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Abstract— This paper concerns the design of path following
controllers for mechanical systems. Our method is to find a co-
ordinate and feedback transformation that puts the mechanical
system in a convenient form for path following control design. In
this form, linear and controllable subsystems govern motions
toward and along the path. We choose a particular “virtual
output” to perform input-output feedback linearization, and
characterize when this virtual output can be used. We apply this
technique to a planar five-bar linkage robot, and implement it
experimentally, highlighting behaviour fundamentally different
from standard tracking control. In simulation, we further
illustrate our approach on an underactuated five-bar robot with
a flexible link.

I. INTRODUCTION

Machining [1], exercise and rehabilitation equipment,

human-robot interaction [2] and obstacle avoidance [3] are

examples where the specified output of a mechanical system

must follow a prescribed path. For these types of appli-

cations, path following controllers, as opposed trajectory

tracking controllers may be more appropriate. A trajectory

tracking controller parameterizes the desired path using time

and then eliminates the tracking error. Even if the output

of the mechanical system lies on the path, but the tracking

error is large, the feedback controller may drive the output

off the path. This is clearly undesirable in, for instance,

machining applications. This situation may arise due to

unmodeled disturbances, improper initialization, or, when the

reference trajectory is moving too quickly along the path.

Alternatively, path following controllers do not rely on a

priori parameterizations of the desired path and can ensure

that, if the output is on the path, it remains on the path

for all future time. In this paper we present experimental

and simulation examples of an approach to designing path

following controllers that builds on the approach in [4] and

is applicable to a large class of mechanical systems.

Path following for general control systems has been stud-

ied elsewhere. In this paper, instead, we study path following

for mechanical systems and briefly present relevant literature.

Path-constrained trajectory planning was proposed to suit-

ably “slow down” trajectories so that they are feasible for

given robotic manipulators to follow [5]. Contour following

is common in the control of machine tools, where the control

objective is to closely follow a path [1]. In these approaches,

ultimately time-parameterized trajectories must be imple-

mented for control, meaning unmodeled disturbances and/or

improper initialization may cause a departure from the path.
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An approach to designing path following controllers is to

parameterize the desired path, then use the parameterization

as a reference signal just as one would in trajectory tracking;

however, the velocity of the reference point is treated as an

extra control input, thus allowing the parameterization of the

desired motion along the path be altered [6]. This method

does not guarantee that the output stays on the path for all

time. Conversely, the use of virtual holonomic constraints for

path following does guarantee that the output stays on the

path, as illustrated in an application to a forestry crane [7].

We treat path following as an instance of set stabilization.

This approach is explored in [2], [4], [8]. We use the main

results of [10], valid for general mechanical systems, to

design path following controllers for robotic manipulators.

II. PATH FOLLOWING CONTROL DESIGN

Given a mechanical system and a desired path defined

in its output space, the control objective is to design a

feedback controller that makes the output of the closed-

loop system approach and traverse the path. Additionally we

require output invariance of the path, i.e., if the system’s

output starts on the path with initial velocity tangent to it,

then it remains on the path for all future time. Finally, given

enough actuation, the controller must impose desired motion

of the closed-loop mechanical system on the path itself.

The approach in [4], [9] ,is attractive for designing path

following controllers because it guarantees output invariance

of the path and because it decomposes the design process

into two stages. In stage one we design a controller to make

the output approach and stay on the path and in stage two we

design a controller to achieve the desired motion on the path.

The key difference between this work and previous work is

that for mechanical systems it is possible to greatly simplify

stage two, provided the system has sufficient actuation.

A. Class of systems

The Euler-Lagrange equations of an N degree-of-freedom

(DOF) mechanical system are commonly written as

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (1)

where q = col (q1, . . . , qN ) are generalized configuration

coordinates and τ ∈ R
N is the vector of generalized forces,

or inputs, acting on the system. For standard mechanical

systems, under reasonable assumptions, the generalized mass

matrix M(q) is positive definite, and therefore invertible. In

order to convert (1) into state space form and to distinguish

between configuration and velocity states, let xc := q, xv :=
q̇, and x := (xc, xv) = col (xc1 , . . . xcN , xv1

, . . . , xvN
) =

col (q1, . . . , qN , q̇1, . . . q̇N ). Define n := 2N and treat the
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state x as an element of R
n. We do not yet make any

assumptions about the degree of actuation of the mechanical

system. Hence τ has 0 ≤ m ≤ N independent applied forces.

