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Abstract— This paper presents a sufficient condition for
observability of switched systems that involve state jumps and
comprise nonlinear dynamical subsystems affine in control.
Without assuming observability of individual modes, the suffi-
cient condition is based on gathering partial information from
each mode so that the state is recovered completely after some
time. Using this result, an observer is designed which employs
a novel ‘back-and-forth’ technique to generate state estimates.
Under the assumption of persistent switching, analysis shows
that the estimate converges asymptotically to the actual state
of the system.

I. INTRODUCTION

We study observability conditions and an observer design
for a class of switched nonlinear systems Σ, described as

ẋ(t) = fσ(t)(x(t)) + gσ(t)(x(t))u(t), t 6= {tq}, (1a)

x(tq) = pσ(t−q )(x(t−q )), (1b)

y(t) = hσ(t)(x(t)), (1c)

where x : R 7→ Rn is the state trajectory, y : R 7→ Rdy is the
output, the measurable function u : R 7→ Rdu is the input
belonging to some input class U of interest, and σ : R 7→ N
is the switching signal that is right-continuous and changes
its value at switching times {tq}, q ∈ N. Let t0 be the initial
time and the jump map (1b) applies at t = tq , q ≥ 1. It is
assumed that there are a finite number of switching times
in any finite time interval. The switching mode σ and the
switching times {tq} may come from a supervisory logic
controller, or may be determined internally depending on
the system state. In any case, we treat them as a known,
external input in this paper. It is assumed that the solution
x(t) remains in a compact set X ⊂ Rn on the time interval
of interest. All the vector fields and functions are assumed
to be smooth, and thus, the existence and uniqueness of the
solution, for all times, are guaranteed by the fact that the
solution remains in a compact set.

When dealing with observability of nonlinear systems,
there are different notions that are involved. The work in [8],
[10] talk about observability in local neighborhoods of the
state space. Authors in [9] describe the notion of ‘large-time’
versus ‘small-time’ observability where the difference lies in
whether it is possible to recover the state instantaneously in
time or the system becomes observable after certain time
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interval. If the system description has exogenous inputs
acting on it, then the question arises whether observability
holds for all inputs or not [5], [6]; if it does, the system is
called uniformly observable.

The concept of observability studied in this paper is a re-
finement of the ‘large-time observability’ already considered
in the literature (e.g., [9]) and the ‘uniform observability’
studied in [5], [6]. Switched systems can be thought of as
a family of dynamical subsystems, where a switching signal
determines the active subsystem at each time instant. It is
entirely possible that none of these subsystems is observable
in the sense that information about the full state is not
immediate in the output signal [8], [10]. But the information
available from each mode can be combined in a certain
manner so that under some conditions, it is possible to
recover the state vector completely after some time. This
explains how the concept of ‘large-time’ comes into picture
when dealing with switched systems and our goal is to derive
conditions that make the system large-time observable on a
given set X . Moreover, since we are interested in an observer
construction at the end, the observability for all inputs (i.e.,
uniform observability) is of concern in order for the observer
to be independent of particular inputs.

For switched systems, among other structural properties,
observability and observer design for linear case have been
actively studied during the past decade. Some initial observer
results on switched systems, such as [1], [13] for linear
case and [3] for nonlinear case, have assumed that each
mode in the system is in fact observable admitting a state
observer, and have treated the switching as a source of
perturbation effect. More relaxed approaches do not assume
observability of the individual modes, and the notion of
gaining observability by switching for linear systems has
appeared in, e.g., [4], [20], [21]. Even though limited to the
linear case, it is not clear how the conditions in [4], [20],
[21] can lead to feasible observer design. On the other hand,
there is not much literature on the observability of switched
nonlinear systems.

The main contribution of this paper lies in the unified
treatment of observability conditions and observer design
which has not been discussed in literature for nonlinear
systems, to the authors’ knowledge. For the observer design,
our approach shares the same spirit as [2], and the result
of this paper can be regarded as an extension of [2], in the
sense that, a coordinate-independent condition is derived for
observability and nonlinear systems are treated with a new
observer design strategy.

