
Approximate-model closed-loop minimal sampling method for HIV
viral-load minima detection

Ryan Zurakowski, Matthew Churgin, Camilo Perez, Matthew Rodriguez

Abstract— We present a closed-loop method for determining
the minimum of a viral rebound curve for an HIV patient
undergoing a therapy transition. This method fits the pa-
rameters for a reduced approximate solution to the viral
load measurements using a Simulated Annealing direct search
algorithm. Gaussian white noise is added, and a family of fits is
obtained. A safety tolerance measure is applied to the family of
fits to obtain the next sample time. Using parameters identified
from HIV data, we show that this method exhibits robust
performance on noisy data generated from identified patient
models, while greatly reducing the number of samples needed
compared to a fixed-interval sampling approach.

I. INTRODUCTION

HIV infection is a potentially deadly disease. The virus
is well-controlled by the application of Highly-Active An-
tiretroviral Therapy (HAART), but the emergence of drug-
resistant strains is common, and forces a therapy change [1].

In order to reduce the risk of subsequent virological
failures immediately following the introduction of a new
antiviral regimen, we have previously proposed a family
of optimal treatment scheduling algorithms [2], [3], [4],
[5]. These algorithms utilize treatment interruptions and
permuted antiviral drug regimens in an optimal manner to
create transient crashes in the total viral load. Because the
drugs being used in these optimized schedules are from
regimens to which resistant virus has already emerged, the
crash is always followed by a viral rebound. By switching
at the viral load minimum, before rebound, it is theoretically
possible to reduce the risk of subsequent virlogical failure
by an order of magnitude or more [6], [3].

Model uncertainty due to interpatient parameter variation
makes a priori calculation of the minimum time impossible.
Frequent sampling makes it possible to find the minimum,
but the samples are expensive and invasive, so this should
be avoided. In a previous paper, we have introduced a
simple algorithm for finding the viral load minimum [7].
In this paper, we improve the algorithm through the use of
Simulated Annealing-based parameter identification and test
the model’s performance against noisy data generated from
models identified from experimental HIV patient data..
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II. MODEL
A. Viral strain competition model

The dynamics of HIV infection by two competing strains
is well described by Equation 1

ẋ = λ −dx−βw(1−u1)(1−u2)xvw
−βr(1−u2)xvr

ẏw = βw(1−u1)(1−u2)xvw−awyw +λw
ẏr = βr(1−u2)xvr−aryr +λr
v̇w = γwawyw−ωwvw
v̇r = γraryr−ωrvr

(1)

where vw, yw are the populations of virus and infected cells,
respectively, susceptible to drug regimens u1 and u2, vr and
yr the populations of virus and infected cells resistant to u1,
respectively, and x is the uninfected target cell population.
The parameters of this model were identified from viral load
data from six patients subjected to a series of treatment in-
terruptions and reintroductions [8], using modified Markov-
Chain Monte-Carlo methods as described in [3], [5] The
parameters used for the plots generated in this paper are
shown in Table I.

TABLE I
IDENTIFIED PARAMETER VALUES FOR EACH PATIENT

Parameters Patient A Patient B
λ 123 51.7
d 0.108 0.113

βw 5.51∗10−6 5.40∗10−6

βr 5.51∗10−6 5.40∗10−6

aw 0.476 0.528
ar 0.952 1.06
λw 3.00∗10−4 3.00∗10−4
λr 3.00∗10−4 3.00∗10−4
γw 167 275
γr 167 275
ωw 0.569 0.549
ωr 0.569 0.549

B. Approximate Solution
Equation 1 has twelve parameters and five state variables,

which would require at least seventeen measurements be-
fore closed-loop parameter estimation could begin. However,
under the conditions induced by the switching algorithms
described in [2], [3], [4], [5], the total viral load v(t) =
vw(t)+ vr(t) can be well approximated by the equation:

v̂(t) = v̂w(0)e−kwt + v̂r(0)ekrt (2)

which has only one state and three unknown parameters, if
the total initial viral load is assumed to be known.
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III. ALGORITHM

A. Simulated Annealing-based parameter estimation

Once we have three measurements, we can perform non-
linear least-squares estimation. To overcome problems with
local minima in the fit encountered while using steepest-
descent based methods, we used a simulated annealing
algorithm to obtain our parameter fits [9]. We used the built-
in MATLAB implementation simulannealbnd with default
settings, enforcing upper and lower bounds on the parameters
0.95 ∗ y(0) ≤ ŷw(0) ≤ y(0), 0.1 ≤ kw ≤ 1, 0.1 ≤ kr ≤ 1 and
a terminal function value tolerance of 10−20. A parameter
set θ = [vw0 kw kr] is found to minimize the cost function
ln(∑i |v(ti)− v̂(ti)|) for the set of samples {ti}.

B. Closed-loop sampling criterion

In order to avoid either sampling too frequently or over-
shooting the minimum, we implement a closed-loop algo-
rithm. A minimum interval Tmin = 3 days and a maximum
interval Tmax = 7 days are defined. After three initial sam-
ples spaced at Tmin, parameter estimation is performed as
described above. This step is repeated J = 100 times with
proportional gaussian random noise added to the sampled
data y(ti), with standard deviation equal to 5% of the nominal
measured value, and J estimated viral-load minimum times
t j =

1
kr( j)+kw( j) ln( kw( j)v̂w0( j)

kr( j)v̂r0( j) ) are calculated. The worst-case
(earliest) rebound time ˜tmin = inf j∈J{t j} is calculated. If

˜tmin > tS + Tmax, where tS is the current sample time, the
next sample is taken at tS +Tmax. If ˜tmin < tS +Tmin, the next
sample is taken at tS+Tmin. If tS+Tmin < ˜tmin < tS+Tmax, the
next sample is taken at ˜tmin. The algorithm terminates when

˜tmin ≥ tS for the set of samples {ti}.

IV. SIMULATIONS

Equation 1 was used to generate data using identified
parameter values from a number of patients. The system
was allowed to settle for 100 days, simulating the initial
emergence of a resistant strain. These data were corrupted
by proportional Gaussian white noise with standard deviation
equal to 3% of the measurement value. Overall, we saw
a reduction in the required number of samples of approx-
imately 50% compared to a fixed 3-day sampling interval
while maintaining a ±3-day accuracy. Figure 1 show the
results for two example patients. The blue curve is the actual
noise-corrupted viral load generated by Equation 1, the red
circles are the measurements with error bars showing the
range of values considered by the estimation algorithm, and
the numbered green curves are the successive estimate curves
following Equation 2 generated by the algorithm.

V. CONCLUSIONS AND FUTURE WORKS

We have demonstrated a closed-loop sampling algorithm
which robustly finds a viral load minimum despite the pres-
ence of measurement noise. This algorithm uses an approx-
imate solution method, and employs a Simulated Annealing
algorithm for robust parameter identification. The algorithm
consistently reduces the number of samples required to find
the minimum compared to a frequent sampling approach. In
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Fig. 1. Patient A and B Data.

future work, we will explore other direct search methods such
as Genetic Algorithms, as the Simulated Annealing method
is quite slow for this problem. A faster algorithm will allow
us to explore a less-conservative approach where the next
sample time is taken to be one standard deviation before the
mean, instead of the earliest. Histograms of the estimated
minimum times obtained from the algorithm for Patient A
show a roughly normal distribution, implying that this is
feasible. A much larger number of fits will be necessary
to generate a sufficiently smooth distribution, however, and
this will require a faster algorithm.

Fig. 2. Distribution of estimates of rebound time for Patient A after
3, 4, and 5 measurements respectively.
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