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Abstract— High performance positioning devices exhibit po-
sition dependent dynamics in the form of varying flexible
modes, which are expected to dominate the dynamic behavior
in the new generation of lightweight positioning structures.
To handle such position-dependent behavior, the framework of
Linear Parameter-Varying (LPV) systems offers powerful tools
in terms of control synthesis with many successful practical
applications. However, to achieve the desired performance, a
low complexity but accurate LPV model of the underlying
plant is of crucial importance. Obtaining LPV models for
positioning devices based on first principle laws is a rigorous
and costly process often resulting in models with inadequate
accuracy. Therefore a data driven-modeling approach using
Orthonormal Basis Functions (OBF’s) is studied for the control-
oriented modeling of xy-positioning table dynamics. Through a
simulation study it is demonstrated that the proposed modeling
procedure, using only measurement data, can provide models
whose accuracy is very close to the analytic models derived
with the full knowledge of the system.

I. INTRODUCTION

High performance positioning devices, such as compo-

nent mounters, xy-positioning tables, and electromagnetic

levitation systems, are mechatronic machines with a high

demand of accurate servo control. As a common feature

of many electromechanical servo systems, the linearized (or

so called local) dynamics of these devices varies with the

actual position of the device, often manifesting in terms of

position-dependent resonant dynamics. For instance, reso-

nance frequencies (poles) may change due to a position-

dependent mass matrix (as for the practical case in this

paper) or anti-resonances (zeros) may change due to observ-

ing mode shapes differently at different positions. Flexible

phenomena in general introduce practical limitations on the

achievable bandwidth (see, e.g., [1]), which is even more

serious in case they are position-dependent. To deal with

such phenomena, common control design strategies aim at

the synthesis of a sufficiently robust linear time-invariant

(LTI) controller to accommodate for the variations of the

local dynamical behavior of the plant around various po-

sitions/operating conditions. This is usually accomplished

by identifying frequency response functions (FRFs) of the

plant for a set of positions and using these responses to

design the robust controller with either manual SISO loop-

shaping or with more advanced robust synthesis approaches
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edged. R. Tóth, P.S.C. Heuberger and P.M.J. Van den Hof are with
Delft Center for Systems and Control, Delft University of Technology,
Mekelweg 2, 2628 CD, Delft, The Netherlands, Email: {r.toth,
p.s.c.heuberger, p.m.j.vandenhof}@tudelft.nl.

Marc van de Wal is with Philips Applied Technologies, Department of
Mechatronics, High Tech Campus 7, 5656 AE Eindhoven, The Netherlands.

based on H∞-optimization or µ-synthesis (see e.g., [2]–[4]).

However, all mentioned approaches have in common that

the position-dependent dynamics are dealt with by means

of robustness, possibly causing conservatism with (strong)

limitations on the achievable performance. Furthermore, due

to the tightening specifications current developments of posi-

tioning devices point to the direction of lightweight structures

that typically have their flexible modes occurring at lower

frequencies, while also the number of critical modes in the

frequency range of interest increases. This in combination

with the ever increasing demands on position accuracy and

servo bandwidth gives rise to the prediction that position-

dependent flexible dynamics will be highly relevant in the

dynamic analysis and control design of the future generation

of high performance positioning devices. This gives that the

currently used synthesis methods will be too conservative.

The framework of linear parameter-varying (LPV) sys-

tems has been established to efficiently handle position-

dependent nonlinear or time-varying dynamics. In LPV

systems the signal relations are considered to be linear

just as in the LTI case, but the parameters are assumed

to be functions of a measurable time-varying signal, the

so-called scheduling variable p : Z → P. The compact

set P ⊂ R
nP denotes the so called scheduling space. The

LPV system class has a wide representation capability of

physical processes and this framework is also supported by

a well-worked-out control theory (see, [5]–[7]) with many

successful applications. Therefore the LPV framework offers

an attractive candidate to provide servo control of positioning

devices on a higher bandwidth than what current solutions

are capable of. However, to achieve the desired performance,

a low complexity but accurate LPV model of the underlying

plant is of crucial importance. In general, obtaining LPV

models based on first-principle laws is a rigorous and costly

process and is expected to be very difficult for lightweight

structures. Thus for such devices it may be more attractive

to derive models based on measured data.

In the past, there have been some attempts to apply LPV

control on positioning devices (e.g., [8]). However, due to

the immature state of data-driven LPV modeling, or so

called identification, the lack of an efficient LPV model

prevented to show a significant performance increase with

LPV servo control. Due to recent advances of the LPV

identification literature (for an overview see [9], [10]), it

has become possible to obtain low complexity but accurate

models of positioning structures based entirely on measured

data. In the current paper, we aim to investigate the cur-

rent possibilities of LPV identification of high-performance

positioning devices through a simulation example of an xy-
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positioning table, used in the mass-production of integrated

circuits. In the investigated scenario, we show that both

frequency-domain specifications of the modeling in terms

of local dynamics and global accuracy of the model can be

guaranteed through an orthonormal basis functions (OBFs)

based LPV identification approach applied in closed loop.