Define gv(xc)u := M−1(xc)τ , where gv(xc) ∈ R
N×m and

u ∈ R
m. Finally, set fv(x) := −M−1(xc)C(xc, xv)xv −

M−1(xc)G(xc), where fv(x) ∈ R
N×1. With these defini-

tions, the equations of motion in state space form are

ẋ = f(x) + g(x)u :=

[

xv

fv(x)

]

+

[

0N×m

gv(xc)

]

u, (2)

where f : Rn → R
n and g : Rn → R

n×m are assumed to be

smooth. The output of (2) is the variable we are interested

in controlling. We restrict the class of output functions to

solely be smooth functions of the configuration variables

y = h(x),
∂h(x)

∂xv

= 0, y ∈ R
p. (3)

B. Path assumptions

The control objective is to have the output (3) of (2) follow

a smooth parameterized curve, σ : D → R
p, where D is

either R when the curve is not closed or D = S
1 when the

curve is closed1.

Assumption 1: The path, σ(D ), is an embedded subman-

ifold of Rp with dimension 1.

Assumption 2: There exists a smooth map s : Rp → R
p−1

such that 0 is a regular value of s and σ(D ) = s−1(0). Let

γ := s−1(0). Moreover the lift of γ to R
n

Γ := (s ◦ h)
−1

(0) = {x ∈ R
n : s(h(x)) = 0}

is a submanifold of Rn.

The path following manifold, denoted Γ⋆, with dimension

n⋆, associated with the curve γ is the maximal controlled

invariant subset of Γ. Physically it consists of all those mo-

tions of the mechanical system (2) for which the output (3)

can be made to remain on the curve γ by suitable choice of

control signal [4]. The existence of Γ⋆ is assured as long as

the path γ is a feasible path for the mechanical system.

C. Desired normal form

If the function λ(x) yields a well-defined relative degree

at some point on Γ⋆ then we can perform input-output

feedback linearization for non-square systems at that point.

If this holds at some x⋆ ∈ Γ⋆, then there exists a coordinate

transformation T : x 7→ (η, ξ), defined in a neighbourhood U

of x⋆, and feedback transformation u = α(x) + β(x)v such

that T (Γ⋆ ∩ U) = {(η, ξ) : ξ = 0} and in (η, ξ) coordinates

system (2) reads

η̇ = f0(η, ξ) + g⋔(η, ξ)v⋔ + g‖(η, ξ)v‖

ξ̇ = Aξ +Bv⋔
(4)

with v = col (v⋔, v‖) ∈ R
m and (A,B) a controllable pair.

The utility of the normal form (4) for path following

comes from the decomposition of the dynamics into η and

1The notation S means Rmod 2π, the real numbers modulo 2π. On the
set S1 two different real numbers x and x + 2π are considered to be the
same point. Thus S1 has the geometric structure of a circle.

ξ subsystems, and the control into two groups, v‖ and v⋔.

The ξ subsystem describes the motion off the set Γ⋆. We call

these the transversal dynamics. If one can ensure no finite

escape times, then v⋔ can be used to stabilize T (Γ⋆ ∩U). If

the trajectories of the closed-loop system are bounded, then

the stabilization of T (Γ⋆ ∩ U) implies that of Γ⋆ ∩ U , and

therefore making the path attractive in output space. This

controller also ensures output invariance of the path because

the origin of the ξ subsystem is an equilibrium point.

Once on the set, the system dynamics reduce to η̇ =
f0(η, 0)+g‖(η, 0)v‖. We call these the tangential dynamics.

