
Evaluating the Delay Robustness of Interconnected Passive Systems with a

Frequency-Dependent Integral Quadratic Constraint

Erin Summers, Murat Arcak, and Andrew Packard

Abstract— We consider interconnections of output strictly
passive systems and study their robustness in the presence of
delay. We establish a new integral quadratic constraint (IQC),
which captures the magnitude roll-off at high frequencies. The
benefit of the roll-off IQC is exemplified in a study of the
stability of a cyclic interconnection structure. When used in
conjunction with the IQC describing passivity, we obtain a
stability bound on the gain that depends on the size of the
delay and relaxes a small-gain bound.

I. INTRODUCTION

A series of recent publications presented a passivity ap-

proach for overcoming the complexity of high-order differ-

ential equation models arising in communication networks

[17], [8], [1], cooperative robotic vehicles [2], [11], [5],

and biochemical reaction networks [3], [4]. This approach

exploits the structure of the network and breaks up the design

and analysis procedures into two levels: At the network level,

one represents the components with passivity properties

as abstractions of their complex dynamic models. At the

component level, one studies the individual dynamic models

and verifies or assigns passivity properties without relying

on further knowledge of the network.

Passivity is a physically relevant property that is in-

herent in the aforementioned applications and avoids the

conservatism of stability conditions obtained with a small-

gain approach. However, in the presence of time delay,

passivity properties alone do not guarantee robustness, and

additional properties must be employed. In contrast, a small-

gain approach ensures robustness to delay; however, it does

not take into account the duration of the delay, and may lead

to conservative criteria.

The purpose of this paper is to derive stability conditions

that converge to the passivity estimates as the duration of

delay approaches zero, and to the small-gain estimates as the

amount of delay approaches infinity. We follow the integral

quadratic constraint (IQC) framework [13], [12] for stability

of interconnections, and employ two IQCs simultaneously:

The first one is an output strict passivity IQC that describes

the gain and phase properties of the components comprising

the network, and the second one is a “roll-off” IQC that

is frequency-dependent, and carries information about the

time scales of these components. Indeed, the destabilizing

effect of delay depends on its magnitude relative to the time
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scales of the system and, thus, the second IQC is essential for

obtaining stability estimates that are sensitive to the amount

of delay.

For a concrete demonstration of the advantage of the roll-

off IQC, we study a cyclic interconnection structure for

which a stability bound was derived in [3] using output

strict passivity properties of the components and assuming

no delay. This bound is referred to as the “secant criterion,”

and has the form γ cosn(π/n) < 1 where n is the number

of blocks in the feedback loop, and γ is the product of

their gains. As an illustration, for n = 3 blocks, the secant

criterion restricts the gain by γ < sec3(π/3) = 8.

We first show that, in the presence of delay T , an appli-

cation of the IQC stability theorem using only the output

strict passivity IQC yields the small-gain condition γ < 1
regardless of the value of T . By including the roll-off IQC,

we drive a new stability test in which the admissible gain γ
is a function of the delay T and the dimension of the system

n. This function converges to 1 as T → ∞ and to the secant

condition as T → 0, as desired.

Section III reviews the output strict passivity IQC and the

IQC stability theorem. Section IV defines the roll-off IQC.

Section V studies cyclic interconnections, presents the results

of the IQC approach, and states the theorem. Section VI

proves the main theorem. Finally, Section VII presents the

conclusions.

II. NOTATION

Let N be the set of natural numbers. Let R and C denote

the sets of real and complex numbers. The set of m × n
matrices whose elements are in R or C are denoted as R

m×n

and C
m×n. A single superscript index denotes vectors, e.g.

R
m is the set of m × 1 vectors whose elements are in R.

Let ei ∈ R
n be the unit vector with zeros everywhere

except in the ith element.

L
m
2 is the space of R

m-valued functions f : [0,∞) → R
m

of finite energy ‖f‖2 =
∫
∞

0
f(t)T f(t) dt.