This method also leads to a linear fractional representation

(LFR) of the model ready to be used for control synthesis.

In order to simplify the underlying identification problem we

will focus on the development of a discrete-time (DT) model.

The paper is organized as follows: first in Sec. II the

general concepts of LPV models and representations are

discussed also motivating why the use of OBF models is

attractive in terms of identification. This is followed in

Sec. III by a brief overview of modeling xy-positioning

tables in the LPV context and setting up the first-principle

model of such a system whose identification is addressed

in the sequel of the paper. Next in Sec. IV, a local type

of OBF based LPV identification approach is introduced

and demonstrated on the identification problem of the first-

principle xy-positioning table model. This is followed by the

validation and assessment of the developed LPV-OBF model

in Sec. V. Finally in Sec. VI the conclusion about presented

results are drawn.

II. LPV MODELS & REPRESENTATIONS

The dynamic description of a discrete-time LPV system

S can be formalized as a convolution in terms of p and the

input u : Z → R
nu :

y(k) =

∞
∑

i=0

Hi(p, k)u(k − i), (1)

where y : Z → R
ny denotes the output of S and k ∈ Z is the

discrete time. The coefficients Hi of (1) are matrix functions

of p and they define the varying linear dynamical relation

between u and y. This description is a series expansion

representation of S in terms of the so called pulse basis

{q−i}∞i=0, where q is the time-shift operator, i.e. q−iu(k) =
u(k − i). It can be proven that for an asymptotically stable

S, the expansion (1) is convergent [10].

If the functions Hi only depend on the instantaneous value

of p, i.e. Hi(p(k)), then their functional dependence is called

static. Otherwise the dependence is called dynamic when

Hi not only depends on the instantaneous but also on time-

shifted values of p. An important property of LPV systems

is that for a constant scheduling signal, i.e. p(k) = p for

all k ∈ Z, (1) is equal to a convolution describing an LTI

system as each Hi(p, k) is constant. Thus, LPV systems can

be seen to be similar to LTI systems, but their signal behavior

is different due to the variation of the Hi parameters. Note

that there are many formal definitions of LPV systems based

on particular model structures and parameterizations. The

convolution form (1) can be seen as their generalization.

Two important of these formulations are LPV state-space

(SS) representations and LFRs commonly used in the control

literature. LPV-SS representations of a given LPV system S,

denoted as RSS(S), are often defined under the assumption

of static dependence in the form of

qx = A(p)x+B(p)u, (2a)

y = C(p)x+D(p)u, (2b)

where x : Z → R
nx is the state signal and A,B,C,D, with

appropriate dimensions, are rational matrix functions of p,

nonsingular on P. The LFR of S, denoted by RLFR(S), is

defined as




qx

z

y



 =





A B1 B2

C1 D11 D12

C2 D21 D22









x

w

u



 , (3a)

where {A, . . . , D22} are constant matrices with appropriate

dimensions and
w(k) = ∆(p(k))z(k), (3b)

with ∆ : P → R
np×np being the function of p. Commonly,

∆ has a block diagonal structure containing the elements

of p and ∆ is assumed to vary in a polytope. Additionally,

x, w, z are latent (auxiliary) variables of RLFR(S). The

continuous-time (CT) equivalent of SS representations and

LFRs can also be formulated by simply substituting q with

the differential operator d
dt

.

In identification, we aim to estimate a dynamical model

of the system based on measured data, which corresponds

to the estimation of each Hi in (1). This estimation is

formalized in terms of a model structure (an abstraction of

(1)) and an identification criterion. A particularly attractive

model structure in the LPV case follows by the truncation of

(1) to a finite number of expansion terms. Assuming static

dependence of Hi, the resulting model reads as

y(k) =
n
∑

i=0

Hi(p(k))u(k − i), (4)

which can be seen as the LPV version of the well known

LTI finite impulse response (FIR) models. Such models

have many attractive properties in terms of identification in

opposite to the rather challenging problem of identification

of (2a-b) or (3a-b). An important property of (4) is linearity-

in-the-coefficients that allows to use linear regression for

the estimation of {Hi}ni=1 as a function of p(k) if they are

linearly parameterized:

Hi(p(k)) =

ni
∑

j=0

θijfij(p(k)), (5)

where θij ∈ R
nY×nU are the unknown parameters and fij are

prior selected functions. Furthermore, noise or disturbances

in the system can be modeled in an output error (OE)

sense with this model structure, which allows independent

parametrization of the noise model. However, a well known

disadvantage of FIR models, both in the LTI and the LPV

cases, is that the expansion may have a slow convergence

rate, meaning that it requires a relatively large number of

parameters for an adequate approximation of the system.

