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Abstract—In this paper, the Bellman equation is utilized 

forward-in-time for the stochastic optimal control of 

Networked Control System (NCS) with unknown system 

dynamics in the presence of random delays and packet losses 

which are unknown.  The proposed stochastic optimal control 

approach, referred normally as adaptive dynamic 

programming, uses an adaptive estimator (AE) and ideas from 

Q-learning to solve the infinite horizon optimal regulation 

control of NCS with unknown system dynamics.  Update laws 

for tuning the unknown parameters of the adaptive estimator 

(AE) online to obtain the time-based Q-function are derived.  

Lyapunov theory is used to show that all signals are 

asymptotically stable (AS) and that the approximated control 

signals converge to optimal control inputs. Simulation results 

are included to show the effectiveness of the proposed scheme.  

Index Terms— Networked Control System (NCS), Q-

function, Adaptive Estimator (AE), Optimal Control.  

I. INTRODUCTION 

      Feedback control systems with control loops closed 

through a real-time network are called networked control 

systems (NCS) [1]. In NCS, a communication packet carries 

the reference input, plant output, and control input which are 

exchanged using a network among control system 

components such as sensors, controller, and actuators.  The 

primary advantages of NCS are reduced system wiring, ease 

of system diagnosis and maintenance, and increased system 

agility. However, insertion of the communication network in 

the feedback control loop brings many challenging issues.  

     The first issue being the network-induced delay that 

occurs while exchanging data among devices connected to 

the shared medium. This delay, either constant or random, 

can degrade the performance of control system and even 

destabilize the system when the delay is not explicitly 

considered in the design process. The second issue is packet 

losses due to unreliable transmission which can cause a loss 

in control input resulting in instability.  These issues have 

been identified in the literature and are being studied. 

       Recently, Nilsson [1] analyzed the stability of linear 

NCS with random delays. Walsh [2] considered stability 

performance of linear NCS with constant delays. Zhang [3] 

conducted the stability analysis of linear NCS with delays 

and packet losses and proposed a stability region.  

      However, optimality is generally preferred for linear 

NCS which is very difficult to attain. Lian [4] proposed the 

optimal controller design by using classical optimal control 

theory [7] for linear NCS with multiple constant delays into 

its NCS representation. Using the stochastic optimal control 

theory [7], Nilsson [1] proposed the optimal and suboptimal 

controller design for linear NCS with random delays. 

Although these optimal and suboptimal controller designs 

have resulted in satisfactory performance, they all require 

information about the system dynamics of linear NCS and 

information on delays and packet losses which are not 

commonly known beforehand.  Even when the dynamics of 

the linear system is known, closing the loop over a 

communication network with random delays and packet 

losses can make the overall linear NCS dynamics uncertain. 

    On the other hand, approximate/adaptive dynamic 

programming (ADP) schemes proposed by Werbos [8], 

intend to solve optimal control problems forward-in-time. In 

ADP, one combines adaptive critics, a reinforcement 

learning technique, with dynamic programming. Recently 

Lewis [9] introduced the methods of reinforcement learning 

and ADP for feedback control to obtain the optimal 

controller for systems with unknown dynamics.  

     Tamimi [9] used the Q-learning method to solve the 

optimal strategies for discrete-time linear system quadratic 

zero-sum games in forward-in-time without knowing the 

system dynamics wherein the dynamics are defined as 

constant matrices. In [10], Dierks and Jagannathan used two 

neural networks (NN) to solve the Hamilton Jacobi Bellman 

(HJB) equation forward-in-time for optimal control of a 

class of general nonlinear affine discrete-time systems. 

While [9] is mainly addresses linear time-invariant systems, 

work in [10] targets optimal control for nonlinear systems. 

However, these papers [8-10] did not consider the effects of 

delays and packet losses which are normally found in a 

NCS. The delays and packet losses can cause instability [3] 

if they are not considered which in turn make the optimal 

controller design more involved and different than [9].    

     Thus, this paper introduces ADP techniques for the 

optimal control of linear NCS with uncertain system 

dynamics and in the presence of random networked-induced 

delays and packet losses which are unknown.  In other 

words, a linear NCS with random delays and packet losses 

will be represented by a linear time-varying system with 

unknown system matrices. Consequently, the suboptimal 

approach in [9] is not directly applicable.    

