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Abstract— We pursue a spectral and graph-theoretic perfor-
mance analysis of a classical estimator for Markov-chain steady-
state probabilities. Specifically, we connect a performance
measure for the estimate to the structure of the underlying
graph defined on the Markov chain’s state transitions. To do
so, 1) we present a series of upper bounds on the performance
measure in terms of the subdominant eigenvalue of the state
transition matrix, which is closely connected with the graph
structure; 2) as an illustration of the graph-theoretic analysis,
we then relate the subdominant eigenvalue to the connectivity
of the graph, including for the strong-connectivity case and
the weak-link case. We also apply the results to characterize
estimation in Markov chains with rewards.

I. INTRODUCTION

Markov chains have proved useful for modeling stochas-

tics in a very wide range of application areas. Unfortunately,

many Markov chain models in real applications are “hidden”

from outside (i.e., the full transition matrix is unknown, or

some part of the matrix is unknown), or the updating rules

are very complex (i.e., the number of states is very large),

both of which make it impossible or difficult to directly

analyze the Markov chain model. Therefore, a broad class of

inference problems for Markov chains have been intensively

studied [1]–[4]. Within this class of inference problems,

the problem of estimating the steady-state probabilities of

a Markov chain is often of particular interest, because the

asymptotic behavior of a Markov chain must be characterized

in a wide range of applications. This article is concerned with

the steady-state probability estimation problem for ergodic

Markov chains.

A rich literature has been specifically dedicated to the

steady-state estimation problem [5]–[10]. For instance, many

estimators for the steady state of a Markov chain have been

proposed and thoroughly analyzed [11], [12]. Of particular

interest to us, several efforts have sought to characterize

the performance of common steady-state-probability esti-

mators, including specifically estimators based on sample

state-occupancy frequencies. Specifically, these estimators’

performances can be related to long-run time averages or

central-limit theorems for Markov chains, and in this way the

performance can be connected with Markov chain metrics.

For instance, in the recent work [13], Doyle summarizes

some results for the Kemeny constant (or the seek time from

any initial state to the steady state) of an ergodic Markov
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chain, and presents a connection between the Kemeny con-

stant and the central limit theorem (CLT) for Markov chains.

From an entirely different perspective, performance analysis

of steady-state probability estimators has been motivated

by the importance of Markov chains in simulations (e.g.,

MCMC). In this context, steady-state probability estimator

performance has been related to some extent to the spectrum

of the Markov chain’s transition matrix [14]–[16]. We note

that the convergence rate of a Markov chain and the mixing

time to the steady state have also been frequently studied

[20], [21] in the context of MCMC simulations.

Here, we revisit the Markov chain steady-state-probability

estimation problem, but take a new graph-theoretic perspec-

tive. Specifically, we relate the underlying graphical topology

of the Markov chain (i.e., the graph associated with its state

transitions) to the state-occupancy-frequency-based steady

state estimator and its performance (as measured by its error

covariance). As a further step, we also apply the results to

Markov chains with rewards, in particular giving spectral

and graphical characterizations of expected reward estimator

(or, equivalently, of sample-average reward values). Although

the estimators themselves are already well known, spectral

and graphical characterizations of performance are valuable

in that they provide broad intuition into estimator struc-

ture/design without requiring specific knowledge of model

parameters. Such a connection is sensible and meaningful

for several reasons, including because graphical structure of

state transitions is often more available than actual transition

probabilities in many applications (especially for a Markov

chain requiring estimation or one with a large number

of states); because graph-based analyses can provide more

accurate bounds than other methods in predicting certain

behaviors of a Markov chain; and because graph-theoretic

analysis and in turn proper graphical design can help us

achieve desired asymptotic inference properties.

Of note, the steady state estimation problem studied here

is in fact connected to a broad class of recent work on

network estimation and estimator performance analysis (see

e.g. [22], [23]). Also, we stress that the results here have

specific application in several domains, including in char-

acterizing Markov Chain Monte Carlo methods, queueing-

network analysis, jump-Markov modeling, and network con-

trol (see e.g. [18]). We omit the details of these connec-

tions/applications in the interest of space, and ask the reader

to see [31].