In order to benefit from the same properties, but achieve

faster convergence rate of the expansion, it is attractive to use

basis functions which, opposite to q−i, have infinite impulse

responses. A particular choice of such a basis follows through

the use of orthonormal basis functions (OBFs), which are

specific basis functions in H2 (see [11]). Then an OBFs

based LPV model structure is formulated as
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Fig. 1. Schematic view of the standard configuration of xy-positioning
tables: (1) short stroke; (2) laser interferometers; (3) linear motors of the
long and short strokes.

y(k) = W0(p(k))u +
n
∑

i=1

Wi(p(k))φi(q)u, (6)

where {Wi}
n
i=0 are the p-dependent expansion coefficients

of the truncated series expansion of S in terms of the OBFs

{φi}ni=1 ⊂ H2 being analytic in the exterior of the complex

unit disk. For a detailed overview of the properties of

OBF based model structures like (6) and their identification

approaches see [10]. Among many attractive properties of

(6), it is worth to mention that unlike other IO type of

model structures, OBF model structures have a direct LFR

realization. In the sequel we will focus on the so called

local type of identification of (6) by demonstrating its ef-

ficiency w.r.t. the data-driven modeling of an xy-positioning

table. However, before that, let’s investigate how such high-

performance positioning devices can be modeled in the LPV

framework based on first principle laws, why data-driven

modeling is attractive for these systems and what are the

expectations w.r.t. the produced models.

III. LPV MODELING OF xy-POSITIONING TABLES

xy-positioning tables are part of high-performance po-

sitioning devices used commonly in the production of in-

tegrated circuits (ICs). The conventional design of these

devices, depicted in Fig. 1, involves a long stroke, called the

xy-positioning table, moved by two linear motors on parallel

rails. On the long stroke a third linear motor positions the

short stroke which is magnetically levitated by a set Lorentz

motors to achieve high accuracy positioning. The overall

device is controlled in six motion degrees of freedom (DOFs)

(3 translational and 3 rotational freedom), with usual servo

error requirements in the order of [1, 50] [nm]. However,

the long stroke itself is often only controlled in the x, y-

translational and the z-rotational DOF’s. Besides the high

accuracy requirements, high throughput is also a primary

objective, giving rise to fairly aggressive motion parameters,

with speeds in the order of 0.5 − 1 [m/s] and accelerations

in the order of 10− 30 [m/s2].

A. First-principle modeling

The first-principle modeling concept of a conventional xy-

positioning table is described in Fig. 2. In this modeling

concept, it is assumed that the long stroke has no displace-

ment in the x-direction, i.e. x2 = 0. Under this assumption,

the dynamical behavior of this multiple mass-damper-spring

Rz2 x2

k2k1

Rz

Fleft Fright

y2

b1 b2

M2 J2

x

y

M1 J1

x1

y1

Rz1 F
x

Fig. 2. First-principle modeling concept of xy-positioning tables.

system S can be described via the following differential

equation:

rMẅ + rB(x1)ẇ + rK(x1)w = rFu (7)

where w = [ x1 y1 Rz1 y2 Rz2 ]⊤, u =
[ Fx Fleft Fright ]⊤ and rM and rF are full rank block

diagonal matrices with appropriate dimensions and rB and

rK are linear matrix functions of x1. By taking p = x1

as a scheduling variable with P = [xmin, xmax] ⊂ R, the

differential equation (7) has a minimal continuous-time LPV-

SS realization with input-output partition ([x1 y1 Rz1], u) as

RSS(S)=





0 I 0
−r−1

M rK(p) −r−1
M rB(p) −r−1

M − rF
I 0 0



 (8)

Note that such an LPV model is called a quasi-LPV model

as p is not an external variable of the system, however with

a certain degree of conservatism this does not prevent the

use of LPV control.

In the obtained MIMO-LPV model (8), forces in one di-

rection have influence on the movements in other directions.

More specifically, either of the forces Fleft and Fright affect

both the y-translation and the Rz-rotation. In particular, if

x1 6= 0, then Fleft = Fright do not result in a pure y-

movement, but also causes a rotation, since the end effector

mass M1 is felt differently by actuators Fleft and Fright.

Thus, to enable the design of SISO controllers the plant

dynamics are commonly decoupled in practice by using pre-

and post-transformation matrices Tu and Ty implemented di-

rectly into the hardware. As in the LPV case full decoupling

of the IO channels is currently not a well-understood concept,

thus the decoupling of the plant is developed by using a rigid-

body formulation of (7), providing approximately decoupled

dynamics (i.e. approximately diagonal) in the low-frequency

region.