The notation used in this paper is summarized as follows.
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R(A) implies the range space of the columns of matrix A,
and A> is the transpose of A. We denote [x>1 , x

>
2 ]> simply

by col(x1, x2), and λ1∼k := col(λ1, . . . , λk). For a signal
x(t), x[t1,t2] means {(x(t), t) : t1 ≤ t ≤ t2}. The differential
of a map p acting on the vector field v is denoted by p∗v.
For a distribution W , p∗W = {p∗v | v ∈ W}. We call a dis-
tributionW at xo ‘nonsingular’ when dimW is constant in a
neighborhood of xo. The notation l.com {λ1(x), . . . , λk(x)}
means a set of linear combinations of the functions λi with
constant coefficients, i.e., {

∑k
i=1 ciλi(x) : ci ∈ R}. Now

let X be a set in Rn, and whenever we say a property
holds ‘on X ,’ we mean that it holds for every x ∈ X .
Smooth functions λ1(x), . . . , λk(x), defined on X , are said
to be independent on X if their differential one-forms,
dλ1(x), . . . , dλk(x) are linearly independent on X . In addi-
tion, if there exist n−k smooth functions λk+1, . . . , λn such
that col(λ1(x), . . . , λn(x)) becomes a diffeomorphism from
X to Rn, then we say that λ1, . . . , λk are potential coordi-
nate functions on X . We also recall that the Lie derivative of
a function λ along the vector field f is Lfλ(x) := ∂λ(x)

∂x f(x)
and Lf (dλ) = dLfλ. Some proofs have been omitted in this
conference paper due to space constraints.

II. PRELIMINARIES

Let us formalize the notion of observability considered in
this paper.

Definition 1: A system Σ with a switching signal σ(·) is
large-time uniformly observable on a set X ⊂ Rn if there
exist a finite time T > t0 so that x(T ) is determined uniquely
from y[t0,T ], u[t0,T ], and σ[t0,T ] for any measurable input
u[t0,T ], when the state x(t) remains in X for t ∈ [t0, T ]. If
the time T > t0 can be chosen arbitrarily, then the system
Σ is called small-time uniformly observable on a set X . C

In case of no jump map (1b), the knowledge of x(T ),
σ[t0,T ], and u[t0,T ] determines x[t0,T ] uniquely. This is not
the case in general because the jump map (1b) may not be
reversible. From the definition, if a certain mode of system
Σ is small-time observable and the switching signal activates
that mode at a certain time, then the system is automatically
large-time observable. Note that x(T ) may be reconstructed
using the derivatives of y(·) and u(·) (although differentiation
should not be used in the observer construction). It is noted
that, although the observability in Definition 1 is uniform
with respect to the input u, uniformity with respect to the
switching signal σ is not required.

The following lemma will be frequently used in the paper.
Lemma 1: Consider a codistribution W generated by

exact one-forms, i.e., W = span {dλ1, . . . , dλk} with 1 ≤
k ≤ n, where λ1, . . . , λk are smooth potential coordinate
functions defined on a set X ⊂ Rn.

1) If the codistribution W is invariant with respect to a
smooth vector field f(x), i.e.,

LfW ⊂W

on X , then there exists a smooth vector field F :

λ1∼k(X ) → Rk such that ∂λ1∼k
∂x

∣∣∣
x
· f(x) =

F (λ1∼k(x)) on X .

2) If a smooth function h : X → R satisfies

dh ∈ W

on X , then, there exists a smooth function H :
λ1∼k(X )→ R such that h(x) = H(λ1∼k(x)) on X .

3) Let W ′ be another codistribution such that dim(W +
W ′) is constant on X , and suppose that W +
W ′ = span {dλ1∼k, dµ

′
j : j = 1, . . . , r̄′} where

r̄′ = dim(W + W ′) − dimW , and the elements of
{λ1∼k, µ

′
1∼r̄′} are smooth potential coordinate func-

tions on X . If a smooth map p : X → Rn satisfies

p∗(kerW ∩ kerW ′) ⊂ kerW

on X , then there exists a smooth map P :
λ1∼k(X ) × µ′1∼r̄′(X ) → Rk such that λ1∼k(p(x)) =
P (λ1∼k(x), µ′1∼r̄′(x)) while x and p(x) are contained
in X . C

Before dealing with the switched case, let us consider
the system (1a) and (1c) for a fixed mode q, without the
jump map (1b) for now. In particular, we note that the
individual subsystems may not be observable, which calls
for the classical Kalman decomposition [10]: changing the
coordinates so that the system is explicitly split into the
observable part and the unobservable part. For this, let the
observation space Oq be the linear space of functions over
R containing all hq,i’s (where hq,i is the i-th element of
hq) and all repeated Lie derivatives Lv1Lv2 · · ·Lvkhq,i with
vl ∈ {fq, gq,1, . . . , gq,du} (gq,j is the j-th column of gq).

