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Abstract— An inferential adaptive control algorithm is de-
veloped for a class of non-uniformly sampled-data systems
with fast and non-uniformly updated inputs and infrequently
sampled outputs. The specific approach involves three steps:
first, to derive the mathematical relationships between the
transfer function model of the measurable output and that
of the non-uniform missing outputs; second, to compute the
models of the non-uniform missing outputs based on the
derived mathematical relationships and the identified model
of the measurable output; third, using the computed models to
estimate the non-uniform missing outputs and further supply
which for feedback control. The proposed control algorithm
can generate fast rate control signals and has the property of
minimum variance. An example is included and the simulation
results illustrate the effectiveness of the proposed inferential
control scheme.

Index Terms: Multirate systems; inferential control; adaptive
control; least squares; identification.

I. INTRODUCTION

In process industries, due to large measurement delays and

high investment and maintenance costs of analyzers, many

variables that indicate the product qualities (quality variables)

are difficult to measure at frequent rate, such as product

composition in a distillation column [1], Kappa number in

pulping process [2], Melt index in polymer production pro-

cess [3]. Therefore, the desired control performances may not

be achieved by using the infrequent quality variables directly

as controlled variables. In order to realize on-line quality

control and enhance the control performances, the inferential

control scheme is especially designed, the basic idea of

which is to estimate the unmeasurable quality variables based

on the process model, as well as other fast and continuously

available variables (auxiliary variables), and then use the

estimates for feedback control.

Inferential control has been an active research area in re-

cent years. For example, Ogawa and his coworkers developed

an inferential model to estimate the Melt index value in

polyethylene process, and proposed a quality inferential con-

trol scheme by combining the inferential estimation with the

quality control system [4]; Pannocchia et al. investigated the

effects of choosing the auxiliary variables and the plant data

collecting approaches to design the estimators for inferential

control [5]; Kano et al. presented a predictive inferential

control scheme to control the product composition in a
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distillation column [6]; Singh et al. also studied inferential

control for distillation, the estimator of which is based on an

artificial neural network [7].

In particular, for a single input single output system, when

the sampling period of the quality variable is an integer

multiple of the control signal, the system is termed as a dual-

rate system [8]. In the field of dual-rate inferential control, Li

et al. designed a dual-rate inferential model predictive control

scheme, which obtained the fast rate model to estimate the

unmeasured quality variables, and then supplied the estimates

to implement the control algorithms at the fast rate [9];

and further studied the stability, tracking performance and

robustness of the dual-rate inferential control system [10].

Motivated by the idea of inferential control, Ding and Chen

established the mathematical model for dual-rate systems

by using the polynomial transformation technique, and then

proposed a least squares based and a gradient based adaptive

control algorithms [11], [12].

This paper is to present an inferential adaptive control

algorithm for a class of non-uniformly sampled-data sys-

tems, where the input updating instants are non-uniformly

spaced within a frame period T , and the output sampling

instant is a constant T . Such systems are quite general,

if the input updating instants are uniformly spaced, which

will reduce to dual-rate systems. However, since the non-

uniformly sampled-data systems have no base periods, it is

impossible to obtain any fast rate models or construct the

mathematical models using the polynomial transformation

technique, and consequently the dual-rate inferential control

schemes mentioned before can not be applied. Briefly, the

contributions of this paper are as follows:

• The mathematical relationships between the transfer

function model of the measured output and that of the

unmeasured outputs are derived. To our best knowledge,

this research findings has not yet been reported.

• Using the recursive least squares (RLS) algorithm, the

transfer function model of the measured output is iden-

tified based on the non-uniform updating inputs and

infrequent sampling outputs; and the models of the

unmeasured outputs are further obtained by applying

the above relationships.

• Based on the obtained models, the estimates of the

unmeasured outputs are computed. Using the estimates

to replace the unknown true values and according to the

minimum variance theory, the inferential adaptive con-

trol algorithm for non-uniformly sampled-data systems

is presented.