Based upon the above given considerations, the rigid-body

decoupled plant can be written as:

R
′

SS(S) = Ty(p) ∗RSS(S) ∗ Tu(p), (9)

where RSS(S) is the LPV representation (8) of the plant

dynamics. The matrix Ty is defined by the variables to

be controlled: y′1 = y1 − Rz1x1 and y′2 = Rz1 which

are the actual measurements available from xy-positioning

tables (besides the measurement of x1). Next Tu is developed
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Fig. 3. Bode magnitude plot of the 2×2 MIMO xy-table model at different
x-positions (in open-loop).

by assuming arbitrary slow variation of x1 and aiming for

TuP0Ty = I where P0 is the static gain of the system. By

applying Ty and Tu in terms of (9) on the full model results

in the following LPV-SS form:

RSS(S
′)=

[

A(p) BTu(p)
Ty(p)C 0

]

=

[

A(p) B′(p)
C′(p) 0

]

(10)

In the sequel we will restrict our attention to the dynam-

ical behavior of (10) w.r.t. output channels y′ = [ y1 −
Rz1x1 Rz1]

⊤ and input channels [ Fx Fleft Fright ]⊤ =
Tu(p)u

′. For these IO channels, the frozen FRF’s of the first-

principle model of a real-life xy-positioning table, obtained

with the same modeling concept as (10), are depicted at dif-

ferent x1-positions in terms of Bode magnitude plots in Fig.

3. To protect the interest of the manufacturer, frequency and

time have been scaled throughout this paper. The following

observations are crucial:

• The system dynamics can be clearly separated into an

unstable rigid body part dominant in the low frequency

band (below 1) and a x1-position dependent stable

flexible part dominant in the frequency band [1, 3] which

is symmetric in magnitude to the x1 = 0 position (phase

has a 180◦ drop at x1 = 0 due to sign change).

• In the diagonal channels, rigid body dynamics corre-

spond to a second order integrator, while in the off-

diagonal channels, due to the decoupling, only a small

proportional term can be observed.

• At x1 = 0, the off-diagonal transfer functions become

aprox. zero, indicating perfect decoupling. The order

of the transfer functions corresponding to the diagonal

channels (each with order 6) also drops by 2 at p = 0.

B. Expectations of modeling

Deriving first-principle models of more complicated xy-

positioning table designs is commonly a rigorous and costly

process often resulting in an inadequate accuracy of the

model due to unmodeled dynamics relevant for the expected

accuracy. The coefficients of the resulting model need to be

'
'

x1

y+
+

v
Ky1(s)+

_
ref

KRz1(s)

0

0

xy-positioning 

table 

u2

u1'
' y2

y1

^

Fig. 4. Simplified closed-loop control scheme of the xy-table mechanism
with measurement error v.

estimated for each setup, requiring complicated measurement

procedures. Such a modeling scheme is expected to be

infeasible for next generation of lightweight structures. Thus

it is important to derive efficient identification procedures

which can provide accurate models of the dynamics based on

measured data. However as a first step towards this aim, we

will study the LPV identification of the previously developed

first-principle LPV model (10) to be able to analyze the

performance of the method w.r.t. the analytical form of the

system. Expectation w.r.t. the aimed model are the following:

• High accuracy of the model w.r.t. both constant and

varying trajectories of p(t) = x1(t). For constant values

of p, the magnitude of the error in terms of the local

or so called frozen frequency response function (FRF)

of the system needs to be less than −40dB, while for

varying trajectories of p the accuracy in terms of signal

response needs to be at least in the magnitude of µm.

• Accurate modeling of rigid body dynamics.

• Effective low order modeling.

C. Simulation conditions

To setup a relevant simulation study where LPV identifi-

cation of the considered xy-positioning table can be studied,

it is important to simulate real-life conditions of experi-

mentation. As the underlying system is unstable, therefore

meaningful simulation or measurements can be taken only

under closed loop control. For this purpose robust CT-

LTI single-loop controllers Ky1
(s) and KRz1

(s) have been

designed for the model satisfying moderate specs. in terms of

performance. The complete closed control loop of the system

is given in Fig. 4, which corresponds to a simplified control

architecture used in practice.

In order to give a realistic setting for identification, noise

affecting both the closed loop control and the data acquisition

is also considered in the following form:

ŷ1(k) = y′1(k) + v1(k), ŷ2(k) = y′2(k) + v2(k), (11)

with v1 and v2 independent withe noise processes with

normal distributions: v1(k) ∈ N (0, 1
3
· 10−7) and v2(k) ∈

N (0, 5
3
· 10−6). Such levels of noise are typical under the

considered laser-interferometers based high-accuracy posi-

tion measurements. Note that these noise conditions seem

to be not so significant, but due to the relatively small range

of movement and the tight error specifications we will see

that they are challenging enough. Additionally, to record DT

data for identification purposes, the inputs and outputs of the

xy-positioning table in Fig. 4 are sampled with a sampling

frequency of 20 [-] (i.e. 10× the highest interesting frequency
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point: 2 [-]), which is adequate to model the high-frequency

behavior of the system.