In general, designing v‖ to achieve desired motion along the

path may be difficult or impossible because the tangential

dynamics have very little structure. For mechanical systems

with sufficient actuation it is possible to impose further

structure on the tangential dynamics that greatly simplifies

the design of v‖ to achieve desired motion on the path.

To this end, we seek a coordinate and feedback transfor-

mation that refines (4) and puts the η dynamics in the form

η̇1 = f0(η, ξ) + g⋔(η, ξ)v⋔ + g
‖
1(η, ξ)v

‖
1 + g

‖
2(η, ξ)v

‖
2

η̇2 = A‖η2 +B‖v
‖
2

(5)

where η := (η1, η2), dim (η1) = n⋆ − 2, dim (η2) = 2,

(A‖, B‖) is controllable, and v‖ = (v
‖
1 , v

‖
2) . We also require

that for all x̃, x̂ ∈ R
n

h(x̃) 6= h(x̂) and h(x̂), h(x̃) ∈ γ ⇒ η2(x̃) 6= η2(x̂). (6)

To understand the physical intuition behind the dynamics (5)

and why they are useful for designing path following con-

trollers, suppose that ξ = 0, i.e., the system is on the path

following manifold. The tangential dynamics become

η̇1 = f0(η, 0) + g
‖
1(η, 0)v

‖
1 + g

‖
2(η, 0)v

‖
2

η̇2 = A‖η2 +B‖v
‖
2 .

At any two points on the path following manifold, (η̃1, η̃2)
and (η̂1, η̂2), the output (3) of system (2) lies on the desired

path γ. However, if η̃2 6= η̂2 then the output is on different

points on the path. Hence the η2 subsystem determines where

on the path the system output lies, and since (A‖, B‖) is

controllable, we can use v
‖
2 to completely determine the

motion along the curve. On the other hand, the η1 subsystem,

which is nonlinear in general, represents the dynamics on

the path following manifold that do not produce observable

motion along the path in the output space. Uncontrollable

tangential dynamics also appear in the η1 dynamics.

D. Coordinate and feedback transformation

In order to impose additional structure on the tangential

dynamics, we will use input-output feedback linearization,

choosing the output to be a particularly useful function for

path following. Denote the tubular neighbourhood of γ as

γǫ ⊂ R
p. Define a projection operator that maps the output

y ∈ γǫ to a unique point θ ∈ D such that the point σ(θ) ∈ γ
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is closest to y,

̟ :γǫ → D

̟(y) = argmin
θ∈D

‖y − σ(θ)‖.
(7)

Intuitively, this describes the “distance” of the output along

the path. Composing this projection with the output of the

mechanical system, we obtain a function π : R
n → D,

π(x) = ̟ ◦ h(x). Next consider the function

λ :Rn → R
p−1

λ(x) = s ◦ h(x).
(8)

This function locally describes the “distance” to the path

following manifold. We use the functions (7) and (8) to

generate a virtual output

ŷ =

[

π(x)

λ(x)

]

=

[

̟ ◦ h(x)

s ◦ h(x)

]

. (9)

If this output yields a well-defined relative degree at some

point on Γ⋆ then system (2) is locally feedback equivalent

to the desired normal form

η̇1 = f0(η, ξ) + g⋔(η, ξ)v⋔ + g
‖
1(η, ξ)v

‖
1 + g

‖
2(η, ξ)v

‖
2

η̇2 = A‖η2 +B‖v
‖
2

ξ̇ = Aξ +Bv⋔.
(10)

The next result characterizes whether or not (9) yields a well-

defined relative degree.

Theorem 2.1: Given a mechanical control system (2) and

a path γ in output space satisfying Assumptions 1 and 2,

let x⋆ = (x⋆
c , x

⋆
v) ∈ R

n satisfy h(x⋆) ∈ γ. The system (2)

with output (9) yields a well-defined vector relative degree

of {2, . . . , 2} at x⋆ = (x⋆
c , x

⋆
v) if and only if

dim

(

Im

(

∂h

∂xc

∣

∣

∣

∣

xc=x⋆
c

gv(x
⋆
c)

))

= p. (11)

holds at x⋆.

