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Abstract— This paper considers a novel problem of how to
choose the scale of the final geometry for three agents in a
triangular formation. Instead of assigning a set of desired side
lengths, here the only requirement for the desired geometry is
a triangle without any location, rotation and, most importantly,
scale constraints. We set up a cost function that corresponds to
the geometries degree of similarity with respect to the desired
shape during convergence, and the cost value is compared
between a system with a time varying scale function and the one
with a constant scale. A fixed structure nonlinear control law
on the positions of agents and the scale function is developed
to drive the three agents exponentially converge to a triangle
that matches the desired one in a cooperative manner. The
control algorithms are validated on three AirRobots. It is shown
that system with the proposed time-varying scale function
outperforms the one with a constant scale.

I. INTRODUCTION

A group of autonomous agents working together in for-

mation is seen in various field applications including, for

example, spacecrafts exploring the deep space, underwater

vehicles mapping out oceanbed and unmanned aerial vehicles

(UAVs) detecting an unknown territory. A formation system

may be characterized by three main design considerations:

the geometry of the group of agents, the communication

topology [1] and the interaction rules/control algorithms.

Most of current research on formation control made the

assumption that the desired geometry is specified, fixed, and

known a priori, and developed control algorithms including

distance-based formation control laws [2], [3], position-

based control laws [4]–[6], and very recently, angle-based

algorithms [7], [8]. Among those literatures, graph rigidity

is crucial to the formation control that is specified by a set

of interagent distances, as discussed in [4], [5].

Inspired by the fact that V-shaped formation provides birds

with more aerodynamical and visual advantages than other

types of flight in flocks [9], it is reasonable to conjecture

that the geometry formed by the group of agents is closely

related to the behavior of the formation system. One typical

example is the angle-based emitter-target localization in
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sensor networks that emerged in the 1950s. In order to

obtain the minimum variance estimation of the target, sensors

were expected to be configured under some specific shape

constraints [10], say an equilateral triangle. In such a case,

the scale of the geometry is flexible. It can be further verified

that the geometry with a higher degree of similarity (DOS)

(please refer to Section 3 for its definition) to the optimal

shape can provide a better target location estimation. Thus in

order to improve the accuracy of measurements on the target

before sensors reaching the desired shape so as to allow more

time for strategy making, a formation system that maintains

a high DOS to the optimal shape during convergence is more

preferable than simply focusing on the final shape.

This problem is closely related to the shape control of

formation systems, see [8], [11] and [12]. Also, in [13],

the final scale is optimized towards the minimal traveling

distance where, however, no cooperation between agents

is considered. The design of a specific optimal geometry

for a group of wheeled robots is discussed in [14] with

the objective of minimizing the overall kinematic energy.

What distinguishes our work from the existing ones is that

here we utilize the flexibility on the final scale and design

control rules so as to optimize the geometries DOS during

convergence.

Triangular formations with three agents are the most

fundamental frameworks in formation systems, and thus are

embraced as the starting point in many literatures, see [4],

[8], [15], [16].

In order to improve the resemblance of the transient

geometry to the desired shape, a metric is expected. The

matching of two geometries under rigid transformation has

its long history in computer vision. Different metrics of

distance between two geometries are proposed from various

perspectives where the most famous one is the Hausdorff

distance [17]. However, the Hausdorff distance metric is on

the basis a minimization function, which is not favorable

as an objective function. Meanwhile, at each time step, the

time complexity to compute the Hausdorff distance for two

points sets of size p and q is O(pq). Thus here we use

what we call the DOS determined by the weighted sum

of the lengths errors between two geometries to evaluate

their resemblance. We exploit the design of a time-varying

scale function that provides the optimal rigid transformation

(rotation, translation and scaling operations) between two

different geometries, and minimize the cost function that

is the integration of the transient geometries DOS over the

entire convergence process.

An outline of the paper is as follows: Section II contains

the notations, definitions and some existing results that are
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Fig. 1: Geometries with labeled vertexes

used in the paper. The main results are presented in Section

III where we first define the DOS between a geometry and a

shape and then setup the problem. Fixed structured nonlinear

control law on the scale function is proposed that ensures

exponentially convergence to the desired shape. Finally,

simulations on three UAVs are demonstrated in Section IV,

and conclusions are given in Section V.

