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Abstract— This paper considers the optimal control and
optimal estimation problems for a class of linear parabolic
diffusion-reaction partial differential equations (PDEs) with
actuators and sensors at the boundaries. Diffusion-reaction
PDEs with boundary actuation and sensing arise in a multitude
of relevant physical systems (e.g. magneto-hydrodynamic flows,
chemical reactors, and electrochemical conversion devices). We
formulate both the control and estimation problems using
finite-time optimal control techniques, where the key results
represent first order necessary conditions for optimality. Specif-
ically, the time-varying state-feedback and observer gains are
determined by solving Riccati-type PDEs. These results are
analogous to the Riccati differential equations seen in linear
quadratic regulator and optimal estimator results. In this sense,
this paper extends LQR and optimal estimation results for
finite-dimensional systems to infinite-dimensional systems with
boundary actuation and sensing. These results are unique in
two important ways. First, the derivations completely avoid
discretization until the implementation stage. Second, they
bypass formulating infinite-dimensional systems on an abstract
Hilbert space and applying semigroup theory. Instead, Riccati
equations are derived by applying weak-variations directly on
the PDEs. Simulation examples and comparative analyses to
backstepping are included for demonstration purposes.

I. INTRODUCTION

In this paper we examine the linear quadratic regulator and

optimal estimator problems for linear parabolic diffusion-

reaction partial differential equations (PDEs) with actuation

and sensing at the boundaries. A broad spectrum of physical

engineering systems exhibit diffusion-reaction dynamics, e.g.

structural acoustics [1], fixed-bed reactors [2], multi-agent

coordination control [3], and stock investment models [4].

A subset of these systems limit control and sensing to the

boundaries, such as thermal/fluid flows [5], cardiovascular

systems [6], chemical reactors [7], and advanced batteries

[8]–[10]. Optimal control and estimation of these PDE sys-

tems is particularly challenging since actuation and sensing

are limited to the boundary and the dynamics are notably

more complex than ODE systems. Motivated by this fact, this

paper’s overall goal is to develop optimal boundary control

and estimation algorithms for parabolic PDE systems. We

specifically focus on diffusion-reaction PDEs with Dirichlet

actuation and anti-collocated sensors and actuators. Results

are also limited to finite-time horizons. The approaches
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presented here, however, are general to different system

configurations.

Optimal control of PDE systems has a rich history (see

[11] for a particularly excellent survey of results). One

can generally place this research into two categories. The

first category projects the PDEs onto a finite-dimensional

subspace to render the system into a series of ordinary differ-

ential equations (ODEs). This enables them to apply classical

optimal control results [12]–[14]. Yet this method necessarily

couples the control problem with the projection technique.

The second category of research applies semigroup theory

to represent PDE systems as ODE systems over Hilbert

spaces. From here the classical optimal control results are

extended into infinite-dimensional systems [15]–[17]. Ulti-

mately, these techniques produce so-called operator Riccati

equations which have similarities to the results presented

here.

The main goal of this paper is to bridge the gap be-

tween the aforementioned two categories. Namely, we wish

to separate the discretization techniques from the con-

troller/estimator design by maintaining the analysis in the

infinite-dimensional domain. Secondly, we bypass semigroup

theory and the associated issues with solving operator Riccati

equations by applying optimization theory directly to the

PDEs. Hence, this paper adds two important and original

contributions. First, we derive the first order necessary con-

ditions for optimality of a quadratic cost criterion. These

conditions manifest themselves as coupled PDEs for the

states and co-states with split initial/final conditions. We then

postulate a time-varying feedback control law form, where

the feedback transformation operator satisfies a Riccati-like

partial differential equation. Second, we solve the optimal

estimator problem in a similar manner by deriving first-order

necessary conditions for a quadratic cost criteria that even-

tually produces a dual-Riccati partial differential equation.

In both cases the results are independent of the numerical

scheme used to implement the algorithms. Moreover, the

conditions governing the optimal linear operators are PDE

systems themselves and therefore straight-forward to solve.

Finally, the Riccati PDEs have similarities to the operator

Riccati equations reported by past researchers (e.g., [15]–

[17]), yet are derived using a completely different technique,

namely weak-variations. These features provide an elegant

and accessible method for optimal boundary control and

estimation of parabolic PDE systems.

The remainder of the paper is organized as follows: Sec-

tion II presents preliminary mathematics and notation used

to extend linear optimal control and estimation to infinite-

dimensional systems. Section III presents linear quadratic
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regulator results for diffusion-reaction PDEs. This includes

the open loop control problem, state-feedback, and numerical

examples. Section IV presents the linear estimator results for

diffusion-reaction PDEs with numerical examples. Finally,

Section V summarizes the key results of the paper.

II. MATHEMATICAL PRELIMINARIES &

NOTATION

Here, we introduce some preliminary mathematics useful

for extending linear optimal control to infinite-dimensional

systems.