Let Π : jR → C
(l+m)×(l+m) be a measurable, bounded

Hermitian-valued function. A bounded, causal operator ∆
mapping L2e → L2e is said to satisfy the IQC defined by Π,

if for all v ∈ L2, with y = ∆(v), the inequality

∫
∞

−∞

[
v̂(jω)
ŷ(jω)

]
∗

Π(jω)

[
v̂(jω)
ŷ(jω)

]
dω ≥ 0 (1)

holds.
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III. STABILITY OF INTERCONNECTED OSP SYSTEMS

Consider Figure 1, where G has the form:

G(s) =
m∑

i=1

Gie
sTi + G0, (2)

where Gi for i = 0, . . . ,m are proper, rational functions

without poles in the closed right-half plane1, and each ∆i

is a bounded, causal operator. Our main interest is in the

situation where ∆i are dynamical blocks representing the

components of a network, and G is a matrix representing

their interconnection structure.

Suppose each ∆i satisfies the IQC

Π1 =

[
0 0.5

0.5 −1

]
, (3)

which describes an output strict passivity (OSP) property

with gain 1. We choose the gain to be 1 without loss of

generality, since we can modify G(s) to absorb a different

value of the gain.

Next we define

Π(jω) =

n∑

i=1

αiΠ1 ⊗ eie
T
i , αi ∈ R, (4)

and note that the block diagonal concatenation ∆ :=
diag(∆i) satisfies the IQC defined by (4) for any choice of

αi ≥ 0, i = 1, . . . , n.

G(s)

∆1

. . .
∆n

Fig. 1. Feedback Interconnection of ∆ and G

From this point on, we assume that the following condi-

tions hold as stipulated in [13]:

1) For every τ ∈ [0, 1], the interconnection of G and τ∆
is well-posed,

2) For every τ ∈ [0, 1], the IQC defined by Π is satisfied

by τ∆.

Theorem 1: If there exists ǫ > 0, P ∈ R
n×n, P ≻ 0, such

that

P (G(jω) − I) + (G(jω) − I)∗P � −2ǫI ∀ω ∈ R, (5)

then the feedback interconnection of G and ∆ is stable.

�

Proof: We show that the theorem is equivalent to the

third (and final) condition of the IQC stability theorem in

[13]: If ∃ǫ > 0 and αi > 0 with Π as in (4) such that

HΠ :=

[
G(jω)

I

]
∗

Π(jω)

[
G(jω)

I

]
� −ǫI ∀ω ∈ R (6)

1The authors in [13] consider a rational G, but the general form in (2)
is admissible, as alluded to in [12].

holds, then the interconnection of G and ∆ is stable.

To show this, we let P := diag(αi) ≻ 0 and note that
[
G(jω)

I

]
∗

Π(jω)

[
G(jω)

I

]
=

[
G(jω)

I

]
∗

(Π1 ⊗ P )

[
G(jω)

I

]

=

[
G(jω)

I

]
∗
[

0 0.5P
0.5P −P

] [
G(jω)

I

]
.

It then follows that condition (6) is equivalent to (5).

IV. ROLL-OFF IQC

In order to evaluate the delay robustness of OSP systems

interconnected as in Figure 1, we now introduce a roll-off

IQC, which describes a reduction in the gain with increasing

frequency. This IQC will be particularly useful when G
contains a delay element, since the roll-off characterizes the

time-constants within the ∆i blocks. The roll-off IQC has

the form:

Π2τ (jω) :=

[
1 0

0
−1−( ω

ωc
)2

1+τ( ω
ωc

)2

]
,

where ωc is the “corner frequency” and 0 < τ ≪ 1 is

introduced to render Π2τ (jω) proper. Since the time variable

can be scaled appropriately, in the rest of the paper we

normalize ωc to ωc = 1 and, instead, vary the magnitude of

the time delay. In addition, for the analysis, we will consider

Π2τ at τ = 0, which we define as

Π2(jω) :=

[
1 0
0 −(1 + ω2)

]
.