II. PRELIMINARIES

A continuous map on space X is denoted by C(X). Rm×n

is a real matrix of size m×n where when n = 1 it is always

omitted.

We focus on 2D formations on a plane. Let z ∈ R
6 be the

coordinates of three labeled points on the plane, as shown

in Fig. 1(a), and e ∈ R
6 the edge vector with element ei ∈

R
2 being the coordinates of the ith edge among the labeled

points. When the points are associated with three agents,

vector e is called the formation or the geometry of the three

agents. The set of triangular geometries is denoted by E.

In this paper, two triangles e and e
′ are said to be similar

if their labeled edges are in proportion, i.e.,

‖ei‖
‖e1‖

=
‖e′i‖
‖e′1‖

, i = 2, 3

Note that the geometry we considered differs slightly from

the general case. Here each vertex in a triangle is labeled

from 1 to 3 and two triangles are similar if and only if

the corresponding distances between the labeled pairs (viz.

labeled edges) are in proportions, as the ones in Fig. 1(b).

However the two geometries in Fig. 1(c) are not similar ones

due to the swapping of agent 1 and agent 3.

A shape consists of geometrical information that remains

when location, rotational effects and scale are removed

[13]. The shape vector is a three dimensional vector S =
[

s1 s2 s3
]T

> 0 with

si ∈ R
+, i ∈ [1, 2, 3]

All geometries e ∈ E that are similar to the shape S satisfy

‖ei‖ = ksi, k > 0, i = 1, 2, 3

The set of geometries being similar to the shape S is denoted

by {e|S}.

In this paper, due to the nature of the algorithm and for

simplicity, the scale of a geometry in {e|S} is defined by

s =
‖ei‖2
2s2i

, i ∈ [1, 2, 3]

The oriented incidence matrix [18] for the triangular

formation system in Fig. 1(a) is

H =





−1 1 0
0 −1 1
1 0 −1





By introducing the extended incidence matrix Ĥ = H⊗I2,

where ⊗ denotes the Kronecker product, we have e ∈ ImĤ .

The edge lengths are recorded in vector r(e):

r(e) =
1

2

[

‖e1‖2 ‖e2‖2 ‖e3‖2
]T

(1)

and its gradient with respect to vector z is

R(e) =
∂r(e)

∂z
= Λ(e)T Ĥ

with Λ(e) =





e1 0 0

0 e2 0

0 0 e3



.

The following is a result from [5] that concerns the

formation control for a fixed final geometry:

Lemma 2.1: For a given distance vector d =
[

d1 d2 d3
]T

, by choosing the potential function

V (e) =

3
∑

k=1

1

8
(‖ek‖2 − 2dk)

2 (2)

the control law

ż = u = −ĤT [∂V (e)/∂e]T (3)

is an inverse optimal solution to the problem

min J̄(e0, u) =
1

2

∫ ∞

0

‖R(G)T [r(e)− dk]‖2 + ‖u‖2dτ

s.t. ė = Ĥu, e0 ∈ E (4)

where e0 is the initial geometry of the agents, and the

formation system converges to the largest invariant set

Ie = {e ∈ ImĤ : V (e) ≤ V (e0), ‖R(e)T [r(e)− d]‖ = 0}
(5)

III. MAIN RESULTS

A. The cost function and the cooperative performance

In this paper, we dive into the convergence process during

formation attainment and explore the cooperative perfor-

mance in terms of the resemblance of a transient geometry

e(t) with respect to the desired shape.