The paper is organized as follows. Section II discusses
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the modeling issues related to the non-uniformly sampled-

data systems, where the first contribution is formed. Sec-

tion III identifies the model parameters by using the RLS

algorithm, and computes the estimates of the missing outputs.

Section IV presents the inferential adaptive control algorithm

for non-uniformly sampled-data systems. Section V provides

an example to demonstrate the effectiveness of the proposed

algorithm. Finally, some concluding remarks are given in

Section VI.

II. MODELING OF NON-UNIFORMLY SAMPLED-DATA

SYSTEMS

Considering the non-uniformly sampled-data systems, as

briefly illustrated in Fig. 1, where Hτ is a non-uniform zero-

-pppppppppppppp Hτ
- P - ST

ppppppppppppppp -

u(kT + ti) u(t) y(t) y(kT )

Fig. 1. The non-uniformly sampled-data systems

order hold with irregularly updating intervals {τ1,τ2, · · · ,τr},

processing a discrete-time signal u(kT + ti) (t0 = 0, ti =
ti−1 + τi, i = 1,2, · · · ,r) and producing the input u(t) to

the continuous-time process P; y(t) is the process output

and sampled by a sampler ST with the frame period T :=
τ1 + τ2 + · · ·+ τr = tr, yielding a discrete-time signal y(kT ).

The non-uniform sampling pattern is assumed to repeat

with the frame period T , as shown in Fig. 2, where ◦

Fig. 2. The non-uniformly zero-order hold sampling pattern

denotes measurable outputs and × denotes unmeasurable

outputs (or missing outputs). It is clear that the control input

is non-uniformly updated r times during each period, but

the output is sampled only once. Taking the first period

[0,T ) for example, the available input-output data is u(0),
u(t1), u(t2), · · · , u(tr−1) and y(0), all the other outputs y(t1),
y(t2), · · · , y(tr−1) are missing.

Assume that the continuous-time process P in Fig. 1 has

the following state-space representation:

P :

{

ẋ(t) = Ax(t)+Bu(t),
y(t) = Cx(t),

(1)

where x(t) ∈ R
n is the state vector, A,B,C, are matrices

of appropriate dimensions. Discretizing system (1) with the

frame period T gives

x(kT +T ) = exp(AT )x(kT )

+
∫ kT+T

kT
exp[A(kT +T − τ)]Bu(τ)dτ

=: Gx(kT )+
r

∑
j=1

F ju(kT + t j−1), (2)

G := exp(AT ) ∈ R
n×n, (3)

F j := exp[A(T − t j)]
∫ τ j

0
exp(At)dtB ∈ R

n. (4)

Hence, using (1) and (2), the discretization state-space model

of the measurable output is







x(kT +T ) = Gx(kT )+
r

∑
j=1

F ju(kT + t j−1),

y(kT ) = Cx(kT ).
(5)

For the non-uniformly sampled-data systems, assume the

frame period T is non-pathological and (C,A) in (1) is

observable, then (C,G) in (5) is accordingly observable [13],

[14]. Hence, there exists a nonsingular matrix Qo such that

the following linear transformation

x(kT ) = Qox(kT ), (6)

to make the state-space model (5) become the observability

canonical form,







x(kT +T ) = G x(kT )+
r

∑
j=1

F ju(kT + t j−1),

y(kT ) = C x(kT ),
(7)

G = QoGQ−1
o =















0 0 · · · 0 −αn

1 0 · · · 0 −αn−1

0 1 · · · 0 −αn−2

...
...

...
...

0 0 · · · 1 −α1















, (8)

F j = QoF j =















β0, j(n)
β0, j(n−1)
β0, j(n−2)

...