In this paper, we propose the joint use of the OSP IQC Π1

and the roll-off IQC Π2 when the interconnection, G(s), con-

tains delay elements. Since Π1 is a frequency-independent

IQC, the time-scales of an operator which satisfies Π1 are

not constrained. Likewise, the IQC Π2 does not constrain the

phase properties of operators. Thus, we select the combined

IQC

Π(jω) :=

n∑

i=1

(αi1Π1 + αi2Π2(jω)) ⊗ eie
T
i (7)

and search for αi1, αi2 ≥ 0 such that (6) holds with the form

in (7). We refer to Πτ as the combined IQC (7) when Π2 is

replaced with Π2τ .

The following lemma proves that if HΠ � −ǫI holds on

a special compact set of ω, then HΠ � −ǫI for all ω ∈ R.

We further show in Lemma 2 that we can replace Π2τ with

Π2, which yields a cleaner analysis in the proof of the main

theorem in Section VI.

Lemma 1: Suppose Gi in (2) are constant for i =
0, . . . ,m and all of the delays Ti are commensurate2 so that

there exists T̂ such that Ti = NiT̂ for all i = 1, . . . ,m and

some Ni ∈ N. Let HΠ be defined as in (6) with Π in (7) .

Then, there exists an ǫ > 0 such that HΠ � −ǫI holds for

all ω ∈ R if and only if HΠ � −ǫI holds for ω ∈
[
− π

T̂
, π

T̂

]
.

2If all of the ratios between delays
Ti

Tj
for i, j = 1, . . . , m are rational

numbers, then the delays are said to be commensurate [10].
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Proof: Since G(jω) is periodic and the lower right n×n
block of Π is even and decreasing (in a semidefinite ordering)

with increasing ω ∈ [0,∞), λmax(HΠ) will achieve a

maximum on ω ∈
[
− π

T̂
, π

T̂

]
.

Lemma 2: Suppose the conditions in Lemma 1 hold. Let

T =
[
− π

T̂
, π

T̂

]
. If there exists ǫ > 0, αi1, αi2 ≥ 0, such

that HΠ � −ǫI holds for all ω ∈ T , then there exists a

τ > 0, ǫ̃ > 0, α̃i1, α̃i2 ≥ 0 such that

HΠτ � −ǫ̃I (8)

holds for all ω ∈ T .

Proof: Assume there exists ǫ > 0, αi1 ≥ 0, αi2 ≥ 0
such that HΠ � −ǫI for all ω ∈ T . Denote Πτ (2, 2) and

Π(2, 2) as the lower right n × n blocks of Πτ and Π. Let

α̃i1 := αi1, α̃i2 := αi2, and let

α̂ = max
i

α̃i2. (9)

For ω ∈ {T \ 0}, if

τ <
λmax (−HΠ)

α̂τ
(

π
T̂

)2

(1 +
(

π
T̂

)2

)
, (10)

then

σ (Πτ (2, 2) − Π(2, 2)) < λmax (−HΠ) . (11)

Note that for any τ ,

Hτ
Π = HΠ + Πτ (2, 2) − Π(2, 2). (12)

Since (11) holds, the negativity of HΠτ is preserved for

ω ∈ {T \ 0}. At ω = 0, the negativity is preserved since

HΠτ (0) = HΠ(0). Hence, there exists an ǫ̃ such that (8)

holds for ω ∈ T .

V. CYCLIC INTERCONNECTIONS WITH DELAY

In this section we make the advantage of the combined

IQC (7) explicit by studying a special interconnection struc-

ture whose stability properties in the absence of delay are

characterized in [3]. Let G(jω) be of the form

G(jω) =





0 0 · · · 0 g1(jω)
g2(jω) 0 0 0

0 g3(jω) 0
. . .

.

.

.

.

.

.
. . .