Assumption 1: For each mode q, the codistribution
dOq = span {dλ : λ ∈ Oq} has constant dimension kq;
dim dOq = kq on the set X . In addition, there are kq smooth
potential coordinate functions λq,j , j = 1, . . . , kq , such that

dOq = span {dλq,1, . . . , dλq,kq} on X . C
Under Assumption 1, additional functions

λq,kq+1, . . . , λq,n can be found to yield a diffeomorphism
λq := col(λq,1(x), . . . , λq,n(x)) on X . Then, Lemma 1.1
implies that the system (1a) and (1c) for mode q can
be written in the new coordinates col(ξ′q, ξq) with
ξ′q = λq,(kq+1)∼n(x) ∈ Rn−kq and ξq = λq,1∼kq (x) ∈ Rkq
as

ξ̇′q = F ′q(ξ
′
q, ξq) +G′q(ξ

′
q, ξq)u (2a)

ξ̇q = Fq(ξq) +Gq(ξq)u (2b)
y = Hq(ξq). (2c)

This representation is valid on the set λq(X ).
Assumption 2: The reduced-order subsystem (2b) and

(2c) is small-time uniformly observable on the set Ξq :=
λq,1∼kq (X ), which is the projection of λq(X ) onto the ξq-
coordinates. C

Remark 1: As a matter of fact, the simple condition that
dim dOq(x) = kq in a neighborhood of some xo ∈ X
guarantees, by Frobenius theorem, that there exists a local
neighborhood X ′(⊂ X ) of xo such that Assumption 1 holds.
Compared to this local observability (studied in, e.g., [8],
[10], [12]), Assumptions 1 and 2 may be thought of as global
versions (“global” in the sense of the whole region X ). C
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As long as we restrict our attention to (2b) and (2c) for
each mode, Assumption 2 becomes the standard uniform
observability assumption that has often been studied in the
literature (see [7] and references therein). Assumption 2 can
be checked in various ways; for instance, if the class of inputs
U consists of smooth functions only, then one may try to find
a function E such that

ξq = E(y, ẏ, . . . , y(ny−1), u, u̇, . . . , u(nu−1))

where ny ∈ N and nu ∈ N, and that the function
E( · , u, u̇, . . . , u(nu−1)) is surjective onto Ξq for all u(·) ∈
U . The existence of such a function E to reconstruct x(T ) is
used as the definition of uniform observability in [10], [19].
Other ways to check Assumption 2 can be found in [14].

III. SUFFICIENT CONDITION FOR OBSERVABILITY

In deriving the sufficient condition for observability, we
do not assume the individual modes of the system to be
observable. Hence, in order to recover the system state x(t),
partial information obtained from each mode is accumulated.
This partial information is quantified in terms of the maximal
integral submanifold of the distribution dO⊥q which has the
property that the states on the slices (or “leaves”) of this
submanifold are not distinguishable by the output of mode q.
As soon as a switch occurs, the indistinguishable states must
be contained in the intersection of the integral submanifolds
of both modes before and after the switching. In this way,
switching reduces the uncertainty in the state. Continuing in
this manner, with subsequent switching, we expect to reduce
the size of submanifold that contains the indistinguishable
states. Eventually, if the corresponding intersections reduce
to a point, we obtain observability. However, while the
intersections are taken at the same time, the information
contained in the integral submanifolds is scattered in time
because each one of them becomes available sequentially
as time goes on. This suggests that the partial information,
obtained at each mode, should evolve uncorrupted along the
dynamics of subsequent modes until all the information is
gathered to compute the state. Inspired by this intuition,
we present structural conditions which guarantee that the
evolution of the partial information is feasible without being
affected by the unknown quantities in subsequent modes.

Before presenting the condition, let us rename the switch-
ing sequence for convenience. That is, when the switching
signal σ(t) takes the mode sequence {q1, q2, · · · }, we re-
name them as increasing integers {1, 2, 3, · · · } which is ever
increasing even though the same mode is revisited. This
description also incorporates cases where there is a state
jump without change in dynamics or the mode change does
not involve state jumps.

Theorem 1: Suppose that Assumptions 1 and 2 hold, and
define dO′q := span {d(λq,i◦pq−1) : i = 1, . . . , kq} for each
q ≥ 2. On X , define a sequence of codistributions Wq , with
W0 := {0}, as:

Wq is the largest nonsingular and involutive codis-
tribution, invariant with respect to fq and gq , con-

tained in (dOq +Wq−1) such that (pq)∗(kerWq ∩
ker dO′q+1) ⊂ kerWq .