β0, j(1)















, (9)

C = CQ−1
o = [0,0, · · · ,0,1]. (10)

Introducing a unit forward shift z : zx(kT ) = x(kT + T ) or

z−1x(kT ) = x(kT −T ), equation (7) can be rewritten in the

following input-output representation,

y(kT ) =
r

∑
j=1

z−nC adj[zI −G]F j

z−n det[zI −G]
u(kT + t j−1),

=:
1

α(z)

r

∑
j=1

β0, j(z)u(kT + t j−1), (11)
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α(z) = z−n det[zI −G]

= 1+α1z−1 +α2z−2 + · · ·+αnz−n,

β0, j(z) = z−nC adj[zI −G]F j

= β0, j(1)z−1 +β0, j(2)z−2 + · · ·+β0, j(n)z−n,

j = 1,2, · · · ,r.

Integrating (1) from kT to kT + ti, i = 1,2, · · · ,r−1, gives

x(kT + ti) = exp(Ati)x(kT )

+
∫ kT+ti

kT
exp[A(kT + ti − τ)]Bu(τ)dτ

=: Gix(kT )+
i

∑
j=1

F i ju(kT + t j−1), (12)

Gi := exp(Ati) ∈ R
n×n, (13)

F i j := exp[A(ti − t j)]
∫ τ j

0
exp(At)dtB ∈ R

n. (14)

Comparing (13) and (14) with (3) and (4), respectively, the

following relationships can be derived,

Gi = G ti/T , F i j = G−1GiF j. (15)

From (1), using (12), the non-uniform missing output can be

expressed as

y(kT + ti) = CGix(kT )+
i

∑
j=1

CF i ju(kT + t j−1). (16)

Define

Gi := G ti/T , F i j := G−1GiF j. (17)

Using (6), (8)-(10), (15) and (17), we have

C Gix(kT ) = CQ−1
o [QoGQ−1

o ]ti/T x(kT )

= CQ−1
o QoGti/T Q−1

o x(kT )

= CGix(kT ), (18)

C F i j = CQ−1
o [QoGQ−1

o ]−1[QoGQ−1
o ]ti/T QoF j

= CQ−1
o QoG−1Q−1

o QoGti/T Q−1
o QoF j

= CF i j. (19)

Thus, using (18) and (19), equation (16) can be equivalently

written as,

y(kT + ti) = C Gix(kT )+
i

∑
j=1

C F i ju(kT + t j−1),

and the corresponding transfer function model is

y(kT + ti)

=

{

i

∑
j=1

z−nC Gi adj[zI −G]F j

z−n det[zI −G]
+C F i j

}

u(kT + t j−1)

+
r

∑
j=i+1

z−nC Gi adj[zI −G]F j

z−n det[zI −G]
u(kT + t j−1)

=:
1

α(z)

r

∑
j=1

βi j(z)u(kT + t j−1), i = 1,2, · · · ,r−1, (20)

where α(z) is defined as before,

βi j(z) := z−nC Gi adj[zI −G]F j +C F i jα(z) (21)

= βi j(0)+βi j(1)z−1 +βi j(2)z−2 + · · ·+βi j(n)z−n,

j = 1,2, · · · , i,

βi j(z) := z−nC Gi adj[zI −G]F j (22)

= βi j(1)z−1 +βi j(2)z−2 + · · ·+βi j(n)z−n,

j = i+1, i+2, · · · ,r.

III. PARAMETER IDENTIFICATION AND MISSING

OUTPUTS ESTIMATION

The most difficult issue in designing inferential control

scheme is to estimate the unmeasurable outputs, and it is

no exception for the non-uniformly sampled-data systems.

This Section is to identify the transfer function model of the

measurable output based on the available input-output data,

and then compute the estimates of the missing outputs.

In practice, the system outputs are always interfered by

various disturbances. So the white noise v(kT ) is added to

the deterministic input-output model and (11) becomes,

α(z)y(kT ) =
r

∑
j=1

β0, j(z)u(kT + t j−1)+ v(kT ). (23)

Define the parameter vector θ 0 and the information vector

ϕ0(kT ) as

θ 0 := [α1,α2, · · · ,αn,β0,1(1),β0,1(2), · · · ,β0,1(n),

β0,2(1),β0,2(2), · · · ,β0,2(n), · · · ,

β0,r(1),β0,r(2), · · · ,β0,r(n)]T ∈ R
rn+n,

ϕ0(kT ) := [−y(kT −T ),−y(kT −2T ), · · · ,−y(kT −nT ),

ψT

0(kT )]T ∈ R
rn+n,

ψ0(kT ) := [u(kT −T ),u(kT −2T ), · · · ,u(kT −nT ),

u(kT −T + t1),u(kT −2T + t1), · · · ,

u(kT −nT + t1), · · · ,u(kT −T + tr−1),

u(kT −2T + tr−1), · · · ,u(kT −nT + tr−1)]
T ∈ R

rn.