Linear Operator: A(f(x)) :=
∫ 1

0
A(x, y)f(y)dy

Inner Product: 〈f(x), g(x)〉 :=
∫ 1

0
f(x)g(x)dx

Sifting Property of the ∫

δ(y)f(y) = f(0)
Dirac-delta function:

Derivative of the ∫

δ′(y)f(y)dy = −
∫

δ(y)∂f
∂y

dy
Dirac-delta function:

Subscripts denote partial derivatives with respect to the

notated variable. For example ut = ∂u/∂t and λx = ∂λ/∂x.

Arguments to spatially/temporally dependent variables are

listed in order of space then time. Arguments are dropped

when they are clear from the context. Finally, some proofs

are abbreviated to highlight only key steps of the derivations,

due to space limitations. The full details will be provided in

a future journal publication.

III. LINEAR QUADRATIC REGULATOR

A. Problem Statement

Consider the following class of linear parabolic diffusion-

reaction partial differential equations:

ut(x, t) = uxx(x, t) + cu(x, t) (1)

ux(0, t) = 0 (2)

u(1, t) = U(t) (3)

u(x, 0) = u0(x) (4)

The first term in (1) represents diffusion and the second term

models linear reaction phenomena. Non-unity diffusivity

coefficients, lengths, input gains, etc. can be accounted for by

non-dimensionalizing the system into the form given above.

Suppose we can control the boundary value u(1, t) (Dirich-

let control) and nothing else. Moreover, suppose we have

noiseless measurements of the state available throughout

the spatial domain. Our goal is to develop a state-feedback

controller that optimally regulates the system to the origin.

Specifically, minimize the following quadratic objective over

a finite time-horizon:

J =
1

2

∫ T

0

[

〈u(x, t), Q(u(x, t))〉+RU2(t)
]

dt+

1

2
〈u(x, T ), Pf (u(x, T ))〉 (5)

The symbols Q, R, and Pf are weighting kernels that

respectively weight the state, control, and terminal state

of the closed loop system. Note that R > 0 should be

satisfied to ensure bounded control signals. First, we derive

the necessary conditions for optimality of the open-loop

finite-horizon control problem using weak variations. Instead

of obtaining coupled ordinary differential equations with

split initial conditions for finite-dimensional LQR, we obtain

coupled partial differential equations with split initial con-

ditions. Next, we postulate the open-loop control signal can

be written in state-feedback form and derive the associated

Ricatti equation for the feedback linear operator. This Ricatti

equation is a 2-D spatial, 1-D temporal PDE. We then

demonstrate the LQR result in simulation and compare it

to the backstepping approach.

B. Open Loop Control

We start by deriving the first order necessary conditions

for the open loop finite-time horizon problem.

Theorem 1: Consider the linear diffusion-reaction PDE

described by (1)-(4) defined on the finite-time horizon t ∈
[0, T ] with quadratic cost criteria (5). Let u∗(x, t), U∗(t), and

λ(x, t) respectively denote the optimal state, control, and co-

state that minimize the quadratic cost. Then the first order

necessary conditions for optimality are:

u∗

t (x, t) = u∗

xx(x, t) + cu∗(x, t) (6)

−λt(x, t) = λxx + cλ(x, t) +Q(u∗(x, t)) (7)

with boundary conditions

u∗

x(0, t) = 0 u∗(1, t) = U∗(t) (8)

λx(0, t) = 0 λ(1, t) = 0 (9)

and split initial/final conditions

u∗(x, 0) = u0(x) λ(x, T ) = Pf (u
∗(x, T )) (10)

and the optimal control input is

U∗(t) =
1

R
λx(1, t) (11)

Proof: The necessary conditions are derived via weak

variations [18]. Suppose u∗(x, t) and U∗(t) are the optimal

state and control inputs. Let u(x, t) = u∗(x, t) + ǫδu(x, t),
U(t) = U∗(t) + ǫδU(t) and δu(x, 0) = 0 represent pertur-

bations from the optimal solutions. Then the cost is

J(u∗ + ǫδu, U∗ + ǫδU) =

1

2

∫ T

0

[

〈u∗ + ǫδu,Q(u∗ + ǫδu)〉+R(U∗ + ǫδU)2
]

dt

+
1

2
〈u∗(T ) + ǫδu(T ), Pf (u

∗(T ) + ǫδu(T ))〉 (12)

Define the following quantity

g(ǫ) :=

1

2

∫ T

0

[

〈u∗ + ǫδu,Q(u∗ + ǫδu)〉+R(U∗ + ǫδU)2
]

dt

+
1

2
〈u∗(T ) + ǫδu(T ), Pf (u

∗(T ) + ǫδu(T ))〉

+

∫ T

0

〈λ(x), u∗

xx + ǫδuxx + cu∗ + ǫcδu〉dt

−

∫ T

0

〈λ(x),
∂

∂t
(u∗ + ǫδu)〉dt (13)
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where the last term equals zero and accounts for the system

dynamics constraint (1) in a Lagrangian form. Then the

necessary condition for optimality is dg(ǫ)/dǫ|ǫ=0 = 0.