IV. OBFS BASED LPV IDENTIFICATION

In the LPV identification literature a wide variety of

different identification approaches have been introduced (see

[9], [10] for recent overviews). Methods available can be

classified based on the used model structure or the type

of applied identification paradigm: like global and local

approaches. In case of global approaches, an LPV model

is identified based on data records with varying p while in

case of the local approaches first LTI models of the plant are

identified around specific operating conditions (constant p)

and then the resulting models are interpolated on P to form

a global LPV model. Each paradigm has its advantages and

weak points, however it is generally true that it is very diffi-

cult to include identification constraints into global methods

which would guarantee a specified upper bound of the model

accuracy for constant p (local fit). Moreover, LPV systems

do not have a transfer function representation. Therefore,

it is only possible to include frequency domain constraints

for local type of approaches. Regarding the specification of

the identification problem given in Sec. III-B, it becomes

obvious that a local approach is attractive for the considered

setting. Among local LPV identification approaches, OBFs

based methods have certain advantages due to the fact that

interpolation in terms of local snapshots of the coefficients of

e.g. (6) is well-posed and not affected by problems observed

for state-space model structures (see [12]). Additionally,

the resulting LPV-OBF model has a direct LFR realization

avoiding the complicated realization approaches required for

input-output type of model structures. Due to these consid-

erations, in the sequel an LPV local type of identification

approach is introduced which aims to capture the behavior

of (10) with the model structure (6) using an OE noise

model. In order to guarantee the tight FRF specifications

we will take a frequency-domain approach to accomplish

the local identification steps. The relevant questions here

are how to choose the basis functions {φi}ni=1 to provide

an efficient representation of the dynamics, how to estimate

local snapshots of Wi(p) to guarantee the specified FRF

constraints, and how to provide interpolation such that the

model fulfills the constraints between the interpolation points

while its performance for varying p will also be acceptable.

A. Choice of model structure

Based on the observations in Sec. III-A, it is attractive to

separate the system dynamics into an additive “rigid-body

part,” which is not dependent on p, and a remaining “flex-

ible part” that contains the varying-poles related dynamical

aspects of the system. By identifying the flexible part with

a fixed DT rigid body filter provides the means to enforce

the well-known fact that the low-frequency behavior of the

system is governed by decoupled 2nd-order integrators with

an additional zero at −1 for each diagonal IO channel:

φR(z) =
z + 1

(z − 1)2
. (12)

It can also be observed in Fig. 3 that the “moving” pole

locations of the underlaying IO channels of the system are

the same. This implies that the optimal set of OBFs, which

provide the fastest convergence rate, is the same for each

channel. Furthermore, local approaches can only identify

coefficients, like Wi in (6), with static dependence. Thus

the overall model structure can be chosen as

ŷθ =

[

c1φR(q) 0
0 c2φR(q)

]

u+

ng
∑

i=1

Wi(p)φi(q)u (13)

where {φi(q)}
ng

1 is a set of SISO OBF’s and c1, c2 ∈ R

with Wi : P → R
2×2 are the unknown coefficients to be

estimated which are specific w.r.t. the underlaying system.

The next question is how to obtain basis functions that

guarantee a fast convergence rate of (13) w.r.t. the considered

system. However, before that it is important to design our

experiments which will give the information upon which

adequate selection of the basis functions and the estimation

of the expansion coefficients will be accomplished.

B. Experiment design & data generation

The first step of experiment design for local identification

is the gridding of P. This refers to designing the points on

the x1-axis around which local LTI identification of the setup

will be performed. It is important that the gridding must

be dense enough to capture important dynamic changes of

the plant for different x1-positions. By analyzing the rate of

change of the frozen poles and zeros of the system w.r.t.

P = [xmin, xmax], a grid of 21 equidistant points is chosen.

In order to generate informative data for frequency-domain

identification at the designated x1-positions, orthogonal mul-

tisines with normalized amplitude are generated based on

214 equidistant frequency points W = {ωk}2
14

k=1 in the range

[10−4, 10]. This frequency range has been chosen to contain

the relevant dynamical aspect of the plant in terms of rigid

body and flexible modes. The orthogonality of the gener-

ated multisine signals r11, r12, r21, r22 can be understood in

the following manner: the discrete-time Fourier transforms

R11(ω), . . . , R22(ω) of these signals, satisfy that

R(ωk)R
H(ωk) =

[

λ1(ωk) 0
0 λ2(ωk)

]

≺ I, ωk ∈ W ,

where R(ωk) =

[

R11(ωk) R12(ωk)
R21(ωk) R22(ωk)

]

.

This property ensures high accuracy frequency domain esti-

mates in closed loop even under heavy measurement noise.