If
1) ∃ m ≥ 1 such that, on X ,

dim(dOm +Wm−1) = n,

(or simply dimWm = n because Wm = dOm +
Wm−1 by construction),

2) the codistributions Wq (1 ≤ q ≤ m), dOq +Wq−1

(2 ≤ q ≤ m), and Wq + dO′q+1 (1 ≤ q ≤ m− 1) are
nonsingular on X . Moreover,
(a) ∃ smooth potential coordinate functions
{φq,i, ωq,j : i = 1, . . . , k̄q, j = 1, . . . , l̄q, k̄q + l̄q =
dimWq} on X such that

Wq = span {dφq,1, · · · , dφq,k̄q , dωq,1, · · · , dωq,l̄q},
dφq,i ∈ dOq, dωq,j 6∈ dOq, (3)

(b) ∃ smooth potential coordinate functions {µq,i : i =
1, . . . , r̄q, r̄q = dim(dOq +Wq−1)} on X such that

dOq +Wq−1 = span {dµq,1, . . . , dµq,r̄q}, (4)
µq,i ∈ l.com {λq,1, . . . , λq,kq , φq−1,1, · · · ,

φq−1,k̄q−1
, ωq−1,1, · · · , ωq−1,l̄q−1

},
(5)

(c) ∃ smooth potential coordinate functions {µ′q,j : j =
1, . . . , r̄′q, r̄

′
q = dim(Wq + dO′q+1) − dimWq} on X

such that

Wq + dO′q+1 = span {dφq,1, · · · , dφq,k̄q ,
dωq,1, · · · , dωq,l̄q , dµ

′
q,1, . . . , dµ

′
q,r̄′q
},

(6)

µ′q,j ∈ l.com {λq+1,1 ◦ pq, . . . , λq+1,kq+1 ◦ pq}, (7)

then the system (1) is large-time uniformly observable on
X for all the switching signals containing the consecutive
subsequence {1, 2, . . . ,m}. C

Following observations are immediate: (a) dOq itself is
invariant with respect to fq and gq by construction, (b) if
pq(x) = x, so that there is no state jump, then the condition
(pq)∗(kerWq ∩ ker dO′q+1) ⊂ kerWq automatically holds,
(c) the “largest” codistribution in the assumption of Theo-
rem 1 is well-defined, because involutivity and invariance of
a codistribution generated by exact one-forms is preserved
under the addition, and if two smooth nonsingular codistri-
butionsWa andWb satisfy p∗(kerWi∩D) ⊂ kerWi, where
i ∈ {a, b}, for any differentiable map p and any distribution
D, then p∗(ker(Wa +Wb) ∩ D) ⊂ ker(Wa +Wb).

The compactness of the set X guarantees the solution
without finite escape time, and will be used for observer
construction in the next section. If all the assumptions hold
with X = Rn, then the observability property becomes
global in case the solution has no finite escape time. On
the other hand, if local observability is of interest, then the
assumptions get simpler by removing the items 2(a), 2(b),
and 2(c).

Corollary 1: Suppose that Assumptions 1 and 2 hold
in a neighborhood of a point xo ∈ X . If each of the
codistributions Wq , dOq + Wq−1, and Wq + dO′q+1 are
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nonsingular at xo, Wq is smooth and involutive at xo, and
dim(dOm +Wm−1)(xo) = n, then the system is large-time
uniformly observable in some neighborhood of xo for all
the switching signals containing the consecutive subsequence
{1, 2, . . . ,m}. C

Now we present the proof of Theorem 1, which is con-
structive in the sense that a technique to recover x(t) at some
time t = T > tm−1 is revealed (rather than discussing the
indistinguishability of two different states). This way paves
the road to the observer design in the next section.

Proof: [Proof of Theorem 1] Consider the interval prior
to the first switching, [t0, t1). Since W1 ⊂ dO1, we have
that

W1 = span {dφ1,1, dφ1,2, . . . , dφ1,k̄1}, k̄1 ≤ k1.