The rest of the article is organized as follows. In Sec-

tion II, we formulate the steady-state-probability estimation

problem for Markov chains in generality, and introduce a
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classical unbiased estimator and its performance analysis. In

Section III, we give a full eigenstructure-based analysis for

the performance measures (Section III-A); we then present

several graphical results on the estimator performance based

on the spectral results (Section III-B). We also enhance the

development for the reward-inference application (Section

IV).

II. PROBLEM FORMULATION

In this section, we first review the Markov chain steady-

state-probability estimation problem (Section II-A). We then

invoke a classical unbiased estimator for this problem, and

present algebraic expressions for two performance measures

of the estimator (Section II-B).

In the remainder of the article, we limit ourselves to

discrete-time, finite-state ergodic Markov chains (i.e., ones

that are irreducible and aperiodic), which are very com-

mon models in applications requiring steady-state probability

estimation (see e.g. [24] for an effort in the infinite-state-

space case). We note that state occupancy probabilities for

ergodic finite-state Markov chains necessarily approach fixed

constants asymptotically, i.e. the probabilities have a steady-

state.

A. Markov Chain Steady State Estimation: Overview

We consider a discrete-time ergodic Markov chain with m

states, labeled 1, · · · , m. Let the matrix D ∈ Rm×m be the

state transition matrix of the Markov chain. We refer to the

i, jth entry of D, di j, as the transition probability from state

i to state j. We note that D is a row-stochastic matrix here.

Moreover, we define a graph G for this Markov chain, as is

classical in the study of Markov chains [25]. We consider a

weighted and directed graph G consisting of m nodes, each

of which represents one state of the Markov chain. Between

any ordered pair (i, j) of the nodes, a directed edge is drawn

from node i to node j if and only if di j > 0, and the edge

is given weight di j. The Markov chain’s state is assumed to

evolve along a discrete time axis k= 0,1, . . ., according to the

specified transition probabilities. For notational convenience,

here we use a 0− 1 indicator vector s[k] (referred to as the

state vector) to represent the state at time k. That is, if the

state at time k is i, the state vector s[k] has ith entry equal to

1 and is zero elsewhere. We also define a probability vector

p[k] which specifies the state occupancy probabilities of the

Markov chain at each time k; we note that p[k] = E[s[k]].
Finally, we use the notation π = [π1, · · · ,πm]

T to represent

the steady state probability vector of the ergodic Markov

chain, i.e. π = lim
k→∞

p[k].

We will study the problem of estimating the steady-

state probabilities of the Markov chain, from observations

of its state. Specifically, let us assume that the Markov

chain’s transition matrix is unknown, or that the steady-state

probabilities or statistics defined thereof are too cumbersome

to compute analytically for the Markov chain. Instead, the

steady-state probabilities must be obtained from observations

of the state. Let us also assume that we are able to observe the

state of the Markov chain at each time over a time-interval

of N steps, i.e. we observe s[k] for k = 1, · · · ,N. We are con-

cerned with estimation of the steady-state probability vector

π of the Markov chain from the sequence of observations

s[1], · · · ,s[N], and evaluation of the estimator’s performance

in terms of the graphical structure of G. That is, we seek to

construct an estimate p through a functional mapping from

the observation sequence, and further to characterize the error

in this estimate in terms of the graph structure. We refer

this estimation problem as the Markov chain steady state

(MCSS) estimation problem.

The MCSS estimation problem has been thoroughly stud-

ied, and numerous estimators have been developed for the

problem. However, our main focus is on the graphical char-

acterizations of the estimator and its performance. Therefore,

we focus on the classical unbiased estimator for the MCSS

estimation problem, and pursue extensive spectral and graph-

theoretic characterization of this estimator. We introduce the

estimator, and develop its basic performance analysis, in the

following subsection.

B. Estimator and Performance Measures

Let us first recall a classical estimator for the MCSS

estimation problem, that we will use in our development:

p = 1
N ∑N

k=1 s[k]. That is, the estimator simply averages all

the available states to form the estimate p, or in other words

estimates each state’s asymptotic probability as the frequency

that the Markov chain is in the state during the observation

period. More details about this sample-frequency-based esti-

mator can be found in [12]. Of particular note, the sample-

frequency-based estimator is asymptotically optimal, in the

sense that its performance approaches the Cramer-Rao bound

in the limit of large N.