     Therefore, first, a novel approach is undertaken to the 

optimal regulation of linear NCS with random delays and 

packet losses to solve the Bellman equation [7] online and 

forward-in-time. Using an initial stabilizing control, an 

adaptive estimator (AE) [11] is tuned online to learn the cost 

function since solving the stochastic Ricatti equation (SRE) 

requires the system matrixes. Then, using the idea of Q-
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learning, the optimal controller which minimizes the cost 

function can be calculated based on the information 

provided by the adaptive estimator (AE). Thus the proposed 

Q-learning based scheme relaxes the need for system 

dynamics and information on random delay and packet 

losses. Next, the NCS background representation is 

presented.. 

II. BACKGROUND 

    The basic structure of NCS considered in this paper is 

shown as Figure 1 where the feedback control loop is closed 

over a wireless network. Since wireless network bandwidth 

is limited, two types of network-induced delays and one type 

of packet losses are included in this structure: (1)  tsc : 

sensor-to-controller delay, (2)  tca :controller-to-actuator 

delay, and (3)  t : indicator of packet received. 
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Fig. 1. Networked Control System (NCS). 

 

    The following mild assumption is made as [7]: 

Assumption 1: a) Sensor is time-driven; controller and 

actuator are event-driven [4]; b) Communication network is 

a wide area wireless network so that two types of network-

induced delays are independent and unknown whereas their 

probability distribution functions are considered known [7].; 

c) The sum of two delay types is bounded [7], while the 

initial state of system is deterministic [7]. 

   Assuming that the controlled plant is a linear time-

invariant system, when the networked-induced delays and 

packet losses are considered, the NCS can be expressed as 

        ttButtAxtx                                               (1)
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               and the original system matrices 

are               . From Assumption 1, we can 

assume the sum of network-induced delays  )()( tt sc

sca Tdt )( , where d represents the delay bound while sT is 

the sampling interval.  

     During a sampling interval kTkkT ss  ))1(,[ , the 

controller input )(tu to the plant is a piecewise constant. 

According to Assumption 1, there are at most d various 

current and previous control input values that can be 

received at the actuator. If many control inputs are received 

at the same time, only the newer control input is allowed to 

act on the plant during any sampling interval    ss TkkT 1, 

k , and other previous control inputs are deduced. Since 

control input is based on event driven and can be only 

received at random instant (Assumption 1), the changes in
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Fig. 2. Timing diagram of signals transmitting in NCS. 

    Since the controller is event driven, the term ku can be 

used to express the controller when the sensor signal kx is 

transmitted to the controller.  Integration of (1) over a 

sampling interval    kTkkT ss 1, yields 
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Using (2), a new augment state variable  T

kk xz 
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dk

T

k uu
11   is defined such that (2) can be expressed as 

kzkkzkk uBzAz 1                                                           (3) 

where the system matrices become time-varying 
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     In this paper, we derive the optimal controller to 

minimize the cost function 

  ,...2,1,0
,









 





kRuuSxxEJ
ki

i

T

ii

T

ik


                        (4) 

where S and R are symmetric positive semi-definite and 

symmetric positive definite matrices respectively and  
 ,

E is 

the expected operator (in this case the mean value) of
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redefining the augment state variable kz , original cost 

function, (4) can be expressed as 
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Note the matrices zS and zR are still symmetric semi-positive 

definite and symmetric positive definite respectively. 

III. STOCHASTIC OPTIMAL CONTROL 

     In this section, the idea of Q-learning [9] and concept of 

adaptive estimator is used to develop a stochastic optimal 

control design for NCS with unknown dynamics in the 

presence of random delays and packet losses. First, Q-

function is setup for NCS with random delays and packet 

losses. Second, model-free online tuning of the parameters 

based on adaptive estimator and Q-learning algorithm will 

be proposed. Eventually the convergence proof is given. 

A. Q-function Setup for NCS 

     Consider the NCS in the presence of random delays and 

packet losses described by equation (3) as  kzkk zAz 1

kzkuB . Assume that the NCS system has 0z a unique 

equilibrium point on a set  while the states are considered 

measurable. According to these conditions, the stochastic 

optimal control input which minimizes the stochastic cost 

function kJ for NCS system (3) can be derived as kkk zKu *

with kK being the optimal gain. According to the optimal 

control theory, the cost function can also be represented as 

 kk

T
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 ,

*                                                                   (6) 

where kP is a symmetric positive definite matrix and the 

solution to the SRE [7]. The optimal action dependent value 

function  Q of NCS is defined in terms of conditional 

expected value as 
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    Since stochastic optimal control, ku , is dependent on state

kz which is known at time k , Q-function can be expressed as
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   Therefore,  kHE
 ,

(in contrast with a constant H in [9]) can 

be written as 
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     The optimal action dependent cost function  *, kk uzQ is 

equal to the minimum of cost function kJ while the policy ku

is optimal. Therefore, we have 
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Then using (9) and stochastic control theory [7], the gain of 

the optimal control can be expressed in terms of
kH as 
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     Note that if kP is known, then one still need the time 

varying system matrices to compute the controller gains. On 

the other hand, if time varying matrix
kH can be learned 

online without the knowledge of linear time varying system 

dynamics, the NCS system matrices are not needed to 

compute the optimal controller gains. 

