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Abstract— This paper addresses the problem of establishing
whether two vector time sequences could have been generated
by the same (unknown) linear time invariant system, possibly
affected by bounded model uncertainty and measurement noise.
This problem arises in multiple contexts, including, among
others, behavioral systems model (in)validation, determining the
minimum number of models needed to cover the set of operating
points of a piecewise–linear plant and in several computer vision
and image processing problems. The main result of the paper
shows that this problem can be reduced to a rank-minimization
form and efficiently solved by using recently proposed convex
relaxations. These results are illustrated with both a theoretical
example and two non–trivial computer vision problems: activity
recognition in video sequences and textured image classification.

I. INTRODUCTION AND MOTIVATION

Many problems of practical interest involve determining
whether two given output trajectories could have been gen-
erated by the same underlying linear time invariant (LTI)
system. For instance, when performing identification of
piecewise affine plants, it is of interest to determine the
minimum number of LTI subsystems required to describe
the system. In turn, this entails determining whether data
generated by different experiments, possibly at different
operating points, can be explained by a single LTI model.
A similar problem arises in computer vision, in the context
of classifying activities in video sequences. By assuming
that similar activities correspond to the output of the same
LTI system excited by a suitable input (see for instance
[1], [11]), the problem reduces to establishing whether given
sequences are indeed the output, possibly corrupted by noise,
of the same system. Finally, in the context of behavioral
approach to control [14], this problem can be considered
as the counterpart to classical model (in)validation, where
one seeks now to (in)validate the hypothesis that two given
sequences are behaviors of the same dynamical system.

In principle, given the input/output sequences (u1,y1),
(u2,y2) and a-priori information about the class of models S
and measurement noise N , the problem above can be solved
by computing the consistency sets Ti, i = 1, 2 corresponding
to each pair. e.g. the set of all models and associated
initial conditions consistent with the a-priori information
that could have generated the pairs, and checking whether
their intersection is empty. However, characterizing these sets
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is, in general, highly non-trivial, since they are not jointly
convex in the models and initial conditions1.

Alternatively, working in a behavioral context, it is possi-
ble to find first the most powerful unfalsified model [10]
corresponding to one of the sequences and then check
whether the second sequence is indeed a behavior of this
model. A problem here is that, due to the presence of
measurement noise, this approach may fail to correctly label
(noisy) behaviors from the same system.

To avoid these difficulties, in this paper, building on earlier
work from realization theory [9] and subspace identification
methods [12], we first propose a rank condition to invalidate
the hypothesis that two given trajectories originate from the
same LTI system. Briefly, we show that, under mild condi-
tions, two input/output trajectories originate from the same
system if and only if the matrix obtained by concatenating
suitable projections of the Hankel matrices corresponding to
each trajectory has the same rank as each of the individual
matrices. In the case of noisy measurements and model
uncertainty, a necessary and sufficient invalidation certificate
can be obtained by minimizing the rank of this matrix with
respect to the noise and model uncertainty. Characterizing
the latter by means of a semi–definite constraint, coupled
with recently introduced convex rank relaxations, allows to
reduce the problem to a semidefinite convex optimization that
can be efficiently solved using commonly available software.
These results are illustrated with both, a theoretical example
and two non-trivial computer vision applications: activity
recognition from video sequences and texture classification.

II. PRELIMINARIES

For ease of reference, we summarize next the notation
used in the paper and recall some results required to recast
the identification problem into a convex optimization form.

A. Notation

x,M a vector in Rn (matrix in Rn×m)
AT transpose of matrix A.
trace{M} trace of the matrix M
I identity matrix
M � N the matrix M − N is positive

semidefinite.

1Indeed, most of the model (in)validation literature [4], [6], [13], [15],
[18], [20] assumes zero initial conditions in order to get tractable problems.
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σ (M) maximum singular value of M.
BX (γ) γ-ball in a normed space X :

BX (γ) = {x ∈ X : ‖x‖X ≤ γ}.
H∞ space of functions with bounded an-

alytic continuation inside the unit
disk, equipped with the norm:
‖X‖H∞

.= ess sup|z|<1 σ (X(z)).
Hm,n
y Hankel matrix associated with a vec-

tor sequence y(.):

Hm,n
y

.=


y(0) y(1) · · · y(m− 1)
y(1) y(2) · · · y(m)

...
...
. . .