Because dφ1,i, for each i = 1, . . . , k̄1, is an element of
dO1 that is generated by the differentials of λ1,l, l =
1, . . . , k1, and λ1,l’s are potential coordinate functions on
X (by Assumption 1), φ1,i is a function of λ1,1∼k1 only (by
Lemma 1.2). Since ξ1 := λ1,1∼k1(x) is small-time uniformly
observable on λ1,1∼k1(X ) (by Assumption 2), the value of
the vector ξ1(t) = λ1,1∼k1(x(t)), and thus, φ1,1∼k̄1(x(t))
are recovered for t ∈ [t0, t1).

Now Lemma 1.3, with the item 2(c) and (p1)∗(kerW1 ∩
ker dO′2) ⊂ kerW1, implies the existence of a function P̆1

(and then P1 below, since φ1,i is a function of λ1,1∼k1 ) such
that
φ1,1∼k̄1(x(t1)) = φ1,1∼k̄1(p1(x(t−1 )))

= P̆1(φ1,1∼k̄1(x(t−1 )), µ′1,1∼r̄′1(x(t−1 )))

= P1(λ1,1∼k1(x(t−1 )), λ2,1∼k2 ◦ p1(x(t−1 )))

= P1(λ1,1∼k1(x(t−1 )), λ2,1∼k2(x(t1))),

(8)

where the third equality follows from (3) and (7).
Next, consider the interval [t1, t2). For i = 1, . . . , k̄2,
using Lemma 1.2, the condition dφ2,i ∈ dO2 =
span {dλ2,1, . . . , dλ2,k2} guarantees that φ2,i is a function
of λ2,1∼k2 only. Again by Assumption 2, the vector ξ2(t) :=
λ2,1∼k2(x(t)), and thus, φ2,1∼k̄2(x(t)) are recovered for the
interval [t1, t2).

Now observing that W2 is invariant w.r.t. f2 and g2,
W2 = span {dφ2,1, . . . , dφ2,k̄2 , dω2,1, . . . , dω2,l̄2 : k̄2 + l̄2 =
dimW2}, and {φ2,1∼k̄2 , ω2,1∼l̄2} are potential coordinate
functions on X , we apply Lemma 1.1 and obtain smooth
vector fields F ∗2 and G∗2 such that, with z2 := ω2,1∼l̄2(x),

ż2 =
∂ω2,1∼l̄2
∂x

(x) · (f(x) + g(x)u)

= F̆ ∗2 (z2, φ2,1∼k̄2(x)) + Ğ∗2(z2, φ2,1∼k̄2(x))u

= F ∗2 (z2, λ2,1∼k2(x)) +G∗2(z2, λ2,1∼k2(x))u

= F ∗2 (z2, ξ2) +G∗2(z2, ξ2)u,

(9)

over [t1, t2). In this interval, the vector ξ2(t) = λ2,1∼k2(x(t))
is recovered. Hence, if the initial condition z2(t1) =
ω2,1∼l̄2(x(t1)) is recovered, the vector z2(t) on the interval
[t1, t2) is also known by solving the differential equation (9).

Note that dω2,j ∈ W2 ⊂ (dO2 + W1) =
span {dµ2,1, . . . , dµ2,r̄2}, j = 1, . . . , l̄2, by the definition

of W2 and the item 2(b). Therefore, by Lemma 1.2, ω2,j

can be written as a function of µ2,i’s, which leads to

z2(t1) = ω2,1∼l̄2(x(t1)) = S̆∗2 (µ2,1∼r̄2(x(t1)))

= S∗2 (ξ2(t1), φ1,1∼k̄1(x(t1)))

= S∗2 (ξ2(t1), P1(λ1,1∼k1(x(t−1 )), λ2,1∼k2(x(t1))))

= S∗2 (ξ2(t1), P1(ξ1(t−1 ), ξ2(t1)))

(10)

in which, the third equality uses (5) with ω1 being null, and
the fourth equality follows from (8).

This process is repeated to find F ∗q , G∗q , S∗q , and Pq . For
instance, we can find P2 such that[
φ2,1∼k̄2(x(t2))
ω2,1∼l̄2(x(t2))

]
=

[
φ2,1∼k̄2(p2(x(t−2 )))
ω2,1∼l̄2(p2(x(t−2 )))

]
= P̆2(φ2,1∼k̄2(x(t−2 )), ω2,1∼l̄2(x(t−2 )), µ′2,1∼r̄′2(x(t−2 )))

= P2(λ2,1∼k2(x(t−2 )), ω2,1∼l̄2(x(t−2 )), λ3,1∼k3 ◦ p2(x(t−2 )))

= P2(ξ2(t−2 ), z2(t−2 ), ξ3(t2)),

and find S∗3 such that

z3(t2) = ω3,1∼l̄3(x(t2)) = S̆∗3 (µ3,1∼r̄3(x(t2)))

= S∗3 (ξ3(t2), φ2,1∼k̄2(x(t2)), ω2,1∼l̄2(x(t2)))

= S∗3 (ξ3(t2), P2(ξ2(t−2 ), z2(t−2 ), ξ3(t2))).