B. Model-free Online Tuning based on Adaptive 

Estimator and Q-Learning 

The proposed online tuning approach entails one adaptive 

estimator which is used to learn the Q-function. Since Q-

function include
kH matrix, this matrix can be solved online 

and the control signal can be obtained using (11). We make 

the following assumption since the NCS is linear, the delays 

of NCS are upper bounded and packet losses satisfy the 

Bernoulli distribution, and both of them change slowly [5].  

Assumption 2: The Q-function,  kk uzQ , , can be expressed 

as the linear in the unknown parameters (LIP). 

    By using the stochastic adaptive control theory [7] and the 

definition of Q-function (7), the Q-function can be 

represented in vector form similar to the adaptive estimator 

representation on a set as 
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2

1 ,,,,,, lllkklkk wwwwwww   is the Kronecker 

product quadratic polynomial basis vector. 

Note:  vec function is constructed by stacking the columns 

of matrix into one column vector with off-diagonal elements 

which can be combined as nmmn HH  . The time-varying 

matrix kH can be considered as slowly varying [5]. Then Q-

function can be expressed as target unknown parameter 

vector and the regression function   .  
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    Now, the Q-function  kk uzQ , estimation will be 

considered. 

C. Q-function Estimation for Optimal Regulator Design 

    According to the definition of Q-function [9] and 

relationship between Q-function and cost function [9], we 

can use matrix
kH in (9) to express the cost function as 

k

T

kkk

T

kk whwHwJ                                                        (13) 

    Then the Q-function  kk uzQ , can be approximated by an 

adaptive estimator in term of estimated parameters kh
ˆ

as 

  k

T

kkk whuzQ
ˆ

,ˆ                                                                (14) 

where kh
ˆ

is the estimated value of  the target parameter 

vector kh with basis function satisfying 0kw for 0kz .  

       It is observed that Bellman Equation can be rewritten as

  0,1  kkkk uzrJJ .This relationship, however, is not 

guaranteed to hold when we apply the estimated matrix kH
ˆ

. 

Hence, using delayed values for convenience; the residual 

error associated with (14) can be expressed as 1
ˆˆ

 kk JJ

  hkkk euzr   11, , i.e. 

hke   111

ˆ
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where 11   kkk wwW . 

       The dynamics of (15) are then rewritten as 
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Next, we define an auxiliary residual error vector as 
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k

T

kkhk h 

  11

11

ˆ
W                                         (17) 
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  10],[ 1211 kjWWW jkkkk W   with  

 being the set of natural real numbers. It is important to 

note that (17) indicates a time history of the previous 1j

residual errors (15) recalculate by using the most recent kh
ˆ

. 

     The dynamics of the auxiliary vector (17) are generated 

similar to (16) and revealed to be 
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Now define the update law of the time varying matrix
kH as 
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where 10  h . Substituting (19) into (18) results 

hkhhk   1                                                                    (20) 

Remark 1: It is observed that the cost function kJ and  

adaptive estimation (13) will become zero only when 0kz . 

Hence, when the system states have converged to zero, the 

Q-function  kk uzQ , approximation is no longer updated. It 

can be seen as a persistency of excitation (PE) requirement 

for the inputs to the Q-function  kk uzQ , adaptive estimator 

wherein the system states must be persistently exiting long 

enough for the adaptive estimator to learn the optimal cost 

function. Here PE condition is met by introducing noise. 

     Therefore, we define the parameter estimation error to be

kkk hhh
ˆ~

 and rewrite Bellman Equation using the target 

adaptive estimator representation (12) revealing  11 k
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k wh
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     Substituting  kk uzr , into (16) and utilizing (15) with

hkhhk ee 1 from (20) yields 
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     Using the similar method as  kk uzr , , we now form

  111,   k

T

kkk Whuzr , and substitute this expression into 

(22), we have 
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Next, the convergence of the cost function estimation error 

dynamics with adaptive estimation error, dynamics kh
~

given 

by (23) is demonstrated given an initial admissible control 

[11] policy. The linear NCS time varying system dynamics 

are known to be asymptotically stable if an initial admissible 

control policy can be applied provided the system matrices 

are known. However, introducing the estimated Q-

function results in estimation errors for the cost function kJ , 

whose stability need to be studied.  Subsequently, the results 

of Theorem 1 will be used for proving the overall closed-

loop system stability in Theorem 2 by using an initial 

admission control policy.  