Then from (23), we have

y(kT ) = ϕT

0(kT )θ 0 + v(kT ). (24)

The information vector ϕ0(kT ) in the identification model

(24) only contains available input-output data {y(kT ),u(kT +
ti): i = 0,1, · · · ,r − 1}, thus the parameter vector θ 0 can

be identified by the following recursive least squares (RLS)

algorithm:

θ̂ 0(kT ) = θ̂ 0(kT −T )+L(kT )[y(kT )−ϕT

0(kT )θ̂ 0(kT −T )],

(25)

L0(kT ) =
P0(kT −T )ϕ0(kT )

1+ϕT

0(kT )P0(kT −T )ϕ0(kT )
, (26)

P0(kT ) = [I −L0(kT )ϕ0(kT )]P0(kT −T ), (27)

θ̂ 0(kT ) := [α̂1(kT ), α̂2(kT ), · · · , α̂n(kT ),

β̂0,1(1)(kT ), β̂0,1(2)(kT ), · · · , β̂0,1(n)(kT ),

β̂0,2(1)(kT ), β̂0,2(2)(kT ), · · · , β̂0,2(n)(kT ), · · · ,

β̂0,r(1)(kT ), β̂0,r(2)(kT ), · · · , β̂0,r(n)(kT )]T. (28)
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Based on the parameter estimates of α̂i(kT ) and

β̂0, j(l)(kT ), the estimates of the unknown parameters

β̂i j(l)(kT ) and the missing outputs y(kT +ti), i = 1,2, · · · ,r−
1, in (20) can be computed accordingly. The computing steps

are listed below:

1) From (8)-(10), let C = [0,0, · · · ,0,1], form the estimates

of G and F j by

Ĝ =















0 0 · · · 0 −α̂n(kT )
1 0 · · · 0 −α̂n−1(kT )
0 1 · · · 0 −α̂n−2(kT )
...

...
...

...

0 0 · · · 1 −α̂1(kT )















, (29)

F̂ j =

















β̂0, j(n)(kT )

β̂0, j(n−1)(kT )

β̂0, j(n−2)(kT )
...

β̂0, j(1)(kT )

















. (30)

2) From (17), the estimates of Gi and F i j can be com-

puted by

Ĝi = Ĝ ti/T , F̂ i j = Ĝ−1ĜiF̂ j. (31)

3) From (21) and (22), the parameters β̂i j(l)(kT ) can be

estimated by

β̂i j(z) = z−nC Ĝi adj[zI − Ĝ]F̂ j +C F̂ i jα̂(z) (32)

= β̂i j(0)(kT )+ β̂i j(1)(kT )z−1 + β̂i j(2)(kT )z−2

+ · · ·+ β̂i j(n)(kT )z−n, j = 1,2, · · · , i,

β̂i j(z) = z−nC Ĝi adj[zI − Ĝ]F̂ j (33)

= β̂i j(1)(kT )z−1 + β̂i j(2)(kT )z−2

+ · · ·+ β̂i j(n)(kT )z−n, j = i+1, i+2, · · · ,r.