...
y(n− 1) y(n+ 1) · · · y(m+ n− 2)


Tn
y Toeplitz matrix associated with a

vector sequence y(.):

Tn
y
.=


y(0) 0 · · · 0
y(1) y(0) · · · 0

...
...
. . .

...
y(n− 1) y(n− 2) · · · y(0)


In the sequel, when the dimensions are clear from the

context, we will simply denote Hm,n
y and Tn

y as Hy and
Ty , respectively.

In this paper we consider Linear Time Invariant (LTI)
systems with the usual state space representation:

xk+1 = Axk + Buk,
zk = Cxk + Duk

(1)

In the sequel, for notational simplicity, given a system G of
the form (1) we will denote by

ΓG
.=


C

CA

.

.

.
CAi

.

.

.

 TG =


D 0 . . . 0 . . .
CB D . . . 0 . . .

.

.

.

.

.

.
. . .

.

.

. . . .

CAiB CAi−1B . . . D . . .

.

.

.

.

.

. . . .

.

.

.
. . .

 (2)

the matrices that map its initial condition xo and input
sequence u to its output z, respectively.

B. Problem Statement

Fig. 1. Model (In)Validation Set–up

In this paper we consider the problem of (in)validating
the hypothesis that two given input/ouput pairs (u1,y1)
and (u2,y2) are generated by the same underlying system,

possibly affected by uncertainty and noise. The setup is
illustrated in Fig. 1: here u(.) and y(.) represent an input to
the (unknown) LTI system G and the corresponding output,
affected by uncertainty ∆ and measurement noise η. For
instance, in the applications of interest to this paper, ∆
models the variability intrinsic to two different realizations of
the same texture or the same activity, performed at different
times. In the sequel we will assume that the only information
known about the noise η and model uncertainty are set-
membership descriptions, e.g. η ∈ N , ∆ ∈ D = BH∞(γ),
for some given N convex, and γ > 0. In this context, the
problem under consideration can be precisely stated as:

Problem 1: Given two input/output pairs (u1(t),y1(t)),
t = t1, . . . , tT1 and (u2(t),y2(t)), t = t2, . . . , tT2 , a bound
nG on the McMillan degree of G, and the admissible noise
and uncertainty sets N , D, determine whether there exists at
least one pair (η1, η2) ∈ N , one pair (∆1,∆2) ∈ D, a LTI
system G with McMillan degree at most nG, and suitable
initial conditions x1, x2, such that:

z1(t) = ΓGx1 + TGu1(t)
z2(t) = ΓGx2 + TGu2(t)
y1(t) = (1 + ∆1) ∗ (z1(t) + η1(t)), t = t1, . . . , tT1

y2(t) = (1 + ∆2) ∗ (z2(t) + η2(t)), t = t2, . . . , tT2

(3)
where ∗ denotes convolution.

C. Background Results

Next, we introduce some background results that will be
used to solve Problem 1. To this effect, let (A,B,C,D) be
a minimal realization of G, with A ∈ Rn×n. Then, it can
be shown that the input/output sequences satisfy [12]:

Hy = ΓGX + TGHu (4)

where Hu and Hy denote the Hankel matrices associated
with the input and output sequences, respectively, X .=[
x(0) x(1) . . . x(t)

]
is a matrix containing the consecutive

state vectors, and where ΓG and TG are defined in (2).
Lemma 1: Let H⊥u denote the right annihilator of Hu and

assume that

spanrow(X) ∩ spanrow(Hu) = {0} (5)

Then rank(HyHu
⊥) = rank(X).

Proof: Follows from the proof of Theorem 2 in [12].
Corollary 1: If rank(X) = n (that is, the input u excites

all modes of the system), then rank(HyH⊥u ) = n

III. MAIN RESULTS

Here we present our main result, a rank-minimization
based invalidation certificate. To this effect, we examine first
the case where the exact system output is available.