Theorem 1: (Asymptotic stability of the Cost AE Errors). 

Let  kzu0 be an initial admissible control policy for the 

linear NCS (3), and let the
 

adaptive estimator (AE) 

parameter update law be given by (19). Then, there exists a 

positive constant h satisfying 10  h such that the 

adaptive parameter estimator errors converge to zero 

asymptotically. 

   Next, we show that the estimated control input based on 

this estimated matrix will indeed converge to the optimal 

control input. 
D. Estimation of the Optimal Feedback Control Signal 

    There are two ways to estimate the optimal control signal 

for regulating the NCS. One of them is based on time 

varying matrix kH , the other one is based on standard 

optimal theory by minimizing the cost function. The 

difference being that the second method requires the system 

dynamics and it solves the optimal controller backward. 

However, it is shown that ultimately both are equivalent 

 which can be used in the proofs. 

Method I: As mentioned before, time varying matrix kH

can be estimated by an adaptive estimator (AE). According 

to Q-learning and equation (11), the estimated optimal 

control input can be expressed by the adaptive estimation

kH as 
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    Method II: Alternatively, the estimated optimal control 

signal which minimizes the estimated cost function (13) with 

the adaptive estimation (AE) kH
ˆ

is written as 

1

11

2

ˆ

2

1
ˆ








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k

kT

zkzk
z

J
BRu                                                      (25) 

where    111
,

111
,

1
ˆˆˆ

  kk

T

kkk

T

kk xPxEwHwEJ


.Next, it will 

be shown that the optimal control input obtained by method 

I and II are equivalent. 

Lemma 1: The optimal control estimation calculated with 

the adaptive estimation of  kk uzQ , is equal to the optimal 

control calculated by minimizing the cost function kJ , i.e.

kk uu 21
ˆˆ  . 

Since the equality proven in this lemma is in both ways 

and noting the drawback of second method, we use the first 

method to solve the optimal controller design for the NCS. 

However, we will use the Lemma 1 to complete the 

convergence proof since they are equivalent. Next, the 

stability of the cost estimation, control estimation, and 

adaptive estimation error dynamics are considered. 

E. Closed-loop System Stability 

Adaptive Estimator of  

                   function
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 
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Fig. 3. Stochastic optimal regulator block diagram 

 

In this section, it will be shown that time-varying matrix

kH and related cost function estimation error dynamics are 

asymptotically stable (AS). Further, the estimated control 

input of NCS (25) will approach the optimal control signal 

asymptotically. Before introducing the theorem on system 

stability, we present the block diagram for the stochastic 

optimal regulator of linear NCS with unknown system 

dynamics which is shown in Figure 3. 

Next, the initial system states are considered to reside in 

the set which in turn is stabilized by using the initial 

stabilizing control input ku0 . Further sufficient condition for 

the adaptive estimator tuning gain h is derived to ensure the 

all future states will converge to zero. Then it can be shown 

that the actual control input approaches the optimal control 

asymptotically. 

Theorem 2 (Convergence of the Optimal Control Signal): 

Let ku0 be any initial admissible control policy for the NCS 

(3) with random delays and packet losses with 210 *  k . 

Let the parameters be tuned and estimation control policy be 

provided by (19) and (25) respectively. Then, there exist 

positive constants h given by Theorem 1 such that the 

system states kz and cost function parameter estimator errors

kh
~

are all asymptotic stable. In other words, as  kzk ,

0ˆ,0
~

,0  kk Jh and *

2

*

1
ˆ,ˆ

kkkk uuuu  . 

Proof: Consider the following positive definite Lyapunov 

function candidate 

  )
~

( kJkD hVzVV                                                          (26) 

where  kD zV is defined as   k

T

kkD zzzV  and  kJ zV is 

defined as
2

1

2

1 )
~

()
~~

()
~

(   k

T

kk

T

kk

T

kkJ WhwhwhhV . 

The first difference of (26) can be expressed as V

)
~

()( kJkD hVzV  , and
T

kk

T

kkJ hWhhV
~

()
~

()
~

( 2

1  

2

1) kW with the adaptive estimator, we have 

   
2

2

min

22

1

2
~

1)
~

(1)
~

( khk

T

khkJ hWWhhV      (27) 

Next, considering the first part   k

T

kk

T

kkD zzzzzV   11 and 

applying the NCS and Cauchy-Schwartz inequality reveals 

  k

T

kkzkkzkkzkkD zzuBuBzAzV 
2

2
~ˆ  

              k

T

kkzkkzkkzk zzuBuBzA 
22

2
~2ˆ2              (28) 

Applying the bounds on closed-loop dynamics with optimal 

control, and recalling kk uu 21
ˆˆ  from Lemma 1 (i.e.