III. PLANAR FIVE-BAR ROBOT PATH FOLLOWING

We apply the approach to designing path following con-

trollers described in Section II to an experimental platform

consisting of a 2-DOF five-bar linkage robot with rigid

links [11]. This robot is mechanically designed such that

it is linear and time-invariant.

A. Model

The planar five-bar linkage robot is illustrated in Figure 1.

The full derivation of this model is well documented [11],

and therefore omitted. This fully-actuated robot is mechan-

ically designed to be dynamically decoupled and gravity

balanced [11, Section 6.4.1], so that the Euler-Lagrange

equations for this system are

M11q̈1 + b1q̇1 = τ1

M22q̈2 + b2q̇2 = τ2,
(12)

where M11,M22, b1, b2 > 0 are constants, and τ :=
col (τ1, τ2) is a vector of applied motor torques. Let xc =

Fig. 1. Two degree-of-freedom five-bar linkage robot.

col(xc1 , xc2) := col(q1, q2) and xv = col(xv1
, xv2

) :=
col(q̇1, q̇2), and set u := τ for consistency with notation

in (2). The system (12) may be expressed in the form (2) as

ẋ = Fx + Gu. Let the output, y ∈ R
2, of (12) denote the

position of the end-point of the robot

y = h(x) :=

[

ℓ1 cosxc1 − ℓ4 cosxc2 − ℓ4

ℓ1 sinxc1 − ℓ4 sinxc2 − ℓ1

]

. (13)

B. Path following

For the 2-DOF five-bar manipulator (12) with output (13),

we check condition (11) of Theorem 2.1. The matrix
∂h
∂xc

gv(xc) is non-singular, and therefore has rank p = 2,

if and only if the configuration corresponding to

xc1 − xc2 = kπ, k ∈ Z (14)

is avoided. Condition (14) corresponds to where the paral-

lelogram in Figure 1 collapses and all the links are collinear;

the path must be chosen to avoid such configurations.

To illustrate this we choose a circular path of radius r,

centered at the origin of the output space, given by σ(θ) =
col (r cos θ, r sin θ). The circular path may be written as

γ :=
{

(y1, y2) ∈ R
2 : s(y) := y21 + y22 − r2 = 0

}

. (15)

To put this system into the normal form (10) we will

perform input-output feedback linearization using the virtual

output (9). The function π(x) is chosen as π(x) = ̟◦h(xc)
where ̟(y) = argminθ∈[0,2π) ‖y − σ(θ)‖ is the projection

of the output onto the path. In the case of a circle, we may

use the angle of the output along the path, i.e., ̟(y) =
arg(y1 + iy2). The function λ(x) = s ◦ h(x) is obtained

from (13) and (15). By Theorem 2.1, the virtual output

ŷ = col(π(x), λ(x)) yields a well-defined relative degree of

{2, 2} at any point of the path as long as the condition (14)

is avoided, i.e., when the circle lies in the robot’s workspace.

The desired normal form can be obtained by letting

ξ := col (λ(x), LFxλ(x)) and η := col (π(x), LFxπ(x)).
In (η, ξ)-coordinates the system takes the form

η̇12 = η22

η̇22 = L2
Fxπ(x)|x=T−1(η,ξ) + LGLFxπ(x)|x=T−1(η,ξ)u

ξ̇1 = ξ2

ξ̇2 = L2
Fxλ(x)|x=T−1(η,ξ) + LGLFxλ(x)|x=T−1(η,ξ)u.
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By Theorem 2.1, (9) yields a well defined relative degree

and we take
[

u1

u2

]

=

[

LGLFxπ(x)

LGLFxλ(x)

]−1

x=T−1(η,ξ)




[

−L2
Fxπ(x)

−L2
Fxλ(x)

]−1

x=T−1(η,ξ)

+

[

v
‖
2

v⋔

]





(16)

as our feedback transformation where (v
‖
2 , v

⋔) ∈ R
2 are new

control inputs. The closed-loop system in (η2, ξ)-coordinates

after the feedback (16) has the form

η̇12 = η22

η̇22 = v
‖
2

ξ̇1 = ξ2

ξ̇2 = v⋔.