A. Behavior (In)Validation as a Rank Minimization Problem

Lemma 2: Consider two input/output pairs (u1, z1) and
(u2, z2) and assume that the inputs (u1,u2) are sufficiently
rich so that all modes of the system are excited. Then, there
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exist an LTI system G with McMillan degree at most nG
and two initial conditions x1,x2 ∈ Rn and such that:

z1 = ΓGx1 + TGu1, z2 = ΓGx2 + TGu2 (6)

only if the following conditions hold:
(i) n

.= rank(Hz1Hu1

⊥)=rank(Hz2Hu2

⊥) ≤ nG
(ii) n

.= rank(H) .= rank(
[
Hz1Hu1

⊥ Hz2Hu2

⊥]) ≤
nG

Further, in this case all LTI systems of degree ≤ nG that
could have generated the experimental data share the same
pair (A,C) up to a similarity transformation.

Proof: If (6) holds for some G with McMillan degree
n ≤ nG, then, from Lemma 1 it follows that:

rank(Hz1Hu1

⊥) = rank(Hz2Hu2

⊥) = n ≤ nG (7)

Moreover, from (4) we have:

H =
[
ΓG ΓG

] [X1H⊥u1
0

0 X2H⊥u2

]
(8)

where X1 and X2 are the state trajectories corresponding
to the inputs u1 and u2, respectively. If (5) holds then the

matrix
[
X1H⊥u1

0
0 X2H⊥u2

]
has full row rank. It follows that:

rank(H) = rank
([

ΓG ΓG
])

= n (9)

To complete the proof, note that if (i) holds, then there exist
two LTI systems G1, G2 with McMillan degree at most n,
and initial conditions x1,x2 such that [12]:

z1 = ΓG1x1 + TG1u1, z2 = ΓG2x2 + TG2u2 (10)

Let (A1,B1,C1) and (A2,B2,C2) be (minimal) state space
realizations of G1 and G2, respectively. If (ii) and (5) hold,
then

rank
([

ΓG1 ΓG2

])
= n⇒ ΓG1 = ΓG2M (11)

for some full rank matrix M. Hence

C1 = C2M
C1A1 = C2A2M

...
C1At−1

1 = C2At−1
2 M

(12)

Let Â2
.= M−1A2M. It can be easily shown that (12)

implies that C1Ak−1
1 = C1A1

k−2Â2, k = 2, . . . , t. Thus
C1A1

C1A2
1

...
C1An

1

 =


C1

C1A1

...
C1An−1

1

A1 =


C1

C1A1

...
C1An−1

1

 Â2 (13)

which (from observability of (A1,C1)) implies that A1 =
Â2. It follows then that the pairs (A1,C1) and (A2,C2)
are related by the similarity transformation M.

Note that the result above does not rule out the possibility
of the data having been generated by two different systems
with the same pair (A,C) but different B and D. A simple
example is the impulse response of two systems, one with

D1 = 0 and initial condition xo, and the second with initial
condition 0, B2 = Axo and D2 = Cxo. Thus, in the sequel,
to prevent this situation, we will strengthen condition (5) to

X ·VT = 0 (14)

where V is a basis for the row space of Hu
2, and consider the

scenario where the same input is used in both experiments.
With these assumptions, Lemma 2 can be strengthened to:

Theorem 1: Consider an input signal u 6= 0, and two
output sequences (z1, z2), corresponding to state trajectories
X1 and X2. Assume that u is sufficiently exciting and that
Xi satisfy condition (14). Then, there exists an LTI system
G with McMillan degree at most nG and such that:

z1 = ΓGx1 + TGu, z2 = ΓGx2 + TGu (15)

if and only if the following conditions hold:
(i) n

.= rank(Hz1Hu
⊥) = rank(Hz2Hu

⊥) ≤ nG
(ii) n

.= rank(H) .= rank(
[
Hz1Hu

⊥ Hz2Hu
⊥]) ≤ nG

(iii) (Hz1 −Hz2)VT = 0.
Proof: Necessity of (i) and (ii) is immediate from

Lemma 2. Necessity of (iii) follows from the fact that if
(14) and (15) hold then

(Hz1 −Hz2)VT = ΓG(X1 −X2)VT = 0

To show sufficiency, let G1 and G2 be two LTI systems of
McMillan degree n such that (10) holds, with corresponding
realizations (A1,B1,C1,D1) and (A2,B2,C2,D2). From
Lemma 2 it follows that these realizations can be selected
so that A1 = A2 and C1 = C2. To complete the proof, we
need to show that in this coordinate system B1 = B2 and
D1 = D2. Note that if (14) holds then (X1−X2)Hu