We will characterize the performance of this estimator,

under the assumption that the Markov chain is initially in

steady state, i.e. the state occupancy probabilities at the

initial time, p[0], are equal to the steady-state probabilities

π . We focus on this special case 1) because unknown

Markov processes in the environment typically satisfy this

assumption, and 2) to explicitly delineate the role of the

data stochasticity in estimator performance as compared to

the role of the settling to steady-state (or mixing). Even in

cases where a Markov chain is not in steady-state when

observations are commenced (such as in the MCMC ap-

plications), this assumption is often not greatly limiting

because: 1) the mixing time of the Markov chain is well

characterized (including in terms of the graph structure)

and is usually small compared to the estimation time [14],

[15]; and 2) in fact algorithms for perfect mixing within

a small number of steps can be designed in a range of

computational applications. It is worth noting that a range

of MCMC applications in which rare events are captured

require use of slowly-mixing chains; while in some of these

cases settling is still relatively fast compared to steady-state

probability estimation, the conditions for fast mixing and

fast estimation are distinct (as our results show) and indeed

mixing rather than steady-state probability computation may

be the dominant temporal constraint. We caution that the
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mixing-time analysis must be considered with care in these

cases (e.g. by drawing on [14], [15]); we hope to return

to this issue in future work, but do not consider it further

here in the interest of focusing on steady-state probability

estimation.

Under the assumption that the initial state occupancy

probabilities are the steady-state ones, it can be easily

shown that E[p] = π for any Markov chain and any N,

thus indicating that the estimator is unbiased. Here, we will

consider two sensible (and classical) performance measures

for the estimate p, namely its error covariance matrix

COV (defined as E[(p−π)(p−π)T ]) and the expected total

squared error (defined as E[(p−π)T (p−π)]). We note that

the expected total squared error is equal to the trace of the

covariance matrix, and so we use the notation tr(COV ) for

it. Before we derive expressions for the two performance

measures COV and tr(COV ), for convenience’s sake, let us

define the following diagonal matrix here: ∆ = diag{πi},

i = 1, · · · ,m.
Let us develop an expression for the error covari-

ance matrix COV first, as follows: COV = E[(p − π)(p−
π)T ] = E[ppT ]− ππT = E

[(

1
N ∑N

k=1 s[k]
)(

1
N ∑N

k=1 sT [k]
)]

−

ππT = 1
N2 E

[(

∑N
k=1 s[k]

)(

∑N
k=1 sT [k]

)]

−ππT . We also have

E[s[k]sT [ j]] =







∆, for k = j;

(DT )k− j∆, for k > j;

∆D j−k, for k < j.

With a little alge-

braic effort, we can rewrite COV in the following form:

COV

=
1

N2
E
[N−1

∑
r=1

N−r

∑
k=1

s[k]sT [k+ r]+
N−1

∑
r=1

N−r

∑
k=1

s[k+ r]sT [k]

+
N

∑
k=1

s[k]sT [k]
]

−ππT

=
1

N2

[

N−1

∑
r=1

(N − r)∆Dr +
N−1

∑
r=1

(N − r)(DT )r∆+N∆

]

−ππT .(1)

Based on the expression for the error covariance matrix,

the total squared error tr(COV ) can be automatically written

as: tr(COV ) = 1
N2

(

2∑N−1
r=1 (N − r)∑m

i=1 eiD
reiπi +N

)

−πT π .

We have thus presented algebraic expressions for a sample-

frequency estimator of a Markov chain’s steady-state proba-

bilities, and for two performance measures of the estimator.

III. GRAPHICAL RESULTS ON MCSS ESTIMATION

In this section, we first give an eigenstructural analysis

of the performance of the MCSS estimator. Then, based

on this spectral performance analysis, we develop several

graph-theoretic bounds on the performance by exploiting

relationships between the non-unity eigenvalues and their

associated eigenvectors and the graph topology. We note

that eigenstructural and consequent graphical characteriza-

tions have been obtained comprehensively for Markov chain

mixing times [14], [15], but to the best of our knowledge a

comprehensive study of MCSS estimation in this direction

has not been attempted. We point the reader to [13], [20],

[21] for relevant preliminary work (which comes from the

MCMC and MC CLT literature).