(17)

1) Control design: We stabilize the origin of the transver-

sal subsystem in (17) by means of a PID compensator,

v⋔(ξ) = −K1ξ1 −K2ξ2 −K3

∫ t

0

ξ1(τ)dτ, (18)

with positive gains Ki, i ∈ 3. Since v⋔(0) = 0, ξ = 0 is an

equilibrium point of the closed-loop transversal subsystem,

Γ⋆ is controlled invariant. This ensures output invariance of

the path as required.

Achieving the desired motion along the path is equiva-

lent to making sure that either the angular velocity η22(t)
approaches a desired reference profile η2ref

2 (t) or that η12
approach a desired position η1ref

2 ∈ S
1. These goals can be

achieved using the tangential control input by means of a

simple proportional feedback with feedforward action

v‖ = −K4

(

η12 − η1ref
2

)

+η̇2ref
2 (t)−K5

(

η22 − η2ref
2 (t)

)

. (19)

2) Experimental setup: The experimental platform in-

cludes a gravity balanced and dynamically decoupled five-bar

robot fabricated at the University of Waterloo [12], actuated

by direct drive DC motors with optical encoders.

3) System identification: The model parameters

b1, b2,M11 and M22 of (12), were found using the

system identification procedure in [12], and are presented

in [15, Table 4.1].

4) Experimental Results: Two experiments are considered

to test the proposed path following control strategy with a

circular path γ of radius 0.05 m.

Experiment 1: In the first experiment we make y → γ and

simultaneously stabilize a particular position η1ref
2 = π

2 on γ.

Figure 2 shows the robot end-point position and the circle γ

in output space. Note that the end-point does not cut across

the circle in order to reach the desired position, but follows

the circular path. Figure 3 plots ξ, η and u versus time.

Experiment 2: This experiment demonstrates one of the

key advantages of path following over trajectory tracking.

Here the five-bar linkage robot end-point tracks a desired

constant velocity profile, i.e., η2ref
2 = 2π rad/s. We then

temporarily constrain the end-point from moving in the

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

y
1
 (m)

y
2
 (

m
)

 

 

Endpoint position

Initial condition

Circle γ

Fig. 2. End-point trajectory in output space for stabilizing desired position
on the circle

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−20

−15

−10

−5

0

5
x 10

−3

T
ra

n
s
v
e

rs
a

l 
S

ta
te

s

 

 

ξ
1
 (m

2
)

ξ
2
 (m

2
/s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

0

2

4

6
T

a
n

g
e

n
ti
a

l 
S

ta
te

s

 

 

η
2

1
 (rad)

η
2

2
 (rad/s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

0

2

4

T
o

rq
u

e
 (

N
m

)

time(s)

 

 

τ
1
 (Nm)

τ
2
 (Nm)

Fig. 3. Transformed states and control effort for end-point position control

tangential direction of traversal by physically obstructing the

path. The end-point is free to move in any other direction.

The results shown in Figure 5 clearly demonstrate an im-

portant feature of path following control, as the end-point

remains on the path throughout. Tracking of the desired

velocity profile resumes after the obstruction is removed

without ever deviating from the path.

IV. FLEXIBLE ROBOT PATH FOLLOWING

The second example of a mechanical system we consider

in this paper is a five-bar robot with output y ∈ R
3, whose

last link is flexible.

A. Model

We consider the flexible five-bar manipulator, shown in

Figure 4, whose model is found in [13]. Its last link is a beam

of length ℓ, flexible in the horizontal direction. We use the

classic Euler-Bernoulli [14] model, which is approximated
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Fig. 4. A five-bar manipulator with horizontal flexibility in the last link
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Fig. 5. Demonstration of path following control by showing transformed
states and control effort with temporarily obstructed output

as a set of ODE’s using the assumed modes approach with

clamped free boundary conditions. The model is simplified

by gravity-balancing, dynamic decoupling, and a preliminary

feedback cancellation as in [13]. Our overall model may be

written in the form (2) where

fv(x) =
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(20)

and

gv(xc)u =





























1
M11
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0 1
M22

0

0 0 1
M ′
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M ′
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...
...