T = 0.
Similarly, if (iii) holds then (Hz1 −Hz2)Hu

T = 0. Hence

0 = Γ(X1 −X2)HT
u + (TG1 −TG2)HuHT

u

= (TG1 −TG2)HuHu
T (16)

Assume that u(0) 6= 0. Then, since the first row of (TG1 −
TG2) has the form

[
D1 −D2, 0, . . . , 0

]
it follows that D1 =

D2. The same argument successively applied to the rows of
(TG1−TG2) shows that (16) implies that CAi(B1 −B2) =
0, i = 1, 2, . . . , n. The fact that B1 = B2 follows now from
observability of (A,C), as long as m ≥ n. Finally, note that
if u(0) = 0, a similar reasoning can be applied starting with
the first non-zero element of the input sequence.

B. (In)Validation Certificates for noisy sequences

Next, we recast Problem 1 into a rank minimization.
Consider first a simpler case without model uncertainty, e.g:

Problem 2: Given an input u(t) and measurements
yi(t), i = 1, 2 of the corresponding outputs zi(t) corrupted
by noise ηi(t) ∈ N , determine whether there exists a pair
(η1, η2) ∈ N , a LTI system G with McMillan degree at most
nG and initial conditions x1, x2 such that:

y1 = ΓGx1 + TGu + η1
y2 = ΓGx2 + TGu + η2

(17)

2Intuitively, this condition imposes that the state at a time k is uncorre-
lated with values of the input u(t), t ≥ k.
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where yTi =
[
yi(t), . . . ,yi(t+ T )

]T
, uTi =[

u(t), . . . ,u(t+ T )
]T

, and ηTi =
[
ηi(t), . . . , ηi(t+ T )

]T
.

From Theorem 1, it follows that Problem 2 is feasible iff
there exist noise sequences η1, η2 ∈ N such that

n
.=rank

(
(Hy1 −Hη1)H⊥u

)
=

rank
(
(Hy2 −Hη2)H⊥u

)
≤ nG

n
.=rank ([(Hy1 −Hη1 )H⊥u (Hy2 −Hη2 )H⊥u ]) ≤ nG
(Hy2 −Hη2 −Hy2 + Hη2)VT = 0

Note that, in practical situations nG is usually unknown
and must be also estimated from the available data. Thus, in
the sequel we will make the additional assumption that all the
Hankel singular values of the system are larger than the noise
level (an observability assumption that guarantees that the
correct model order can be estimated from the data). Under
this additional assumption certifying the hypothesis that the
two given signals were generated by the same underlying
system can be accomplished proceeding as follows:

Algorithm 1: Conceptual Behavior Model (In)Validation

Data: input sequence u, (noisy) measurements y1, y2.
A priori information: noise description ηi ∈ N

1. Solve the following rank–minimization problems:
rmin1 = minη1 rank((Hy1 −Hη1)H⊥u ) s.t. η1 ∈ N .
rmin2 = minη2 rank((Hy2 −Hη2)H⊥u ) s.t. η2 ∈ N .
rmin12 = minη1 rank([Hy1nH⊥u Hy2nH⊥u ])
s.t η1, η2 ∈ N , Hy1n = Hy1 −Hη1 ,
Hy2n = Hy2 −Hη2 and (Hy1n −Hy2n)VT = 0
where V is a basis for the row space of Hu

2. The given trajectories were generated by the
same LTI system iff rmin1 = rmin2 = rmin12

Algorithm 1 is conceptual, in the sense that it entails
solving affine matrix rank–minimization problems, subject
to linear constraints, a problem that is generically NP–hard.
To obtain tractable problems, motivated by the heuristics in
[3], [7]3, we will relax problems of the form:

min
x

rank(H(x)) subject to L(x) = 0

where H(.) and L(.) are affine functions of x to the
following sequence of convex problems:

minx,Y,Z trace(W(k)
y Y(k)) + trace(W(k)

z Z(k))

subject to

[
Y(k) H(k)(
H(k)

)T
Z(k)

]
� 0

L(x) = 0
(18)

where Y(k) � 0 and Z(k) � 0 are auxiliary variables and
W(k)

z ,W(k)
y are weighting matrices. At the kth iteration,

these weights are selected according to the formula W(k)
y =

(Y(k−1) + λk−1I)−1, W(k1)
z = (Z(k−1) + λk−1I)−1, where

3Although there are very recent faster algorithms for rank minimization
(e.g. [2]), they currently cannot handle semidefinite constraints.