. . .
. . . 0

0 · · · 0 gn(jω) 0




, (13)

where

gi(jω) = ρie
−jβi(ω), ρi > 0, (14)

such that

n∏

i=1

gi(jω) = γej(π−ωT ). (15)

Figure 2 represents the interconnection of Figure 1 with

G defined as in (13). The phase condition in (15) means that

this is a negative feedback loop with delay T . Now, we prove

that the result of the IQC based analysis depends only on the

g1 ∆1 · · · gn ∆n

Fig. 2. Interconnection of ∆ and cyclic G

total gain γ and total delay T , and not the particular choice

of each ρi and βi(ω).
Theorem 2: Let G(jω) and G̃(jω) represent two different

cyclic matrices as in (13), each with different choice of

values for the gi(jω) such that both matrices satisfy (15)

with a common γ and T . Let gi(jω) and g̃i(jω) indicate the

particular choice for G(jω) and G̃(jω). Let {Πk(jω)}p
k=1

represent an arbitrary set of IQCs.

Define

Π(jω) =
n∑

i=1

p∑

k=1

αikΠk(jω) ⊗ eie
T
i

and

Π̃(jω) =

n∑

i=1

p∑

k=1

α̃ikΠk(jω) ⊗ eie
T
i .

There exist constants αik ≥ 0 and ǫ > 0 such that for all

ω ∈ R
[
G(jω)

I

]
∗

Π(jω)

[
G(jω)

I

]
� −ǫI, (16)

if and only there exist constant α̃ik ≥ 0 and ǫ̃ > 0 such that

for all ω ∈ R
[
G̃(jω)

I

]∗
Π̃(jω)

[
G̃(jω)

I

]
� −ǫ̃I (17)

�

Proof: See Appendix.

Now we will study how delay affects the stability of the

cyclic interconnection in (13). We first consider the case T =
0 and recall the following stability test from [3]:

Theorem 3: Suppose each ∆i satisfies the IQC defined by

Π1. Then the feedback interconnection of ∆ and G is stable

if

γ cos
(π

n

)n

< 1. (18)

�

Although [3] did not use the IQC formulation, the stability

criterion was identical to (5) with G as in (13)-(15) and

T = 0. The existence of a diagonal P ≻ 0 was shown in [3,

Theorem 1] to be equivalent to (18).

Now we consider the case T 6= 0, and show that employ-

ing the IQC Π1 alone yields a conservative result that is

independent of the size of the delay.

Theorem 4: Suppose T > 0 and each ∆i satisfies the IQC

defined by Π1. There exists a diagonal P ≻ 0 and ǫ > 0 such

that (6) with Π = Π1 holds if and only if γ < 1.

�

Proof: From Theorem 2 , we choose G(jω) such that

g1(jω) = −γe−jωT and gi(jω) = 1, i ≥ 2
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without loss of generality.

(⇒ Contradiction) Suppose P ≻ 0 exists and γ ≥ 1. At

ω̄ = π
T , G(jω̄) − I is a Metzler matrix of the form:

G(jω̄) − I =





−1 0 · · · γ
1 −1 · · · 0

0
. . .

. . .
...

... 0 1 −1




. (19)

From [7, Theorem 2.3], there exists an ǫ > 0 and P ≻ 0
such that P [G(jω̄)− I]+ [G(jω̄)− I]∗P � −ǫI if and only

if the principal minors of −(G(jω̄− I)) are all positive. All

principal minors of −(G(jω̄ − I)), except the minor which

is the determinant of the matrix itself, are 1. The remaining

principal minor, which is

det(G(jω̄) − I) = 1 − γ(−1)n+1(−1)n−1

= 1 − γ(−1)2n = 1 − γ,

is positive only if γ < 1. Hence, when γ ≥ 1 at ω = ω̄,

there does not exist a P such that (7) holds.