A. Spectral Performance Analysis

Before presenting the spectral analysis, let us clarify sev-

eral notations. Let us again consider an ergodic Markov chain

as described in the MCSS estimation problem, and invoke

the MCSS estimator introduced above. Let λ1 = 1,λ2, · · · ,λm

be the m eigenvalues of the transition matrix D, ordered for

convenience in increasing distance from the point 1+ j0 in

the complex plane (i.e., so that |1− λ1| < |1− λ2| ≤ · · · ≤
|1 − λm|). In developing graph-theoretic bounds, we will

actually find it convenient to perform the spectral analysis

in the case that the eigenvalues of D are simple (in Jordan

blocks of size 1), and to subsequently argue that the bounds

encompass the general case through a perturbation analysis.

In the simple-eigenvalue case, each λi has an associated right

eigenvector and a left eigenvector, which we call vi and wT
i ,

for i= 1, · · · ,m. Since D is the transition matrix of an ergodic

Markov chain, the unity eigenvalue λ1 = 1 is unique and

strictly dominant, with v1 =~1 and w1 = π > 0, where ~1 is

a column vector with all unity entries. Let us also define

matrix V =
[

v1 · · · vm

]

, matrix W =
[

w1 · · · wm

]T
,

and matrix Λ = diag{λi} (and where W =V−1 also). Then,

we immediately have D =VΛW .

Now, we are ready to use the eigendecomposition of

matrix D to analyze the estimator performance in the case

that eigenvalues are simple. Specifically, in the expres-

sion for COV (Equation 1), the two summation terms can

be rewritten as follows: ∑N−1
r=1 (N − r)∆Dr = ∆∑N−1

r=1 (N −
r)V ΛrW = ∆V

(

∑N−1
r=1 (N − r)Λr

)

W = ∆VBW , and similarly

∑N−1
r=1 (N − r)(DT )r∆ =W T BV T ∆, where B is a diagonal ma-

trix diag{βi}, with β1 =
N(N−1)

2
and βi =

λ N+1
i −Nλ 2

i +(N−1)λi

(1−λi)2 ,

for i = 2, · · · ,m.

Let γi =
βi

N2 +
1

2N
, for all i, and Γ = diag{γi}. We then can

rewrite the matrix COV as follows:

COV = ∆V ΓW +W T ΓV T ∆−ππT . (2)

Moreover, noticing that β1 =
N(N−1)

2
and γ1 =

β1

N2 +
1

2N
= 1

2
for all N, we can obtain an expression for COV that more
explicitly reflects its eigenstructure. In particular, COV now
becomes the following:

COV = ∆V ΓW +W T ΓV T ∆−ππT

=
m

∑
i=1

γi(∆viw
T
i +wiv

T
i ∆)−ππT

=
m

∑
i=2

γi(∆viw
T
i +wiv

T
i ∆)+

(

1

2
∆~1πT +

1

2
π~1T ∆−ππT

)

=
m

∑
i=2

γi(∆viw
T
i +wiv

T
i ∆), (3)

where γi =
λ N+1

i −Nλ 2
i +(N−1)λi

N2(1−λi)2 + 1
2N

, i = 2, · · · ,m.

Using the expression for COV , the second performance
measure tr(COV ) can be expressed as follows (in the case
that the eigenvalues of D are simple):

tr(COV ) =
m

∑
i=2

2γitr(∆viw
T
i ) = 2

m

∑
i=2

γi

(

m

∑
j=1

vi jwi jπ j

)

, (4)

where vi j and wi j are the jth entry in right eigenvector vi

and left eigenvector wi.
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As a preliminary step in characterizing the error covari-

ance, let us study the asymptotics of the covariance (i.e., the

value of COV as N → ∞). Since Γ →

[

1
2

0

]

as N → ∞, we

have COV = 1
2
∆v1wT

1 + 1
2
w1vT

1 ∆−ππT . Noting that v1 =~1

and w1 = π , we have COV → 1
2
∆~1πT + 1

2
π~1T ∆ − ππT =

0. Thus, as expected, the estimate becomes increasingly

accurate as more data is used; in fact, it is easy to check

that asymptotically the error covariance decreases with 1
N

,

see also e.g. [20].

The core question of interest to us is how the performance

of the estimator—i.e., the rate of convergence of the error to

nil—depends on the graphical structure of the Markov chain.

Equation 3 and Equation 4 provide a route for connecting

the estimator performance to the underlying graph structure

defined from the transition matrix D, because the non-unity

eigenvalues/eigenvectors of D can be connected to the graph

structure using algebraic graph theory constructs. In the

following part of this section, the graphical characterizations

are developed by first developing simpler bounds in terms of

particular eigenvalues, and then exploiting the connections

between eigenvalues and graph structure.