 

0~ ku ). 

   Therefore,  kD zV is expressed in terms as the adaptive 

estimator (AE) error dynamics of the matrix kH and the 

relationship between   kkk huzQ
~

,, and kJ
~

, (28) revealing 

    22* ~221 kzkkkD uBzkzV    2*21 kzk    (29) 

At final step, combining the equation (27) and (29), we have 

   
2

2

min

22*
~

121 khk hWzkV                          (30) 

Since 210 *  k and 10  h , V is negative definite 

(See Remark 1) andV is positive definite. Therefore, system 

states kz and kh
~

are all asymptotically stable. In other words, 

as 0
~

,0,  kk hzk *ˆ
kk JJ  and  kkk uuu 2

*

1
ˆ,ˆ *

ku .    

IV. SIMULATION RESULTS 

In this section, stochastic optimal control of NCS is 

evaluated and compared with a pole placement controller. 

The networked control batch reactor system [2] with random 

delays and packet losses is given 
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 (31) 

The parameters of this NCS are given as: the sampling time:

msTs 100 ; the bound of delays is two, i.e. 2d ; the 

random delay:     msEmsE 150,80 21   ; packet Losses 

follow Bernoulli distribution with 3.0p . 

  
Fig. 4. The distribution of delays.    Fig. 5. The distribution of packet losses. 

 

    The distributions of two random delays between sensor 

and actuator are shown in Figure 4. On the other hand, the 

packet losses are shown in Figure 5. Based on NCS 

parameters, the NCS model (31) can be discretized as (3).  

  
    Fig. 6. State tracking error of NCS      Fig. 7. Proposed optimal control 

     

First, the effective of random delays and packet losses for 

NCS is studied. The traditional control input

kk xu 













61.293.208.065.1

07.111.077.088.0
, designed by pole 

placement method maintains batch reactor system stable 

without any delays and packet losses, while it renders an 

unstable system in the presence of random delays and packet 

losses as shown in Figure 6. Secondly, when designing the 

control for NCS, packet losses and delays are normally 

unknown. The proposed Q-learning-based adaptive optimal 

controller is implemented to the NCS with unknown system 

dynamics in presence of random delays and packet losses. 

The augment state     is generated as    

T

kkkk uuxz 21

    and w  uz      the initial stabilizing policy for 

the algorithm was selected as

kk zzu 













51.003.068.002.061.293.208.065.1

02.014.001.025.007.111.077.088.0
)(0

while the regression function for the Q-function was 

generated as following  2

10

2

9

2

23121

2

1 ,,,,,,,, wwwwwwww 

which is general defined as (12). 

     The design parameter for the Q-function  kk uzQ , was 

selected as 610h while the initial parameters for the 

adaptive estimator were set to zero at the beginning of the 

simulation. The initial parameters of the action control 

network were chosen to reflect the initial stabilizing control. 

The simulation was run for 200 times steps, and for the first 

120 times steps, exploration noise with mean zero and 

variance 0.06 was added to the system in order to ensure the 

persistency of excitation (PE) condition holds (Remark 1). 

      In Figure 7, the proposed Q-learning based stochastic 

optimal controller makes the NCS state tracking errors 

converge to zero even when the NCS dynamics are 

unknown. According to the above results the proposed Q-

learning based adaptive optimal control algorithm will have 

nearly the same performance to the NCS with unknown 

dynamics as that of an optimal controller for NCS when the 

system dynamics, delays and packet losses are known.  

V. CONCLUSIONS 

In this work, a direct dynamic programming scheme is 

proposed which combines the adaptive estimator (AE) and 

the concept of Q-learning to solve the Bellman equation in 

real time for the stochastic optimal regulation of NCS with 

random delays and packet losses. The availability of past 

state values ensured that NCS system dynamics were not 

needed when an adaptive estimator (AE) generates an 

estimated Q-function and a novel stochastic optimal control 

law based on the estimation of  kk uzQ , . An initial 

admissible control policy ensures that the system is stable 

while the adaptive estimator learns the Q-function  kk uzQ ,

and the matrix kh , cost function and optimal control signal.  

All adaptive estimator (AE) parameters were tuned online 

using proposed update law and Lyapunov theory 

demonstrated the asymptotic stability of the overall closed-

loop system. 
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