(⇐) Assume γ < 1. We will first show that a P exists at

ω̄ = π
T , and then show that this P can be used for any value

of ω. At ω = ω̄, G(jω̄)− I is a Metzler matrix of the form

in (19). Hence, since γ < 1, there exists a diagonal, positive

definite P and ǫ > 0 such that

x∗[P (G(jω̄) − I) + (G(jω̄) − I)∗P ]x ≤ −ǫ|x|2 (20)

holds for all x ∈ C
n. Expanding (20) yields the condition

−p1|x1|
2 − . . . − pn|xn|

2 + 0.5p2(x
∗

1x2 + x∗

2x1)

+ . . . + 0.5pn(x∗

n−1xn + x∗

nxn−1)

+0.5γp1(x
∗

1xn + x∗

nx1) ≤ −ǫ|x|2.

(21)

Since (21) holds for all x ∈ C
n, it also holds for all xi = |yi|

for y ∈ C
n. Hence, it is clear that (21) implies that

−p1|y1|
2 − . . . − pn|yn|

2 + . . . + p2|y1||y2|

+ . . . + pn|yn−1||yn| + γp1|y1||yn| ≤ −ǫ|y|2
(22)

holds ∀y ∈ C
n.

Now we consider y∗[P (G(jω) − I) + (G(jω) − I)∗P ]y,

over all ω ∈ R. Expanding y∗[P (G(jω) − I) + (G(jω) −
I)∗P ]y yields

−p1|y1|
2 − . . . − pn|yn|

2 + . . . + 0.5p2(y
∗

1y2 + y∗

2y1)

+ . . . + 0.5pn(y∗

n−1yn + y∗

nyn−1)

−0.5γp1(e
−jωT y∗

1yn + ejωT y∗

ny1),

which is upper bounded by (22). Hence, there exists a

positive definite P = diag(p1, . . . , pn) and ǫ > 0 such that

(6) holds for all ω ∈ R.

Since the condition γ < 1 in Theorem 4 does not depend

on the duration of the delay, we conclude that using Π1 alone

leads to a conservative result.

We now present a theorem which shows that the IQC LMI

stability test for a OSP system with roll-off is equivalent to

a scalar test in which the admissible gain γ is a function of

the delay T and the dimension of the system n. We provide

a proof in section VI.

Theorem 5: For any γ > 1, T ≥ 0, there exists ǫ > 0
and α1i, α2i ≥ 0 such that HΠ � −ǫI holds for all ω ∈ R

if

T <
π − n arctan

(√
γ

2

n − 1
)

√
γ

2

n − 1
. (23)

�

The condition in (23) is the time delay margin for a

cascade of identical linear systems ∆i = 1
(s+1) for i =

1, . . . , n, in feedback with gain γ. This is a particular system

that satisfies the IQCs defined by Π1 and Π2, which means

that the bound is tight and cannot be relaxed without further

assumptions.

Notice in condition (23) that for T = 0, the secant

condition in Theorem 3 is recovered, and that as T → ∞,

the small gain condition in Theorem 4 is recovered.

As a numerical example, we performed the robustness

test HΠ � −ǫI for n = 3 by gridding the frequency

ω ∈
[
− π

T , π
T

]
with 300 points, which is plotted in Figure

3 for n = 3. The analytical formula in (23) is overlaid with

the circles and matches the numerical test.
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Fig. 3. A stability bound on γ as a function of delay T for n = 3, obtained
numerically with the combined IQC. The result of the condition in (23) is
superimposed.

VI. PROOF OF THEOREM 5

We choose G(jω) such that

gi(jω) := g(jω) , γ
1

n ej(−ωT
n

+ π
n ), i = 1, . . . , n. (24)

With αi1 = 1 and αi2 = α, i = 1, · · · , n, the IQC stability

condition HΠ � −ǫI can be written as:

1

2
(G(jω) − I) +

1

2
(G(jω) − I)∗

+α(|g(jω)|2 − (1 + ω2)))I � −ǫI ∀ω.
(25)

Let T :=
[
− π

T , π
T

]
. From Lemma 1 , the inequality (25)

need only hold for ∀ω ∈ T .