Here are two observations for determining the resemblance

of geometries with respect to the reference/desired shape:

i A geometry is less sensitive to perturbations on longer

edges

ii A geometry is less sensitive to perturbations on edges

with larger included angles between (0, π)

Fig. 2 further explains the above two observations. It is

intuitive that under the same perturbation, the longer edge

bring smaller deformation to the geometry than that of a

short edge, as illustrated in Fig. 2(a). Meanwhile, apart from

the lengths of edges, another profile of a triangle is the vertex,
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(a) When the short edge (left) suffers a small perturbation, the perturbed
geometry various a lot w.r.t. the nominal one; When the same perturbation
is added to the long edge (right), the new geometry is quite close to the
nominal one
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(b) When the inner angle included in the two edges is large (left),
perturbations on the two edges will result in small change to the shape;
When the inner angle is small (right), the shape is greatly affected by
the same perturbation

Fig. 2: The sensitivity of a triangle

especially those sharp vertexes, i.e., the included angle of the

two edges adjacent at the vertex is small.

When two geometries are similar to each other, the scale

between them is the ratio of two corresponding edges in the

geometries and is identical among all the pairs of edges.

However, for two dissimilar geometries, there is no common

ratio for all pairs of edges, thus choosing an appropriate scale

is premise to the analysis of geometries resemblance.

Under observations i and ii, the degree of similarity (DOS)

between a geometry e and a shape S is

dosΘ(e, S) =
(

‖ĤT
[

δr1e1 · · · δrnen
]T ‖2

)−1

=
(

‖ − δr1e1 + δr2e2‖2 + ‖ − δr2e2 + δr3e3‖2

+‖δr1e1 − δr3e3‖2
)−1

(6)

where δri = ri−Θs̄i, s̄i = s2i and Θ is the scaling operation

for matching purpose. A geometry’s DOS is determined

by the weighted vector sum of neighboring edges, which

considers both observation i and ii, as illustrated in Fig. 2.

A geometry with a higher DOS to S is said to be more

resemble to S. When e is similar to S, dosΘ(e, S) → ∞.

Consequently the cooperative performance of the three

agents is the integration of geometries DOS over the entire

convergence:

Jv(e0, u,Θ) =

∫ ∞

0

dos−1
Θ (e, S)dτ

=

∫ ∞

0

‖R(e)T [r(e)−ΘS̄]‖2dτ (7)

For a special situation when the scaling operation is

constant: Θ = sc ∈ R
+, in the authors another paper [19] it

is proved that

Fig. 3: Cooperative performance

Theorem 3.1: Given a desired shape S, a triangular for-

mation system with control law

u(sc, e) = −RT (e)[r(e)− s∗c S̄] (8)

converges to the invariant set {e|S} exponentially at the

minimal cost value J∗
v = Jv(e0, u, s

∗
c) if and only if

s∗c =

∑n
i=1 ‖ei(0)‖2s̄i
2
∑n

i=1 s̄
2
i

(9)

It is intuitive that if we can find an appropriate time-

varying scale function that adjusts its value online, the DOS

between the current geometry and the desired shape, or the

cooperative performance, could be further optimized.

The main concern in this paper is to find an appropriate

scale function Θ = s̃(e), s̃ ∈ C(E) and a control law such

that the final geometry of the three agents is similar to S,

i.e., ef ∈ {e|S}. Thus we formulate the following problem:

Problem 3.1: Consider a formation system with three

agents where each agent is modeled by a single integral

ż = u (10)

and the underlying graph G is the one in Fig. 1(a). Consider

the following control law on s̃(e) and e:

u(s̃(e), e) = −R(e)TM(e)T [r(e)− s̃(e)S̄]. (11)

Find the control gain M(e) ∈ R
3×3 and the scale function

s̃(e) such that the final geometry ef ∈ {e|S} and

J∗
v (e0, u(e)) = min

s̃∈C(E)
Jv(e0, u(s̃(e), e), s̃(e)) (12)

By minimizing the cost function (7), the two situations

as, for example, the ones in Fig. 3, are expected to be

distinguished. In sensor networks localization, formation

system in the upper case may allow sensors to provide some

rough estimate of the target before attaining the desired

shape.

Note that Jv is not just quadratic expressions but a function

on e0, u and s̃(e), thus minimizing the values of Jv is not

trivial. Alternatively, we focus on the following suboptimal

problem

Problem 3.2: Find a trajectory for s̃ ∈ C(E) such that

Jv(e0, u(s̃(e), e), s̃(e)) < Jv(e0, u(sc, e), sc) for all sc > 0.