In summary, for each time interval [tq−1, tq), q =
1, . . . ,m, we have the differential equation (with z1 being
null)

ξ̇q = Fq(ξq) +Gq(ξq)u, ξq ∈ Rkq , (11a)
y = Hq(ξq), (11b)

żq = F ∗q (zq, ξq) +G∗q(zq, ξq)u, zq ∈ Rl̄q , (11c)

zq(tq−1) = S∗q

(
ξq(tq−1), Pq−1

(
ξq−1(t−q−1),

zq−1(t−q−1), ξq(tq−1)
))
,

(11d)

in which, ξq(t) and zq(t) are completely determined.
At any time t = T > tm−1, it follows under the

assumption in item 1, i.e. dimWm = n, that the vectors
ξm(T ) and zm(T ) are completely recovered or equivalently
col(φm,1∼k̄m(x(T )), ωm,1∼l̄m(x(T ))) is determined. In this
way x(T ) is recovered uniquely by the inverse, because
col(φm,1∼k̄m , ωm,1∼l̄m) is a diffeomorphism.

IV. OBSERVER DESIGN

Based on the study of large-time observability, let us now
discuss the design of an asymptotic observer for the sys-
tem (1). By asymptotic observer, we mean that the estimate
x̂(t) that it generates, converges to the plant state x(t) as
time tends to infinity. In order to achieve this, we introduce
the following assumptions.

Assumption 3: 1) The switching is persistent and hap-
pens within the duration D; that is,

tq − tq−1 ≤ D, ∀q ∈ N (12)

where tq is the switching time.
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2) The solution x(t) of the plant (1) remains in a compact
set X ∈ Rn, and the input u(t) is uniformly bounded;
|u(t)| ≤Mu.

3) There is an m ∈ N such that the assumption of
Theorem 1 holds on a set X̄ that properly contains X ,
and the mode sequence repeats the particular modes
{1, 2, . . . ,m}; that is, σ(t) = ((q−1) mod m)+1 for
[tq−1, tq), q ∈ N. C

We do not consider the time consumed for computation
by assuming that the data processor is fairly fast compared
to the plant process. The computation time, however, needs
to be considered in real-time application if the plant itself is
fast.

The observer we propose is of hybrid-type, and has the
form

˙̂x(t) = f̄q(x̂(t)) + ḡq(x̂(t))u(t), t ∈ [tq−1, tq),

x̂(tq) =

{
p̄q(x̂(t−q )), (q mod m) 6= 0,

p̄q(Lq(y[tq−m,tq), u[tq−m,tq))), (q mod m) = 0,

(13)

with an initial condition x̂(t0) ∈ X ⊂ X̄ , where f̄q ,
ḡq , and p̄q are globally Lipschitz and they have the same
values as fq , gq , and pq , respectively, inside the compact set
X . Their global Lipschitz property can always be obtained
by modifying them outside the set X , using the so-called
‘Lipschitz extension’.1 It is seen that the observer consists
of a plant copy with an estimate update law by some operator
Lq , which we design in this section. In fact, we present a
design of Lq , using some dynamic observers for partial states
at each mode and an inversion algorithm logic in order to
achieve,

|x̃(tm)| ≤ γ|x̃(t0)| (14)

where 0 < γ < 1 and x̃ := x̂ − x. The Lipschitz
property of (13) and Assumptions 3.1 and 3.2 guarantee that
supt∈[t(j−1)m,tjm) |x̃(t)| ≤ Γ|x̃(t(j−1)m)| with a constant Γ
and j ∈ N. In this way, if (14) holds then its repeated
application leads to limt→∞ |x̃(t)| = 0.