Since

(G(jω) − I) + (G(jω) − I)∗ (26)
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is a circulant matrix, it’s eigenvectors are [9]:

vk = [1 e−j(k−1) 2π
n e−j(k−1)2 2π

n · · · e−j(k−1)(n−1) 2π
n ]T

(27)

for k = 1, . . . n and, thus, the eigenvalues are the discrete

Fourier transform coefficients of the first row which, for (26),

are:

λk(jω) = −2 + g(jω)∗e−j(k−1) 2π
n + g(jω)e−j(k−1)(n−1) 2π

n

(28)

for k = 1, . . . n.

Defining the matrix V = [v1 · · · vn] and noting that V −1 =
1
nV ∗, we conclude:

1

n
V ∗[(G(jω) − I) + (G(jω) − I)∗]V =

diag(λ1(jω), . . . , λn(jω)).

Multiplying (25) from the right by V and 1
nV ∗ from the

left yields a diagonal matrix. Thus, the condition in (25)

becomes

1

2
λk(jω) + α(γ2/n − (1 + ω2)) ≤ −ǫ,

k = 1, · · · , n ∀ω ∈ T .
(29)

Substituting (24) in (28) and simplifying yields

λk(jω) = −2 + 2γ1/n cos

(
π

n
+ (k − 1)

2π

n
−

ωT

n

)
(30)

for k = 1, · · · , n. We rewrite (29) as:

h(ω, k) := −1 + γ1/n cos

(
π

n
+ (k − 1)

2π

n
−

ωT

n

)
+

α(γ2/n − (1 + ω2))) ≤ −ǫ k = 1, · · · , n,∀ω ∈ T .

Note that for ω ∈ T , ωT
n ∈

[
−π

n , π
n

]
. For ω ∈

[
0, π

T

]
,

h(ω, k) has the largest value when k = 1. For ω ∈
[
−π
T , 0

]
,

h(ω, k) has the largest value when k = n. However, note

that h(ω, 1) = h(−ω, n). Thus, we can restrict the area of

interest to ω ∈
[
0, π

T

]
. Let

f(ω) := −h(ω, 1) = 1 − γ1/n cos

(
π

n
−

ωT

n

)

−α(γ2/n − (1 + ω2)).

(31)

Thus, if there exists an ǫ > 0 such that f(ω) ≥ ǫ for all

ω ∈
[
0, π

T

]
, then HΠ � −ǫI for all ω ∈ R.

For γ > 1, define

ω :=
√

γ2/n − 1

T :=
π − n arctan(ω)

ω

α :=
γ1/nT

2nω
sin

(
π − Tω

n

)
.

Lemma 3: If 1 < γ, α = α and T = T , then for f in (31)

argmin
ω

f(ω) = ω.

Proof: The lemma is proven true by inspecting the first,

second and third derivatives of f at ω.

Lemma 4: If γ > 1, α = α and T = T , then ∀ω ∈
[
0, π

T

]

f(ω) ≥ 0.
Proof: Since f(ω) = 0 and ω is the global minimum,

f(ω) ≥ 0 ∀ω ∈
[
0, π

T

]
.

Lemma 5: If γ > 1, for any T̂ such that 0 ≤ T̂ < T ,

αω2 − γ1/n cos

(
ωT̂ − π

n

)
+ 1 + α − αγ2/n > 0 (32)

for all ω ∈
[
0, π

T

]
.

Proof: The proof follows from inspecting (32) after

substituting in for y = Tω.

Therefore, if T < T , α = α and

ǫ := min
ω

f(ω), (33)

then f(ω) → ∞ as ω → ∞ and, from Lemma 5, f(ω) >
0 ∀ω ∈ R, by our choice of T and α. Hence, there exists

an ǫ > 0 and αi1 := 1, αi2 := α for i = 1, . . . , n, such

that HΠ � −ǫI holds for all ω ∈
[
0, π

T

]
. Furthermore, by

the symmetry of λk and Lemma 1, HΠ � −ǫI holds for all

ω ∈ R.