We note that the above analysis can easily be extended to

the case that some non-unity eigenvalues of D are not simple

(i.e., are in Jordan blocks of size 2 or larger). We kindly ask

the reader to see [31] for the details, which are essentially

similar to the simple-eigenvalue case but are needed for

proofs of subsequent theorems.

B. Main Results

Let us here focus on developing spectral and graphical

bounds for the total squared error measure, tr(COV ), since

1) the trace measure aggregates the error covariance per-

formance information into a single, useful scalar; and 2) it

permits a more comfortable analysis, which can naturally be

generalized to the matrix case. In the interest of space, we

omit all the proofs. Please see [31] for the proofs.

First, let us develop general lower and upper bounds for

tr(COV ), in terms of the eigenvalues of the state transition

matrix. We then modify these general bounds in order to

relate them to the second largest eigenvalue of matrix D.

Here is the first theorem, which presents the general bounds.

Theorem 1: We consider the MCSS estimation problem

described above. The trace of the error covariance matrix

can be bounded as 2πmin ∑m
i=2 γi ≤ tr(COV )≤ 2πmax ∑m

i=2 γi,

where πmin = min j

{

π j

}

, and πmax = max j

{

π j

}

, for j =
1, · · · ,m.

Next, building on Theorem 1, we focus on developing

upper bounds on tr(COV ) that are phrased in terms of the

“second-largest” eigenvalue λ2 of the transition matrix D

(i.e., the non-unity eigenvalue that is closest to 1+ j0 in

the complex plane); many relationships between this second-

largest-magnitude eigenvalue and the network’s topological

structural are known, and so these bounds provide a stepping-

stone toward graph-theoretic analysis. We begin with a basic

upper bound on tr(COV ) in terms of the second largest

eigenvalue, that is applicable to all ergodic Markov chains.

Theorem 2: We consider the MCSS estimation problem

described above. Then the trace of the error covariance

matrix can be bounded as tr(COV )< 2(m−1)
N|1−λ2|

+ 4(m−1)
N2|1−λ2|2

.

Let us make several observations about the obtained

bound. First, for large N, we note that squared error is

inversely proportional to N, with the proportionality constant

depending on the distance of λ2 from 1. Meanwhile, the term

scaling with 1
N2 is negligible for large N, but may contribute

significantly to the error for small N, if λ2 is near 1. It is

interesting to note that the bound depends on the distance of

λ2 from 1, not the distance of the eigenvalues from the unit

circle.

Also of interest, for many classes of Markov chains, the

entries in the steady-state probability vector πi can be upper

bounded away from 1. The reader is referred to Minc’s

classical work [26] as well as the more recent work [27] for

examples. For these cases, we note that a tighter bound on

the performance measure in terms of the immediately follows

from Theorem 1: tr(COV )< (maxi πi)(
2(m−1)
N|1−λ2|

+ 4(m−1)
N2|1−λ2|2

).

Next, let us present a series of results for several special

classes of Markov chains. We first consider the case where

the eigenvalues of the matrix D are real. This class is

of particular interest because it includes reversible Markov

chains. For this case, we obtain a tighter bound:

Theorem 3: Let us assume that the Markov chain de-

scribed in the MCSS estimation problem has a state transition

matrix whose eigenvalues are all real. Then the trace of

the error covariance matrix can be bounded as tr(COV ) <
2(m−1)

N(1−λ2)
− m−1

N
+

4(m−1)

N2(1−λ2)2 .

For the real eigenvalue case (and hence the reversible

case), the bound in Theorem 3 may yield a significant

improvement over the bound in Theorem 2 when N is

small. Next, by building on the bound in Theorem 3, we

obtain an even tighter bound in the case that the Markov

chain’s transition matrix is symmetric. We note that, if a

Markov chain’s transition matrix is known to be symmetric

(i.e., the eigenvalues are simple), estimation of the steady

state probabilities from data is not of interest, since the

steady-state probabilities are already known to be identically
1
m

. However, the following bound is interesting in that is

shows how accurately the steady-state probabilities would

be obtained if the chain happened to be symmetric, even

though it was not known to be so.