The proposed observer construction is based on the rep-
resentation (11) of the plant (1). The idea is that, for each
interval [tq−1, tq), q = 1, . . . ,m, a conventional nonlinear
observer, which we call ξq-observer, is employed to obtain
the estimate ξ̂q(t) for that interval. At the same time, a
zq-observer, replicating (11c) and (11d), is constructed as
follows:

˙̂zq = F̄ ∗q (ẑq, ξ̂q) + Ḡ∗q(ẑq, ξ̂q)u, 2 ≤ q ≤ m, (15)

with the initial condition given by:

ẑq(tq−1) = S̄∗q
(
ξ̂q(tq−1), P̄q−1

(
ξ̂q−1(t−q−1),

ẑq−1(t−q−1), ξ̂q(tq−1)
))
, (16)

and ẑ1 := 0 for convenience. Here F̄ ∗q is the Lipschitz
extension of F ∗q with respect to the set Zq × Ξq and so

1Since the plant state x(t) remains in X , this modification can also be
applied to the plant model (1). See [5] for its utility in observer construction.
Detailed procedures to the modification have been discussed in [14], [15].

on (Zq is the image of X through ωq,1∼l̄q , and Ξq through
λq,1∼kq ). In fact, the variable zq is not an observable quantity
for the mode q. Intuitively speaking, the role of zq-observer
is not to reduce the error z̃q(t) := ẑq(t)−zq(t), but to deliver
the estimates ξ̂q−1(t−q−1) and ẑq−1(t−q−1), that are obtained
from the previously active mode and are encoded in the
initial condition (16), to the next mode through ẑq(t) along
the system dynamics. Suppose that, seen at time t = t−m,
an ideal observer provides the exact information of ξq(t)
on each interval [tq−1, tq), q = 1, . . . ,m, using the stored
input u and the output y with the model (11a) and (11b).
For example, with exact values of ξ̂1(t−1 ) = ξ1(t−1 ) and
ξ̂2(t1) = ξ2(t1), we obtain the exact value of ẑ2(t1) = z2(t1)
by (16). Then, integration of (15) for q = 2 results in exact
values of ẑ2(t) = z2(t) on [t1, t2). This process repeats until
we get ξ̂m(t−m) = ξm(t−m) and ẑm(t−m) = zm(t−m). With
Assumption 3.3, i.e. dimWm = n, x(t−m) is now determined
uniquely from ξm(t−m) and zm(t−m), as the map

x(t−m) 7→
[
φm,1∼k̄m(x(t−m))
ωm,1∼l̄m(x(t−m))

]
=

[
χ(ξm(t−m))
zm(t−m)

]
(17)

is invertible; here χ is a function such that χ(λm,1∼km(x)) =
φm,1∼k̄m(x) whose existence is guaranteed by Lemma 1.2.
For convenience let us denote the inverse map by Ψ, so that
x(t−m) = Ψ(ξm(t−m), zm(t−m)). As a result, we choose the
estimate update law in (13) to be:

x̂(t−m) = Ψ̄(ξ̂m(t−m), ẑm(t−m)) =: Lq(y[t0,tm), u[t0,tm))
(18)

where Ψ̄ is Lipschitz extension of Ψ. Through this relation,
the plant state is recovered as x̂(t−m) = x(t−m) with exact
information ξ̂m(t−m) = ξm(t−m) and ẑm(t−m) = zm(t−m).

However, asymptotic observers in practice inevitably in-
troduce some error in ξ̂q(t) while estimating ξq(t). Moreover,
the estimation of ξq(t) on the entire interval [tq−1, tq) needs
more attention because the conventional observers, initiated
at the time t = tq−1, often experience the transient overshoot
before they converge to the proper estimates. Reducing the
transient period by increasing observer gain may worsen the
situation because of the peaking phenomenon [17]; that is,
the peaking in ξ̂q(t) may damage the role of (15) because
large error in |ẑq(t−q )− zq(t−q )| may occur in spite of small
error in |ẑq(tq−1)− zq(tq−1)|.

We overcome this obstacle by employing a new back-and-
forth estimation technique. Suppose that the ξq-observer over
the interval [tq−1, tq) is written as,

˙̂
ξfq = F̂q(ξ̂

f
q ) + Ĝq(ξ̂

f
q )u+Kf

q (ξ̂fq , u, y)(y − Ĥq(ξ̂
f
q )),

ξ̂fq (tq−1) = λ̄q,1∼kq (x̂(tq−1)), 1 ≤ q ≤ m
(19)

where λ̄q,1∼kq is the Lipschitz extension of λq,1∼kq and the
superscript ‘f ’ indicates ‘forward’, whose meaning will soon
become clear from the context. Here, F̂q , Ĝq , and Ĥq can be
any modified vector fields or functions as long as F̂q(ξq) =
Fq(ξq), Ĝq(ξq) = Gq(ξq), and Ĥq(ξq) = Hq(ξq) for ξq ∈
Ξq . In this way, we allow many observer design techniques
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available in the literature (which may utilize the Lipschitz
extension of Fq , Gq , and Hq in another coordinate system).

