 transient performance guarantees,
is developed to solve the output tracking problem for systems
of order n with unknown nonlinearities. The low-pass filter in
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Fig. 3. Time history of f̂(x) and f(x).

Fig. 4. Time history of u(t).

this control design avoids high-frequency oscillations while
ensuring transient performance. Performance based self-
organizing function approximation leads to a more effective
controller. Simulation results show the effectiveness of this
controller.
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