Theorem 4: We consider the Markov chain described in

the MCSS problem. Here, we assume that the state transition

matrix D is symmetric. Then, the trace of the error covariance

matrix can be bounded as tr(COV ) <
2(m−1)

mN(1−λ2)
− m−1

mN
+

4(m−1)

mN2(1−λ2)2 .

Remark: The above result holds, more broadly, whenever

the transition matrix is doubly stochastic.

We also provide a tighter bound in the case that the

Markov chain has only two states. We note that the two-

state case is particularly common in many applications (e.g.,

in communications applications).

Theorem 5: Consider the MCSS estimation problem, for

a Markov chain with two states (m = 2). The performance
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measure tr(COV ) can be bounded as tr(COV )< 1
2N(1−λ2)

−
1

4N
+ 1

N2(1−λ2)2 .

Remark: The above analyses/bounds on the performance

measures also automatically yield bounds on the probability

that the estimate deviates by a large amount from the true

value, through the Chebyshev inequality. In the asymptotic

case (N large), the CLT results for Markov chains further

show that the estimate error is normally distributed, and so

much tighter bounds on the probability of large deviation

can be obtained, see e.g. [13] for some other results of this

form.

In sum, we have shown that, for any fixed time N, tr(COV )
becomes small (since the performance bound becomes small)

when the other eigenvalues of D are far away from the

unity eigenvalue. These results provide a foundation for

connecting the performance (or at least performance bound)

with the graph-structural features of the Markov chain. A

very wide range of results already exist, and many more

can be imagined, that relate the Markov chain’s graph

structure with the subdominant eigenvalue λ2, and hence

with the estimator’s performance. Here, let us only pursue

a couple such results, with the primary aim of showing that

highly connected Markov chains enjoy fast estimation. These

graphical characterizations are all fundamentally based on

showing the closeness or distance of λ2 from unity in the

complex plane. We build the first result using the following

lemma (please see [28] for the detailed proof):

Lemma 1: For a stochastic matrix D = {di j},

the non-unity eigenvalues can be bounded as

|λ | ≤ 1
2 ∑m

k=1 maxi, j |dik − d jk|.

Lemma 1 indicates an upper bound on |λi|, for i =
2, · · · ,m, in terms of column-entry differences in D. We see

that, when the graph is strongly connected, especially when

the edge weights are evenly distributed, the bound turns out

to be small. Hence, the second largest eigenvalue, as well as

all the other non-unity eigenvalues, are far from unity, which

also makes the upper bound on tr(COV ) in Theorem 2 small.

In other words, strong connectivity of the graph defined on

D makes the estimation easier, since transitions to all states

are more frequent and temporally uncorrelated, and hence

the data contains more information for estimation.

Unfortunately, the result based on Lemma 1 is fairly

restrictive, in that it requires that all pairwise differences in

a column of D are small. The following alternate characteri-

zation shows that λ2 is not too close to 1 as long as products

of probabilities between nodes are not too small.

Theorem 6: Consider an ergodic Markov chain described

as in the MCSS estimation problem. We assume that, in the

underlying directed graph G defined by the state transitions,

the product of edge weights along a shortest path between

any pair of vertices is lower bounded by some positive

constant q. Then, the non-unity eigenvalues of D can not

be close to 1 if q is large.

Our graph-theoretic results thus far have shown that strong

connectivity in a Markov chain’s graph implies relatively

good estimator performance. It is reasonable to conjecture

that weakly connected Markov chains may display poor

estimator performance. However, the performance analysis of

weakly-connected chains turns out somewhat more intricate.

In particular, one can show that the non-unity eigenval-

ues of D are near 1 if and only if the Markov chain is

weakly connected, and so indeed the bounds developed above

become large for weakly-connected chains [29]. However,

weakly connected chains can be constructed such that the

estimator performance is good (even though the subdominant

eigenvalue is near 1); we omit the details.

So far, we have used the spectral upper bounds to relate

the total squared error performance measure to the Markov

chain’s graph in limiting cases, i.e. for strong or weak con-

nectivities. While these strong- and weak- connectivity cases

are often of particular interest in engineering applications,

it is worth noting that the bounds on λ2, as well as the

exact expression for tr(COV ), can be related to a variety

of other graph features using results from algebraic graph

theory. We omit the details to save space: please see [31] for

these details.