4) Using the estimates of β̂i j(l)(kT ) and from (20), the

estimates of y(kT + ti) can be computed by the linear

regression model,

ŷ(kT + ti) = ϕ̂T

i (kT )θ̂ i(kT )+ψT

i (kT )ϑ̂ i(kT ), (34)

where

ϕ̂ i(kT ) = [−ŷ(kT −T + ti),−ŷ(kT −2T + ti), · · · ,

−ŷ(kT −nT + ti),ψ
T

0(kT )]T,

θ̂ i(kT ) = [α̂1(kT ), α̂2(kT ), · · · , α̂n(kT ),

β̂i,1(1)(kT ), β̂i,1(2)(kT ), · · · , β̂i,1(n)(kT ),

β̂i,2(1)(kT ), β̂i,2(2)(kT ), · · · , β̂i,2(n)(kT ), · · · ,

β̂i,r(1)(kT ), β̂i,r(2)(kT ), · · · , β̂i,r(n)(kT )]T,

ϑ̂ i(kT ) = [β̂i,1(0)(kT ), β̂i,2(0)(kT ), · · · , β̂i,i(0)(kT )]T,

ψ i(kT ) = [u(kT ),u(kT + t1), · · · ,u(kT + ti−1)]
T.

IV. THE INFERENTIAL ADAPTIVE CONTROL ALGORITHM

The inferential adaptive control (IAC) scheme for the

non-uniformly sampled-data systems is shown in Fig. 3,

where yr(kT + ti), k = 0,1,2, · · ·, i = 0,1, · · · ,r−1, denotes a

Controller

Parameter Estimator

Missing Output

Estimator

Fig. 3. The inferential adaptive control scheme

sequence of deterministic reference inputs or desired outputs,

v(kT ) is a random noise sequence with zero mean. For the

sampling pattern in Fig. 2, the output y(kT ) is sampled

infrequently with period T . In order to feed back to the

controller a fast rate signal y f (kT + ti), an periodic switch

is applied. When the output is measured at times t = kT ,

y f (kT + ti) connects to the true output y(kT ); otherwise

connects to the estimates ŷ(kT + ti) at times t = kT + ti,

i = 1,2, · · · ,r − 1. Thus the output of the switch is a fast

rate signal and expressed as

y f (kT + ti) =

{

y(kT ), i = 0,

ŷ(kT + ti), i = 1,2, · · · ,r−1.

The objective of this paper is to design an inferential adaptive

controller based on the identified model and the estimated

missing outputs, so as the output y(kT + ti) can track the

given desired output yr(kT + ti) by minimizing the tracking

error criterion function:

J[u(kT + ti−1)]

= E{[y f (kT + ti)− yr(kT + ti)]
2}, i = 1,2, · · · ,r.

Using (24) and (34), yields the control law of the form:

yr(kT + ti)

=

{

ϕ̂T

i (kT )θ̂ i(kT )+ψT

i (kT )ϑ̂ i(kT ), i = 1,2, · · · ,r−1,

ϕT

0(kT +T )θ̂ 0(kT ), i = r.

Hence, the control signal u(kT ), u(kT + t1), · · ·, u(kT +
tr−1) can be computed in turn with the following recursive

equations:

u(kT ) = 1/β̂11(0)(kT )×

[

yr(kT + t1)

+
n

∑
i=1

α̂i(kT )ŷ(kT − iT + t1)

−
r

∑
j=1

n

∑
l=1

β̂1 j(l)(kT )u(kT − lT + t j−1)

]

, (35)

u(kT + t1) = 1/β̂22(0)(kT )×

[

yr(kT + t2)

+
n

∑
i=1

α̂i(kT )ŷ(kT − iT + t2)− β̂21(0)(kT )u(kT )

−
r

∑
j=1

n

∑
l=1

β̂2 j(l)(kT )u(kT − lT + t j−1)

]

, (36)
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...

u(kT + tr−1) = 1/β̂0,r(1)(kT )×

[

yr(kT +T )

+
n

∑
i=1

α̂i(kT )y(kT +T − iT )

−
r−1

∑
j=1

n

∑
l=1

β̂0, j(l)(kT )u(kT +T − lT + t j−1)

−
n

∑
l=2

β̂0,r(l)(kT )u(kT +T − lT + tr−1)

]

. (37)

V. EXAMPLE

Consider a non-uniformly sampled-data system with the

following state-space representation,

P :











ẋ(t) =

[

0 −0.2500

1 −0.0750

]

x(t)+

[

0.2500

0.2500

]

u(t),

y(t) = [0, 1]x(t).