VII. CONCLUSIONS

We established a roll-off IQC, which describes a reduction

in the gain with increasing frequency. The usefulness of the

roll-off IQC was exhibited by Theorem 5 in an example

where the interconnection structure was cyclic. As desired,

when the roll-off IQC was combined with the OSP IQC, the

resulting stability bound on the gain approached the secant

condition for small delays and the small-gain condition for

large delays.

In the future, we will investigate applications of the roll-

off IQC to other network topologies. Additionally, we will

investigate how to verify the roll-off IQC for a given state

model. If the state model is described by polynomial vector

functions, then elementary L2 gain methods [16], [15],

combined with sum-of-squares (SOS) optimizations [14], [6],

provide one method to verify an IQC.
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IX. APPENDIX

We start with a lemma that will be used in Theorem 2.

Lemma 6: Let G and G̃ represent two different cyclic

matrices as in (13) such that
n∏

i=1

gi(jω) =

n∏

i=1

g̃i(jω), g̃i(jω), gi(jω) 6= 0. (34)

There exists a diagonal nonsingular D(jω) ∈ C
n×n such

that

D(jω)−1G(jω)D(jω) = G̃(jω). (35)

Proof: Since (34) holds, choosing

d1(jω) = 1, (36)

di(jω) = di−1
gi(jω)

g̃i(jω)
i = 2, . . . , n (37)

and D(jω) = diag (d1(jω), . . . , dn(jω)) provides a nonsin-

gular, diagonal D(jω) such that (35) holds.

Proof of Theorem 2: (⇒) From Lemma 6, we know that

there exists a nonsingular, diagonal D(jω) such that (35)

holds. Let D(jω) = I2⊗D(jω). Since D(jω) is nonsingular,

multiplying (16) by D(jω) will not effect the inequality

constraint. Hence, the following holds for all ω:

D∗(jω)

[
G(jω)

I

]
∗

(D
∗

(jω))−1D
∗

(jω)Π(jω)D(jω)

D(jω)−1

[
G(jω)

I

]
D(jω) � −ǫD∗(jω)D(jω).

(38)

The right hand term −ǫD∗(jω)D(jω) = −ǫ|di(jω)|2I is a

constant, negative definite, diagonal matrix. Note from (14),

(36), (37), that |di(jω)| are constant scalars. Thus, we use

the notation |di|. Let ǫ̃ = ǫ max(|di|
2). Since G(jω) and

G̃(jω) are similar for D(jω), (38) implies
[
G̃(jω)

I

]∗
D

∗

(jω)Π(jω)D(jω)

[
G̃(jω)

I

]
� −ǫ̃I (39)

holds for all ω. D(jω) and αikΠk(jω) are square. Therefore

(39) holds if and only if

[
G̃(jω)

I

]∗ n∑

i=1

p∑

k=1

αikΠk(jω)

⊗(D∗(jω)eie
T
i D(jω))

[
G̃(jω)

I

]
� −ǫ̃I

(40)

holds for all ω. Since D(jω) and eie
T
i are are diagonal,

D∗(jω)eie
T
i D(jω) = |di(jω)|2eie

T
i . Since, the |di| terms

are constant scalars, we move them to the front of the

product. Hence, (40) holds if and only if

[
G̃(jω)

I

]∗ n∑

i=1

p∑

k=1

|di|
2αikΠk(jω) ⊗ eie

T
i

[
G̃(jω)

I

]
� −ǫ̃I

holds for all ω. Therefore, ǫ̃ = ǫ max(|di|
2) and α̃ik :=

|di|
2αik are the appropriate, constant positive and non-

negative multiples for the condition in (17) to hold for all ω.

(⇐) From the symmetry, given the multipliers for (17), the

multipliers of (16) can be recovered by the same argument.

�
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