Consider the equation

∂Jv(e0, u, s̃)

∂s̃
|s̃=s̃∗(e)= 0 (13)

which has the equivalent form of

∂L

∂s̃
= 2[r(e)T − s̃(e)S̄T ]R(e)R(e)T S̄ (14)
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By using the fact eTi ej = ‖ei‖‖ej‖cosθij and the cosine law

‖ei‖‖ej‖cos(θij) =
1

2
(‖ei‖2 + ‖ej‖2 − ‖ek‖2)

where ei, ej and ek form an triangle, we obtain

∂L

∂s̃
= 2[r(e)− s̃(e)S̄]T D̄r(e) (15)

where

D̄ =





s̄2 + s̄3 − 4s̄1 s̄2 − s̄3 s̄3 − s̄2
s̄1 − s̄3 s̄1 + s̄3 − 4s̄2 s̄3 − s̄1
s̄1 − s̄2 s̄2 − s̄1 s̄1 + s̄2 − 4s̄3





(16)

If we let ∂L
∂s̃

= 0, a trajectory of s̃(e) is then

s̃∗(e) =
r(e)T D̄r(e)

S̄T D̄r(e)
:,

sN
sD

(17)

and we prove that

Theorem 3.2: The inequality

Jv(e0, u(s̃(e), e), s̃(e)) < Jv(e0, u(sc, e), sc)

always holds true for an arbitrary constant value sc if s̃ = s̃∗

as given by (17).

Proof: Substituting s̃∗ into Jv it yields (for convenience

“(e)” in s̃(e), R(e), r(e) are omitted)

Jv(e0, u, s̃
∗)− Jv(e0, u, sc)

=

∫ ∞

0

(r − s̃∗S̄)TRRT (r − s̃∗S̄)− (r − scS̄)
TRRT (r − scS̄)

=

∫ ∞

0

[(s̃∗
2 − s2c)S̄

T + 2(sc − s̃∗)rT ]RRT S̄

=

∫ ∞

0

(s̃∗ − sc)(s̃
∗S̄T − rT + scS̄

T − rT )RRT S̄

, ∆Jv (18)

Recall the characters of s̃∗ that

[rT − s̃∗S̄T ]RRT S̄ = 0 (19)

and based on the expression of s̃∗ in (17),

s̃∗ − sc =
(rT − scS̄

T )D̄r

S̄T D̄r
(20)

According to (19) and (20), equation (18) has the simplified

form of

∆Jv = −
∫ ∞

0

1

sD
S̄TRRT (r − scS̄)(r

T − scS̄
T )D̄r

The positiveness of sD is guaranteed according to the equal-

ity of

D̄r = RRT S̄

which further yields

∆Jv = −
∫ ∞

0

1

sD
((rT − scS̄

T )D̄r)2 ≤ 0, ∀sc > 0 (21)

where equality holds if and only if sc ≡ ‖ei‖
2

2s2
i

, ∀i ∈ [1, 2, 3],

i.e., e0 ∈ {e|S}.

Even when sc = s∗c , the conclusion of Jv(e0, u, s̃
∗) having

a smaller value still holds true, which indicates that the

satisfactory performance is always observed on Jv(e0, u, s̃
∗).

Theorem 3.3: The triangular formation system (10) under

control law (11) and the scale function (17) is exponentially

stable and converges to the largest invariant set {e|S} if

M(e) = s2DI3 − sDS̄r(e)T (D̄T + D̄) + sN S̄S̄T D̄ (22)

with parameters D̄ and sD, sN given in (16) and (17)

respectively. s̃∗f is the stable value of the scale function.