In the experiments first signals r11 and r21 are used as

references for y1 − Rz1x1 and Rz1 (see Fig. 4) and with

constant x1 equal to a grid point. Then the whole experiment

is repeated by using r12 and r22. The two set of responses

for y1−Rz1x1and Rz1 are required to uniquely estimate the

2x2 MIMO FRF of the plant at the considered x1 position.

Note that the normalized reference signals are multiplied

with 10−4 to remain in the operating range of the setup.

With the designed multisine sequence, data is generated

based on the closed loop model starting from zero initial

conditions. To generate an appropriately long data record
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for the attenuation of both the transient and noise effects,

the designed multisines are repeated 25 times. For validation

purposes noise free data records are also generated.

C. FRF estimate of the local behaviors

The data records that are collected in the previ-

ous step now can be used to deliver estimates of the

FRF of the system at the chosen x-positions. Consider

the data sets Dp,1 = {y′ref1(k), u
′

ref1(k), rref1(k)}
Nd

k=1,

Dp,2 = {y′ref2(k), u
′

ref2(k), rref2(k)}
Nd

k=1 where Tu(p)u
′

refi=
[ Fx Fleft Fright ]⊤ and y′refi = [ y1 −Rzx1 Rz1 ]⊤

collected from the model with x1 = p and reference signals

rrefi = [ r1i r2i ]⊤. Denote the fast Fourier transform

(FFT) of these signals taken on one period of the time-

domain data as Rref1(ω), U
′

ref1(ω), Y
′

ref1(ω) and Rref2(ω),
Uref′2(ω), Y

′

ref2(ω) respectively. Due to the periodic nature

of the excitation, it is true that after the transients have died

out the FFT of each period of the measured data records

only differ from each other in terms of the additive noise.

Therefore, by chopping off the transient part of the data

records (first 5-10 periods) and averaging the results of the

FFT on the remaining periods, the effect of the noise can be

averaged out. Thus in the sequel consider these spectra as

the averaged FFT of the non-transient periods. Let

Ū(ω) =
[

U ′

ref1(ω) U ′

ref2(ω)
]

,

Ȳ (ω) =
[

Y ′

ref1(ω) Y ′

ref2(ω)
]

,

R̄(ω) =
[

Rref1(ω) Rref2(ω)
]

,

The classical way to estimate the FRF of the plant for a

given frequency point ωk ∈ W is

F̂ (ωk) = Ȳ (ωk) · Ū
−1(ωk). (14)

However, it is well known that such an empirical transfer

function estimate is biased in case of closed-loop data. To

have an unbiased estimate is better to consider

F̂ (ωk) =
(

Ȳ (ωk)R̄
H(ωk)

)

·
(

Ū(ωk)R̄
H(ωk)

)−1
. (15)

Among many choices of unbiased closed loop estimators,

(15) has also been observed in the literature to deliver good

results under heavy noise settings [13].

By using the data records and the estimation approach

(15), FRF estimates of the plant at the considered scheduling

points have been calculated. During the calculation the first

10 periods in the records have been removed to attenuate

the effect of initial conditions. The results at position xmin

are depicted in Fig. 5. From this figure it is obvious that

the method delivers almost perfect estimate of the frozen

FRFs on each IO channel. Furthermore the considered noise

only significantly affects the high-frequency band beyond

the flexible modes, which provides that accurate frequency-

domain information is available to recover the most impor-

tant dynamical aspects of the plant form measured data.

D. Selection of the OBF filter banks

To arrive at an adequate selection of the OBF functions

in (6) the so called Fuzzy-Kolmogorov c-Max (FKcM)

approach provides a practically applicable solution [14]. This

approach uses a clustering type mechanism to assign a set
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Fig. 5. Bode magnitude plot of the estimated FRF of the plant at position
xmin. Original plant (black), estimated FRF (grey), error (light grey).

of basis functions w.r.t. observed frozen pole locations of an

LPV system, such that these functions have the least worst-

case expansion error. The expansion error is considered in

terms of the so called Kolmogorov n-width cost: worst-

case H2 error w.r.t. all possible transfer functions which

have the observed pole locations. See [14] for a detailed

description of this algorithm. The fuzziness variable m of

this algorithm provides a trade off between computational

complexity (small if m & 1) and optimality of the solution

(m → ∞).

To obtain an estimate of the frozen pole locations of the

xy-positioning table model at the considered x-positions a

general curve fitting method can be applied on the previously

obtained FRF estimates. Here the approach of the FREQID

toolbox has been used [15]. To arrive at the correct number

of poles a MIMO common denominator model with 8th

order has been estimated with curve fitting. The worst-case

absolute error of the resulting pole estimates w.r.t. the true

pole locations of the system at the given x-positions is

0.007%.