Y(k−1),Z(k−1) denote the optimal solution to (18) at the
(k − 1)th iteration and where the regularization parameter
λk−1 is set to the (h − nq + 1)th largest singular value of
H(k) 4. Since the matrices H and L are affine in optimization
variables x and Y(k) and Z(k) are symmetric positive definite
auxiliary variables, (18) is a convex semidefinite program
that can be solved using widely available software.

Using this relaxation in Algorithm 1 leads to the following
convex optimization based (in)validation algorithm:

Algorithm 2: Connvex Behavior Model (In)Validation

Data: input sequence u, (noisy) measurements y1, y2.
A priori information: noise description ηi ∈ N

1. Use the relaxation (18) to (approximately) solve the
following rank–minimization problems:
r∗1 = minη1 rank((Hy1 −Hη1)H⊥u ) s.t. η1 ∈ N .
r∗2 = minη2 rank((Hy2 −Hη2)H⊥u ) s.t. η2 ∈ N .
r∗12 = minη1 rank([Hy1nH⊥u Hy2nH⊥u ])
s.t η1, η2 ∈ N , Hy1n = Hy1 −Hη1 ,
Hy2n = Hy2 −Hη2 and (Hy1n −Hy2n)VT = 0
where V is a basis for the row space of Hu

2. If r∗1 = r∗2 = r∗12 then the given trajectories
are admissible behaviors of the same system G,
when starting from suitable initial conditions.

Note that r∗i ≥ rmini and r∗12 ≥ rmin12 due to the use
of the convex relaxation in Algorithm 2. Hence failure of
the condition r∗1 = r∗2 = r∗12 = nG does not necessarily
invalidates the hypothesis that the output trajectories are
(noisy) behaviors of the same system.

C. Handling model uncertainty

Consider again Problem 1, where, in addition to noise, the
trajectories are affected by bounded model uncertainty ∆ ∈
BH∞(γ) where γ is given as part of a-priori information. In
this scenario, the internal signal z is given by:

z(t) = ζ(t)− η(t), η ∈ N (19)

where the signal ζ satisfies:

y = (1 + ∆) ∗ ζ, for some ∆ ∈ D (20)

where ∗ denotes convolution. From Theorem 2.3.6 in [5], a
necessary and sufficient condition for feasibility of (20) is5:

γ2TT
ζ Tζ − (Ty −Tζ)T (Ty −Tζ) � 0 (21)

m[
TTy Ty − TTy (Tz + Tη) − (Tz + Tη)TTy (Tz + Tη)T

Tz + Tη
1

1−γ2

]
� 0 (22)

where the last line follows from a Schur complement ar-
gument. Since (22) is a Linear Matrix inequality in z, η, it

4The matrices W
(0)
y , W(0)

z are set to the identity. Hence the first iteration
solves the nuclear norm heuristic. Then each iteration aims to reduce the
rank further through the weighting scheme. In our experiments, convergence
is typically achieved within the first 10 iterations.

5This follows from application of the Theorem to the signal ζ and y−ζ.

678



follows that the only modification to Algorithm 2 required
to handle model uncertainty, is to incorporate this additional
(convex) constraint to the rank minimization problems.

IV. EXAMPLES

In this section we illustrate our results with a theoretical
example and two non-trivial computer vision applications:
texture image classification and activity recognition.

A. Theoretical Example

In this simple example we consider the zero initial condi-
tion step responses z1(t) and z2(t) of the systems G1(λ) =

λ+1
(λ2+w2

1)(λ2+w2
2)

and G2(λ) = λ
(λ2+w2

1)(λ2+w2
3)

with w1 =
exp(j0.5),w2 = exp(j0.4), and w3 = exp(j0.7). The
“measured” data consists of four sequences, obtained from
portions of these trajectories corrupted by noise as follows:

y11(t) = z1(t) + η1, t ∈ [1, 25]
y12(t) = z1(t) + η1, t ∈ [41, 65]
y21(t) = z2(t) + η2, t ∈ [1, 25]
y22(t) = z2(t) + η2, t ∈ [41, 65]

In order to apply Algorithm 2, a noise characterization
is required. Let Hη denote the Hankel matrix of the noise
sequence. Note that the (i, j) element of HT