Proof: Consider the positive semidefinite function

V (e) = [r(e)− s̃∗(e)S̄]T [r(e)− s̃∗(e)S̄] (23)

and its partial differential with respect to e

∂V

∂e
= 2

∂[rT − s̃∗S̄T ]

∂e
[r − s̃∗S̄]

= 2[Λ(e)− ∂s̃∗

∂e
S̄T ][r(e)− s̃∗(e)S̄] (24)

The partial differential ∂s̃∗

∂e
is calculated by first solving

∂sN
∂e

= Λ(e)(D̄T + D̄)r(e)

and
∂sD
∂e

= Λ(e)D̄T S̄

which then yield

∂s̃∗

∂e
=

sDΛ(e)(D̄T + D̄)r(e)− sNΛ(e)D̄T S̄

s2D
:, N(e)

(25)

Hence the derivative of V (e) with respect to t is

d

dt
V (e) = (

∂V (e)

∂e
)T

de

dt
= −2[r(e)− s̃∗(e)S̄]T [Λ(e)−N(e)S̄T ]T

ĤĤTΛ(e)M(e)T [r(e)− s̃∗(e)S̄] (26)

When

M(e) = s2DI3 − sDS̄r(e)T (D̄T + D̄) + sN S̄S̄T D̄ (27)

the derivative of V (e) in (26) is negatively semi-definite with

the expression

V̇ (e) =− 2

s2D
[r(e)T − s̃∗(e)S̄T ]M(e)Λ(e)T Ĥ

ĤTΛ(e)M(e)T [r(e)− s̃∗(e)S̄] (28)

Indeed, V (e) is a valid Lyapunov function candidate.

For the autonomous system when the derivative of the

candidate Lyapunov function is negative semi-definite, the

asymptotic stability is concluded based on the powerful

invariant set theory.

The set of points in E when V̇ (e) = 0 satisfies both

conditions

S̄T D̄r(e) 6= 0 (29)

and

ĤTΛ(e)M(e)T [r(e)− s̃∗(e)S̄] = 0 (30)
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where condition (29) is always true for a triangle.

When each agents are connected with the other two, matrix

ĤTΛ(e) ∈ R
6×3 has rank 3 for all e ∈ E.

In order to find the largest invariant set, the singularity of

matrix M(e) is crucial to the asymptotic stability. As pointed

out in [19], M(e) is a full rank matrix when r(e) 6= kS̄. Thus

equation (30) is satisfied if and only if there exist ef such

that r(ef ) = s̃∗(ef )S̄. Thus {e|S} is the largest invariant

set for dynamic system (10) and (11).

If we let ǫ being the smallest eigenvalue of RMMTRT

during the entire convergence, the derivative of V (e) is

bounded by

V̇ (e) ≤ − 2ǫ

s̃2D
‖r(e)− s̃(e)S̄‖2 :, −θ

which further yields V (e) ≤ V (e0)e
−θ. According to

some trivial calculations, we conclude that ‖r(e) − s̃(e)S̄‖
exponentially converges to zero.

Equation (17) is a nonlinear mapping s̃∗ ∈ C(E) : E →
R where the initial edge vector e0 together with the shape

vector S in the nonlinear control law (17) uniquely determine

the stable scale s̃∗f for the prescribed shape S.

It can be proved that by adding additional control gains at

the beginning of the control law (11), the stable scale value

s̃∗f could be restrained within an interval [19].

The advantages brought by time-varying scale function

over constant scale are validated by three UAVs formations

demonstrated in the next section.

IV. QUADROTORS FORMATION FLIGHT

We apply the control algorithms on a typical kind of UAV,

the AirRobot as shown in Fig. 4. The AirRobot is a quad-

rotor electrical helicopter with four propellers and a camera.

We observe their performance on the Urban Search And

Rescue Simulation (USARSim) Platform. Based on the game

engine of Unreal Tournament 2004 (UT2004), USARSim

is designed as a high fidelity simulation of Urban Search

And Rescue (USAR) robots and environments intended as

a research tool for the study of Human-Robot Interaction

(HRI) and multi-robot coordination. USARSim supports HRI

by accurately rendering user interface elements (particularly

camera video), accurately representing robot automation and

behavior, and accurately representing the remote environ-

ment that links the operator’s awareness with the robot’s

behaviors. It has been expanded to support many diverse

environments including the DARPA urban challenge, robotic

soccer, submarines, humanoids and helicopters.

The workspace of AirRobots is Schönflies space, which

is isomorphic to SO(2) ⊗ R3. In this paper we validate

the algorithms by letting all AirRobots fly at a constant

height of 20m, and thus the problem is reduced to a

2D problem as analyzed in previous sections. We add to

each AirRobot a GroundTruth sensor for getting the global

coordinates, which can measure position and orientation. The

main performances of the AirRobots are listed as follows.