Next the FKcM approach is applied on the obtained

highly-accurate pole estimates. By analyzing the results of

the algorithm based on the estimated pole locations it has

been observed that nearly optimal basis selection can be

achieved if the fuzziness m is set to 35. Using this fuzziness

value the algorithm has been executed on the estimated

pole locations. The algorithm has been used with different

number of optimized basis functions ng and the results

are summarized in Table I. In this table, as a performance

measure, the Kolmogorov n-width cost (see before) has been

computed in dB both for the obtained pole estimates and also

for all true frozen pole locations of the xy-positioning table

in the considered x-region. From Table I it follows that the

obtained OBF poles achieve very small representation error

w.r.t the estimated poles (small Kolmogorov cost). However,

w.r.t. the true pole locations a dramatic difference can be

observed between the set of 4 or 16 basis functions. Further

analysis of the results, which is not described here due to

space limitations, shows that at least 12 basis functions are

needed to represent adequately the varying system dynamics

on P. After posteriori assessment of estimation with 12 and
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TABLE I

ACHIEVED KOLMOGOROV n-WIDTH COST BY THE FKcM PROVIDED

OBF’S FOR FUZZINESS m = 35 AND DIFFERENT NUMBER OF OBFS ng .

ng estimated frozen poles true frozen poles

4 -61.061 dB -1.651 dB
8 -125.884 dB -7.084 dB

12 -197.604 dB -12.03 dB
16 -257.905 dB -16.845 dB

16 basis functions it is concluded that 16 basis functions are

required to meet with the aimed specifications. It can also

be shown that beyond 16 basis functions the improvement

in model accuracy is not significant. Thus in the sequel, we

will consider the OBF set with 16 basis functions selected

by the FKcM approach to formulate (13).

E. Estimation of the expansion coefficient dependence

By having the OBF filter banks chosen, the last re-

maining step of identification is to estimate the constants

c1, c2 and the expansion coefficients Wi(p) in (13). For

this purpose the already calculated FRF estimates of the

system are used. Note that the frequency response of the

OBF filters and the first-principles suggested rigid body

filters can be computed w.r.t. the frequency points of the

FRF estimate and in terms of the model structure these

frequency responses should approximate the estimated FRFs

by linear combination. Thus, estimation of the samples of

the expansion coefficients Wi at each considered grid point

p ∈ P reduces to a simple linear regression. After solving

the linear regression the resulting samples of each Wi can

be interpolated using any approach like polynomial, spline,

Chebysev, etc. After investigation of the obtained results

with each method, it have been concluded that a polynomial

interpolation provides the most efficient solution in terms of

the complexity/accuracy trade off. Regarding polynomial in-

terpolation it has been concluded that for the case of 16 OBF

functions a polynomial order of 15 is minimally required

to achieve a good approximation of the frozen dynamics.

By using the FRF estimates the samples of the expansion

coefficients of the OBF filter banks obtained in the previous

section with ng = 16 have been estimated and these samples

have been interpolated with 17th order polynomials. The

results are depicted in Fig. 6. These figures show that using

only a few estimated samples of the coefficient functions a

close approximation of the polynomial dependencies can be

obtained. This concludes the identification as the delivered

model now can be explicitly realized in an LFR form.

V. VALIDATION OF THE MODEL

As a final step it remains to validate the obtained model

in both the frequency and the time domain.

A. Frequency-domain validation

The obtained LPV-OBF model can be compared in terms

of its frozen frequency responses to the behavior of the first-

principle model. For the OBF model with 16 basis functions

and 17th-order polynomial dependence, the frozen frequency

responses for each IO channel has been computed on a fine

grid P ⊂ P together with the response of the true system
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Fig. 6. Optimal coefficient functions Wi of the OBF’s ng = 16 (solid
lines) w.r.t. the frozen transfer functions between y1 and u1 at the grid
positions x1 together with their polynomial approximation (dashed lines).
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Fig. 7. Bode magnitude plot of the frozen frequency response at position
xmin of the estimated LPV-OBF model obtained with 16 basis functions
and 17th-order polynomial coefficient dependence. Original plant (black),
estimated OBF model (grey), approximation error (dashed grey).

and visualized in terms of Bode plots. The results at xmin are

given in Fig. 7 which corresponds to the worst-case model

fit. By analyzing these results the following observations can

be made:

• The overall difference between the magnitude error and

magnitude of the transfer functions is aprox. 40 dB.

• However, the error increases with an aprox. 20 dB

around the anti-resonance mode. This results as a side

effect of linear regression. Using better tuned weights

this error can be decreased if necessary.

This means that specifications in terms of frequency-domain

accuracy could be achieved with the investigated identifica-

tion approach.