...
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M ′

ΨN (xc)



































u1

u2

u3






. (21)

The expressions for the smooth, nonlinear, scalar-valued

functions Ψj(xc),Ωj(x), and M ′(xc) are found in [15].

We are interested in controlling the position of the tip of

the flexible link on the five-bar manipulator. Therefore, as

the output, we choose the Cartesian position of the flexible

link tip in the output space, y = h(x), where

h(x) :=







(ℓ1 cosxc1 − ℓ cosxc2) cosxc3 − w(xc) sinxc3

(ℓ1 cosxc1 − ℓ cosxc2) sinxc3 + w(xc) cosxc3

ℓ1 sinxc1 − ℓ sinxc2 − ℓ1







(22)

is an approximation valid for small deflections [13]. The

model parameters chosen are found in [15].

B. Application of path following

For the flexible five-bar manipulator with structure (2),

with (20), (21) and (22), we check condition (11) of The-

orem 2.1. The determinant of ∂h
∂xc

gv(xc) is zero when the

parallelogram making up the five-bar linkage robot collapses,

or when the output is in particular regions very near the

extremities of the workspace (see Figure 5.8 in [15]), and

are easily avoidable. Avoiding these configurations, a path

following controller may be designed using the approach of

Section II for any path satisfying Assumptions 1 and 2.

We choose an ellipse as the path expressed as γ :=
{

y ∈ R
3 : s(y) = 0

}

, where

s(y) =

[

y22 + (y3 − ℓ1)
2 − r2

y1 − by2 − d

]

(23)

and r = 0.05m, b = 0.1, d = 0.5m. As discussed in

Section II, we choose the virtual output (9) using λ(x) =
s ◦ h(x), and π(x) = ̟ ◦ h(x), where the projection

̟(y) = argminθ∈[0,2π) ‖y − σ(θ)‖, describes the angular

position of the output with respect to the path, i.e., ̟(y) =
arg(y2 + (y3 − ℓ1)i).

By Theorem 2.1, if the unacceptable configurations are

avoided, then the virtual output yields a well-defined rela-

tive degree. Using this output and performing input-output

feedback linearization we obtain the desired normal form

(10) with ξ ∈ R
4, η2 = col(η12 , η

2
2) ∈ R

2, η1 ∈ R
6. The

ξ dynamics govern output motions transverse to the path,

the η2 dynamics govern output motions along the path, and

the η1 dynamics govern motions which are “tangential”, but

do not cause observable output motions (i.e., the internal,

uncontrollable vibrations of the robot).
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C. Simulation

We use a PID compensator to stabilize the origin of the

ξ-subsystem. To control the tangential motions, we use the

control law v
‖
2 = −5

(

η22 − η2ref
2

)

, where

η2ref
2 =

{

2 rad/s 0 ≤ t < 3s

−2 rad/s t ≥ 3s.

Figure 6 shows the Cartesian position of the flexible tip in

output space, with the transformed states in In Figure 7.
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V. DISCUSSION

We present a control design method to meet the path

following control objective for mechanical systems. A co-

ordinate and feedback transformation are used to put to the

system in a form where linear controllers are used to meet

the objective. Determining whether such a decomposition is

possible involves checking the rank of a matrix.

This technique was experimentally implemented on a

planar five-bar robot, with distinct advantages over tra-

jectory tracking highlighted in Experiment 2. Simulation

illustrates our approach applied to an underactuated and

non-minimum phase system, where standard feedback lin-

earization fails [13]. Furthermore, using a fictitious output

is a common modeling technique used to simplify control

of flexible beams, for instance, the reflected tip position is

used in [16]. Although deflections are assumed small, it is

desirable to control the actual tip position, as in our approach,

rather than the position of a fictitious output.
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