Assumption 4: Under the assumption that ξq(t) ∈ Ξq
for [tq−1, tq), q = 1, . . . ,m, the subsystem (11a) and (11b)
admits an observer of the form (19), which can be made
to converge to the state ξq(t) arbitrarily fast, that is, for
arbitrarily small constants b > 0 and c > 0, there exist an
injection gain Kf

q (·) and a class-KL function βf,q satisfying

βf,q(a, t) < ca for all a > 0 and b ≤ t ≤ τq (20)

|ξ̂fq (t)− ξq(t)| ≤ βf,q(|ξ̂fq (tq−1)− ξq(tq−1)|, t− tq−1)
(21)

for t ∈ [tq−1, tq). C
Remark 2: Many results in the literature, such as [5],

[11], yield an observer satisfying Assumption 4 with βf,q

being an exponential function. C
Now consider another (backward) observer described as

˙̂
ξbq = −F̂q(ξ̂bq)− Ĝq(ξ̂bq)u(tq − t)

−Kb
q(ξ̂

b
q, u(tq − t), y(tq − t))(y(tq − t)− Ĥq(ξ̂

b
q)),

ξ̂bq(0) = ξ̂fq (t−q ), t ∈ (0, τq], 1 ≤ q ≤ m.
(22)

Actually, the trajectory ξbq(t) := ξq(tq − t) satisfies the
differential equation

ξ̇bq = −Fq(ξbq)−Gq(ξbq)u(tq − t), y(tq − t) = Hq(ξ
b
q),

with ξbq(0) = ξq(t
−
q ), for t ∈ (0, τq], and therefore, (22)

can be thought of as one possible observer for it. We
further assume that Assumption 4 holds for this case as
well, with ξ̂fq , ξq , βf,q and Kf

q replaced by ξ̂bq , ξbq , βb,q and
Kb
q , respectively. Once Assumption 4 holds for (19), this

additional requirement is mild. For example, the designs of
[11] and [5] readily satisfy this requirement. Then, using the
input u and the output y stored over the interval [tq−1, tq),
we run the observer (19) first from the initial condition
ξ̂fq (tq−1) = λ̄q,1∼kq (x̂(tq−1)), followed by integrating (22)
from 0 to τq . After that, we take our final estimate ξ̂q(t) as

ξ̂q(t) =

{
ξ̂bq(tq − t), t ∈ [tq−1, tq−1 + τq/2),

ξ̂fq (t), t ∈ [tq−1 + τq/2, tq).
(23)

From Assumption 4 let us assume that, with b = τq/2 and
a given c ∈ (0, 1), both Kf

q and Kb
q are designed. With

ξ̃q := ξ̂q − ξq , ξ̃fq := ξ̂fq − ξq , and ξ̃bq := ξ̂bq − ξbq , it is seen
that

sup
t∈[tq−1+

τq
2 ,tq)

|ξ̃q(t)| = sup
t∈[tq−1+

τq
2 ,tq)

|ξ̃fq (t)|

≤ sup
t∈[tq−1+

τq
2 ,tq)

βf,q(|ξ̃fq (tq−1)|, t− tq−1) ≤ c|ξ̃fq (tq−1)|,

sup
t∈[tq−1,tq−1+

τq
2 )

|ξ̃q(t)| = sup
t∈[tq−1,tq−1+

τq
2 )

|ξ̃bq(tq − t)|

≤ sup
t∈[tq−1,tq−1+

τq
2 )

βb,q(βf,q(|ξ̃fq (tq−1)|, τq), tq − t)

≤ c2|ξ̃fq (tq−1)| ≤ c|ξ̃fq (tq−1)|.

Therefore, implementation of the observers in (19) and (22)
leads to

sup
t∈[tq−1,tq)

|ξ̃q(t)| ≤ c|ξ̃fq (tq−1)|

= c|λ̄q,1∼kq (x̂(tq−1))− λq,1∼kq (x(tq−1))|. (24)

Theorem 2: Under the assumptions so far, there is c∗ > 0
such that, for each c ∈ (0, c∗), the inequality (14) holds. C

This theorem concludes the asymptotic error convergence
to zero. (Proof is omitted but available from the authors.)
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