• Dimension(L/W/H): 0.999m/0.999m/0.194m
• Maximum linear/lateral velocity: 5 m/s

(a) The prototype of the AirRobot (b) Simulated AirRobot in USARSim

Fig. 4: The AirRobot from AirRobot Co.

(a) t = 0sec,z = z0

{‖ei‖} = {3.04, 1.12, 4}
(b) t = 4.23sec

{‖ei‖} = {1.03, 1.5, 0.82}

(c) t = 9.45sec

{‖ei‖} = {1.36, 1.23, 0.98}
(d) t = 48.2sec

{‖ei‖} = {1.14, 1.13, 1.15}

Fig. 5: Snapshots of AirRobots in formation

The kinematics of a single AirRobot was already imple-

mented in the USARSim platform with flight stabilization

control produced by AirRobot Co., thus in the experiments,

we focus on their dynamic model, i.e., the velocity of the

mass center of each AirRobot. In order to demonstrate the co-

operative performance, the convergence process is extended

over time by letting each AirRobot move at a constant speed

of 0.4m/s along x axis and y axis respectively. The position

of each AirRobot and the control signals are sampled at a

time interval of 0.03s.

The initial positions of the three AirRobots are z =
[0; 0; 3; 0.5; 4; 0] and the desired shape is an equilateral

triangle denoted by S = [
√
2;
√
2;
√
2].

The snapshots of the three AirRobots with the time-

varying scale function are demonstrated in Fig. 5. The

white dots in the pictures are the three AirRobots. Their

trajectories are depicted in Fig. 6(a). The time varying scale

function converged to s̃∗f = 0.32 in less than 9 seconds (1

step=0.03sec).

For system with a time-invariant scale function, the opti-

mal value is calculated at s∗c = 2.21 and the trajectories of

the three AirRobots are shown in Fig. 6(b).

In order to show that the time varying scale function

results in better cooperative performance than the constant

case, we set sc ≡ 0.32, which equals to s̃∗f given above,

and the trajectories are depicted in Fig. 6(c). The three

AirRobots did not converged to a equilateral triangle at

t = 18sec. Actually it took approximately 30sec for them

to get stabilized. The cost values under the three cases are

Jv|s∗
c
=2.21 = 506.80, Jv|s̃∗ = 25.76 and Jv|sc=0.32 = 1350

4832
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Fig. 6: Three AirRobots formations during t = [0, 18]sec
and the curve of the scale function
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Fig. 7: The inverse of DOS over time

respectively, which validates the conclusion that time varying

scale function provides the system with smaller cost value

than that of a constant scale. The dynamic of the time-

varying scale function is shown in Fig. 6(d).

The inverse of the geometries DOS with respect to the

equilateral triangle are shown in Fig. 7. The DOS under time

varying scale (red line) converged fast and reached the stable

value in a relatively short period of time, which indicates that

the geometries during convergence have higher DOS to the

equilateral triangle. For the constant scale case, it took either

a long time to reach the stable point, as for sc ≡ 0.32, or

had a bad formation performance during convergence, as for

s∗c = 2.21. Due to the inertness of the AirRobot, there were

some slight oscillations during convergence.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we discussed how to determine the scale of

a triangular geometry of a formation system. A cost function

that corresponds to the geometries DOS during the conver-

gence was carefully selected. For a group of agents aiming to

attain a formation with only shape constraints, we designed

the fixed-structured control law and the scale function that

ensure the exponential convergence of the three agents to the

desired shape. This is a further optimization of the case with

a constant scale. The advantages brought by time-varying

scale function were validated on three AirRobots in the

UASRSim platform, and the feature of the cost function was

observed from the experiments.

The triangle ensures the compact form of the partial differ-

ential of the value function L due to the cosine law. However,

when the number of UAVs exceeds three, this property may

not always hold true. In order to generate a similar formula,

we found out defining a triangular complement graph is the

key to the extension. Interested readers are referred to [19]

for details.
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