η Hη is given by:

HT
η Hη(i, j) =

n∑
r=1

η(i+ r)η(j + r)

Thus, under mild ergodicity assumptions 1
nHT

η Hη is an
estimate of the noise covariance matrix. Thus, constraints
on ‖Hη‖ are (approximately) equivalent to constraints on
the magnitude of the noise covariance. Hence, in the sequel
we will consider noise sets of the form:

N = {η :
1
n
σ̄(Hη) ≤ ε}

where ε is given as part of the a-priori information. In
particular, in this example ε was set to 0.1 ∗ 1

nHy (e.g. 10%
noise level). The results of applying Algorithm 2 (with no
model uncertainty) are shown in Table I. As shown there, the
algorithm correctly identifies y11 and y12 as being generated
by the same system. On the other hand, as expected, while
rank(Hy11) =rank(Hy22) = 4, rank([Hy11 Hy22]) > 4.

TABLE I
HANKEL RANK FOR THE THEORETICAL EXAMPLE

Sequence Pair rank(H1) rank(H2) rank([H1 H2])
(y11, y12) 4 4 4
(y11, y22) 4 4 5

B. Texture Classification

The purpose of this example is to illustrate the applica-
tion of the proposed framework to the problem of texture
classification. This problem has been the subject of intense
research in the computer vision and image processing com-
munities, with application ranging from medical diagnosis
to object recognition and image database retrieval. Most

(a) (b) (c)
Fig. 2. Three sample patches used for recognition.

texture recognition schemes are stochastic in nature, relying
on representations in terms of statistics of the responses to
a collection of filters [8]. Here, we pursue an alternative
approach, based upon recasting the problem into a robust
behavior (in)validation form of the form shown in Figure
1. Motivated by the work in [19], we will postulate that all
images corresponding to realizations of a given texture T
are realizations of a second order stationary random process.
Further, for simplicity, we will assume uniformity in the
vertical direction. In this context, the kth column of the
image can be assumed to be the output, at index k, of
an unknown one-dimensional system G to a random initial
condition xo and the problem of determining whether or not
two given images are samples of the same texture reduces
to Problem 16.

The approach outlined above was tested on the textured
images shown in Figure 2. As illustrated in Table II, the
algorithm correctly identifies (a) and (b) as slices of the same
texture.

TABLE II
TEXTURE CLASSIFICATION RESULTS

Image Pair rank(H1) rank(H2) rank([H1 H2])
(a, b) 10 10 10
(a, c) 10 10 13

C. Activity Classification

This example explores the application of the proposed
framework to the problem of recognizing human activities
from video sequences. For this purpose, we used 2 video
sequences, a walking and a running person, from the KTH
database [17]. Sample frames from these sequences are
shown in Figure 3. In order to reduce the dimensionality
of the data, the videos were pre-processed by first cropping
each frame to the size of a bounding box around the actor
of the activity, resizing all the frames so they are all the
size of the largest bounding box (104× 42 pixels), and then
projecting the frames into a three dimensional space using
principal component analysis (PCA) of the pair of videos
being compared.

Applying Algorithm 2 to the PCA time traces of the
PCA coefficients shown in Figure 4, assuming 10% noise
and 10% model uncertainty, led to the results shown in
Table III. As shown there, the algorithm correctly identifies

6The uniformity assumption can be removed by considering 2D Roesser
models [16] and extending the theory presented here to this case. However,
this is beyond the scope of the present paper.
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(a)

(b)
Fig. 3. Sample frames from KTH activity video database. (a) Walking. (b)
Running.

(a) (b)

(c) (d)
Fig. 4. PCA coefficients for 3 subsequences: (a), (b), (c) walking and (d)
running.

the subsequences (a),(b),(c) as being generated by the same
underlying activity (walking).

V. CONCLUSIONS

Many problems of practical interest require establishing
whether two given input/output trajectories, potentially af-
fected by noise and uncertainty, correspond to behaviors of
the same (unknown) LTI system. The main result of this
paper shows that this problem can be reduced to a rank-
minimization form and efficiently solved by using recently
proposed convex relaxations. The effectiveness of this ap-
proach was illustrated with both, a theoretical example and
two non–trivial computer vision problems: activity recogni-
tion in video sequences and textured image classification.
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