B. Time-domain validation

It is also important to investigate the time-domain behav-

ior of the identified LPV-OBF model. First the open-loop

response of the model is computed by using recorded u and

p signals from a closed-loop simulation of the original xy-

positioning table model for a monotone increasing p which

corresponds to a fast sweep over P. The used reference

signals here are 0 set-point for Rz1 and a typical step-

like pattern for y1, designed in terms of optimal speed,

acceleration and jerk profile. The resulting responses of the

LPV-OBF model (after re-transformation with Ty(p)) are

given in gray in Fig. 8 while the response of the original

plant is given in black. The error is dominated by a small
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Fig. 8. Time-domain validation of the estimated LPV-OBF model using
16-basis functions with 17th-order polynomial coefficient dependence.
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closed-loop response of the model for the given reference signal is depicted
with dashed grey (closed-loop validation).

difference that looks like the step response of an integrator.

This yields that the identified LPV-OBF model is capable to

reproduce the response of the system with high accuracy and

the main source of the error is related to small differences

between the unstable part of system and the LPV-OBF

model. This hypothesis is also validated by the closed-loop

response of the LPV-OBF model given with dashed gray in

Fig. 8. It is important to note that validation of the model

for varying p is rather unfair expectation for the LPV-OBF

model as it was obtained purely on the basis of the frozen

behavior of the system. By achieving an acceptable error

which meets the aimed specs. we can finally conclude that

the proposed identification approach can deliver high-quality

model estimates.

C. Economical size

As we could see, a high number of OBFs and a high-

order polynomial coefficient dependence have been needed

to capture the dynamics of the xy-table with the desired

accuracy. This means that the final LFR form of the identified

model (13) is relatively large with dim(x) = 4+2 · 16 = 36
and dim(z) = 2 · 17 = 34. However, by applying recent

methods in LPV model reduction, like the approach of [16],

this LFR form can be reduced to state dimension 8 and with

a dim(z) = 5, without a significant loss of accuracy (the

results are not presented here due to space restrictions). The

explanation lays in the fact that in the considered model

structure (13) all dependencies on p are at the output-side.

Therefore in terms of realization there is a certain freedom

to consider states and input contributions which also depend

on p and hence can reduce the total dimension of the model.

VI. CONCLUSIONS

In this paper the identification of a xy-positioning table

high-performance positioning system has been studied in

the linear parameter-varying (LPV) framework. It has been

shown that a local type of LPV identification approach

based on orthonormal basis functions (OBFs) can deliver

a high-accuracy estimate of the system both in terms of

frozen frequency-domain and global time-domain accuracy.

The applied frequency-domain approach has been essential

to meet with the desired accuracy of the model and to

suppress the effect of measurement noise, while the OBFs

based structure provided a well-posed interpolation for the

estimated frozen frequency response functions of the system.

REFERENCES

[1] M. Steinbuch and M. L. Norg, “Advanced motion control: An indus-
trial perspective,” European Journal of Control, vol. 4, pp. 278–293,
1998.

[2] Y. Chait, M. Steinbuch, and M. S. Park, “Robust control of a
high performance flexible electro-mechanical system.” in Structural

dynamic systems computational techniques and optimization: Dynamic

analysis and control techniques, T. C. Leondes, Ed. London: Gordon
and Breach, 1999, pp. 211–240.

[3] B. J. Kang, L. S. Hung, S. K. Kuo, S. C. Lin, and C. M. Liaw, “H∞

2DOF control for the motion of a magnetic suspension positioning
stage driven by inverter-fed linear motor,” Mechatronics, vol. 13, no. 7,
pp. 677–696, 2003.

[4] M. van de Wal, G. van Baars, F. Sperling, and O. Bosgra, “Multivari-
able H∞/µ feedback control design for high-precision wafer stage
motion,” Control Engineering Practice, vol. 10, no. 7, pp. 739–755,
2002.

[5] W. Rugh and J. S. Shamma, “Research on gain scheduling,” Automat-
ica, vol. 36, no. 10, pp. 1401–1425, 2000.

[6] K. Zhou and J. C. Doyle, Essentials of Robust Control. Prentice-Hall,
1998.

[7] C. W. Scherer, “Mixed H2/H∞ control for time-varying and linear
parametrically-varying systems,” Int. Journal of Robust and Nonlinear

Control, vol. 6, no. 9-10, pp. 929–952, 1996.
[8] M. G. Wassink, M. van de Wal, C. W. Scherer, and O. Bosgra, “LPV

control for a wafer stage: Beyond the theoretical solution,” Control
Engineering Practice, vol. 13, no. 2, pp. 231–245, 2004.

[9] F. Casella and M. Lovera, “LPV/LFT modelling and identification:
overview, synergies and a case study,” in IEEE International Sympo-
sium on Computer-Aided Control System Design, San Antonio, Texas,
USA, Sept. 2008, pp. 852–857.
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[16] D. Petersson and J. Löfberg, “Optimization based LPV-approximation

of multiple model systems,” in Proc. of the European Control Conf.,
Budapest, Hungary, Aug. 2009, pp. 3172–3177.

158