IV. APPLICATION: AVERAGE REWARD ESTIMATION

In this part, we briefly discuss an enhancement of the

estimator and performance-measure computations for the

MCSS estimation problem, to the case of Markov chains

with rewards. Specifically, noting the interest in estimating

expected rewards from data in numerous applications [17]

(and also noting the similarity of this problem with the

statistics-computation problem for Markov Chain Monte

Carlo, or MCMC), we find it useful to develop and evaluate

an estimator for expected rewards.

Again, we consider the same ergodic Markov chain pur-

sued in the MCSS estimation problem. In addition, we

assume that the Markov chain has a reward vector r ∈ Rm,

where the ith entry in r, ri, represents an accumulated reward

when the Markov chain enters state i. Obviously, the average

reward per unit time can be represented as rss = rT π . For

the reward case, suppose that we are interested in finding

an estimator for the average reward per unit time (again for

an unknown Markov chain), from measures of the actual

rewards r[k] = rT s[k] at times k = 1, · · · ,N.
A classical unbiased estimator for the average reward

assuming that the chain has reached steady-state is r̄ =
1
N ∑N

k=1 r[k] = 1
N ∑N

k=1 rT s[k] = rT
(

1
N ∑N

k=1 s[k]
)

= rT p. The
error variance of this estimate r̄, which we call Cr, can
straightforwardly be obtained and related to the error co-
variance COV for MCSS estimator:

Cr = E[(r̄− rss)(r̄− rss)
T ]

= E[rT (p−π)(p−π)T r]

= rT E[(p−π)(p−π)T ]r

= rTCOV r. (5)

Thus, we see that the performance computation for the

reward case (Equation 5) is very similar to the one for

the MCSS estimation problem. The series of algebraic and

graphical characterizations of COV developed in Section

III can also be applied for the reward case. However, an
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interesting difference here is that the reward vector r plays a

role of scaling/averaging the entries in the error covariance

matrix COV . If r can be chosen flexibly, its choice also has

an influence on the estimation performance. For example,

if r is chosen as vector [1,0, · · · ,0]T (i.e., reward is only

considered when state 1 is hit), Cr equals the top-left entry

in COV . Meanwhile, if r is (approximately) ~1 (i.e., the

reward is identical or nearly identical in each state), r̄ is

(approximately) constant and hence Cr is (close to) zero.

Let us present one result that illustrates and quantifies the

role of the reward vector r in determining the estimator’s

error variance. For this first result, we limit ourselves to

the case that the Markov chain’s graph is undirected (i.e.,

the state transition matrix D is symmetric). Then, in the

following theorem, we identify the maximum possible value

of the error variance of the estimate r̄ (Cr), with respect to

all possible normalized reward vectors. Here is the theorem:

Theorem 7: We consider an ergodic Markov chain just

as in the MCSS estimation problem, and assume that the

state transition matrix D is symmetric. Then, the maximum

possible error variance of the unbiased estimator r̄ for the

average reward among all normalized reward vectors is

maxrs.t.‖r‖=1 Cr =
2γ2

m
, where γ2 =

λ N+1
2 −Nλ 2

2 +(N−1)λ2

N2(1−λ2)2 + 1
2N

. A

reward vector that achieves the maximum is r = v2, where

v2 is any normalized eigenvector of D associated with the

eigenvalue λ2.

The above result bounds the variability of the expected

reward estimate at each time-step N in terms of only the

eigenvalue λ2 of D (in the symmetric case), and shows that

the reward vector that maximizes the estimate’s variability

is proportional to the eigenvector of D associated with λ2.

In fact, the eigenvalue λ2 of D is intimately related to

the graph’s connectivity, and hence we can obtain graph-

theoretic characterizations of reward estimation performance

directly. Please see [31] for details.

REFERENCES

[1] J. L. Gauvain, “Maximum a posteriori estimation for multivariate
Gaussian mixture observations of Markov chains,” IEEE Transactions

on Speech and Audio Processing 2, pp. 291-298, 1994.

[2] S. T. Garren and R. L. Smith, “Estimating the second largest eigen-
value of a Markov transition matrix,” Bernoulli, vol. 6, no. 2, pp.
215-242, April 2000.

[3] L. E. Baum and T. Petrie, “Statistical inference for probabilistic
functions of finite state Markov chains,” The Annals of Mathematical

Statistics, Vol. 37, No. 6, pp. 1554-1563, Dec., 1966.
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