Let r = 2, τ1 = 1.5 s, τ2 = 1 s, i.e., t1 = τ1 = 1.5 s, t2 = t1 +
τ2 = T = 2.5 s. From (5) and (16), we have














































x(kT +T ) =

[

0.3551 −0.4327

1.7310 0.2252

]

x(kT )

+

[

0.1098 0.2100

0.7273 0.3504

][

u(kT )
u(kT + t1)

]

,

[

y(kT )
y(kT + t1)

]

=

[

0 1

1.2890 0.6447

]

x(kT )

+

[

0.0000 0.0000

0.5810 0.0000

][

u(kT )
u(kT + t1)

]

.

The corresponding transfer function model is given by

y(kT ) =
0.72731z−1 −0.068125z−2

1−0.58029z−1 +0.82903z−2
u(kT )

+
0.35037z−1 +0.23918z−2

1−0.58029z−1 +0.82903z−2
u(kT + t1), (38)

y(kT + t1) =
0.58097+0.27336z−1

1−0.58029z−1 +0.82903z−2
u(kT )

+
0.49671z−1 −0.10231z−2

1−0.58030z−1 +0.82900z−2
u(kT + t1). (39)

For the non-uniform sampling scheme, the transfer func-

tion model in (39) can not be identified directly based on

the measured input-output data. As an alternative approach,

we compute it from the parameters of the transfer function

model in (38). From (8)-(10), using the parameters in (38)

to form

G =

[

0 −0.82903

1 0.58029

]

, F1 =

[

−0.068125

0.72731

]

,

F2 =

[

0.23918

0.35037

]

, C = [0, 1].

From (17), we have

G1 = G t1/T =

[

0.47689 −0.61755

0.74491 0.90916

]

,

F11 = G−1G1F1 =

[

0.27336

0.58097

]

.

Substituting above equations into (20) gives the same rep-

resentation as in (39), which demonstrates the algorithms

in (29)-(34) to compute the estimates of the missing outputs

can be realized.

Take the desired output in Fig. 3 to be

yr(250i+ j) = (−1)i, i = 0,1,2, · · · , j = 1,2, · · · ,250.

Assume v(kT ) is a white noise sequence with zero mean

and variance σ2 = 0.052. Applying the inferential adaptive

control algorithm proposed in Section III and IV to compute

the missing outputs y(kT + t1) and the control signals u(kT )
and u(kT + t1), the system output y(t) and the desired output

yr(t) are shown in Fig. 4, where t = kT is the simulation time.
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Fig. 4. y(t) and yr(t) versus t (The IAC algorithm)

Assume the system output is sampled simultaneously

with the control input, i.e., the available output data is

{y(kT ),y(kT + t1), k = 0,1, · · ·}, and the parameters in (38)

and (39) are known, then the minimum variance control

(MVC) algorithm can be used, the results is shown in Fig. 5.
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Fig. 5. y(t) and yr(t) versus t (The MVC algorithm)

From Figs. 4 and 5, we can see that the proposed infer-

ential adaptive control algorithm can achieve the tracking

performance as the minimum variance control algorithm.

VI. CONCLUSIONS

Because of the non-uniform sampling pattern, the system

output is sampled slowly, while the control input is updated

fast and non-uniformly. In order to feed back the controller a
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synchronization signal with the control input, an inferential

adaptive control algorithm is proposed by replacing the

missing outputs with their corresponding estimates. The

simulation example shows that the controlled output can

well track the desired output and has the property of min-

imum variance. The inferential control algorithms for non-

uniformly sampled-data systems with colored noises require

further study.

The parameter estimation procedure embed in the pro-

posed inferential adaptive control algorithm can also be

completed by the multi-innovation identification methods

[15]–[23], the iterative identification methods [24], [25] and

some other identification methods [26]–[41].
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