Differentiating g(ǫ) gives:

dg

dǫ
(ǫ) =

∫ T

0

[〈δu,Q(u∗ + ǫδu)〉+R(U∗ + ǫδU)δU ] dt

+ 〈δu(T ), Pf (u
∗(T ) + ǫδu(T ))〉

+

∫ T

0

〈λ(x), δuxx + cδu−
∂

∂t
(δu)〉dt (14)

We simplify the third term further by applying integration

by parts. Specifically, one can show that

〈λ(x), δuxx(x)〉 = λ(1)δux(1)− λ(0)δux(0)

−λx(1)δu(1) + λx(0)δu(0) (15)

By applying the boundary conditions for δu(x, t) we note

that δux(0, t) = 0 and δu(1, t) = δU(t), resulting in

〈λ(x), δuxx(x)〉 = λ(1)δux(1)− λx(1)δU(t) + λx(0)δu(0)
(16)

One can also use integration by parts to show that:

∫ T

0

〈λ(x), δuxx(x)〉dt = 〈λ(T ), δu(T )〉 − 〈λ(0), δu(0)〉

−

∫ T

0

〈λt, δu〉dt (17)

Note that δu(x, 0) = 0 by definition. Therefore

∫ T

0

〈λ(x), δuxx(x)〉dt = 〈λ(T ), δu(T )〉 −

∫ T

0

〈λt, δu〉dt (18)

At this point we plug (16) and (18) into (14) and collect

like perturbation terms

dg

dǫ
(ǫ) =

∫ T

0

[〈Q(u∗ + ǫδu), δu〉+ 〈λxx + cλ+ λt, δu〉] dt

+

∫ T

0

[R(U∗ + ǫδU)− λx(1)] δUdt

+

∫ T

0

[λ(1)δux(1) + λx(0)δu(0)] dt

+〈Pf (u
∗(T ) + ǫδu(T )), δu(T )〉 (19)

Now we evaluate the previous expression at ǫ = 0 and set it

equal to zero.

dg

dǫ
(ǫ)|ǫ=0 =

∫ T

0

[〈Q(u∗) + λxx + cλ+ λt, δu〉] dt

+

∫ T

0

[RU∗ − λx(1)] δUdt

+

∫ T

0

[λ(1)δux(1) + λx(0)δu(0)] dt

+〈Pf (u
∗(T )), δu(T ) = 0 (20)

For the previous equation to hold true for all arbi-

trary δu(x, t), δU(t), δu(x, T ), the following conditions must

hold:

−λt(x, t) = λxx(x, t) + cλ(x, t) +Q(u∗(x, t)) (21)

λx(0, t) = 0 λ(1, t) = 0 (22)

λ(x, T ) = Pf (u
∗(x, T )) (23)

U∗(t) =
1

R
λx(1, t) (24)

These conditions respectively represent the dynamics, bound-

ary conditions, final condition for the co-state, and the

optimal boundary control. Coupled together with the plant

dynamics, these conditions represent the first order necessary

conditions of optimality, which completes the proof.

Remark 2: In general weak-variations provide the nec-

essary conditions for optimality and the Hamilton-Jacobi-

Bellman equation provides the sufficient condition for opti-

mality. However, both methods provide necessary and suf-

ficient conditions when considering a strictly convex cost

functional, as we do in this paper [15].

C. State-Feedback Control

Now let us consider the state-feedback problem. That is,

let us postulate that the co-state λ is related to the states

according to the time-varying linear transformation:

λ(x, t) = P t(u(x, t)) =

∫ 1

0

P (x, y, t)u(y, t)dy (25)

The superscript on P t indicates the linear operator is time-

dependent.

Theorem 3: The optimal control in state-feedback form is:

U∗(t) =
1

R

[

∂

∂x
P t(u∗(x, t))

]

x=1

(26)

where the time-varying linear transformation P t must satisfy

the following Riccati-like PDE:

−Pt = Pxx + Pyy + 2cP +Q−
1

R
Py(x, 1)Px(1, y) (27)

with boundary conditions

Px(0, y, t) = P (1, y, t) = P (x, 0, t) = P (x, 1, t) = 0 (28)

and final condition

P (x, y, T ) = Pf (x, y) (29)

Proof: The proof consists of evaluating each λ term

in (7), (9), and (10) using the postulated form in (25). Two

boundary conditions for the Riccati PDE result directly from

(9) and the other two arise from integration by parts.

Note that the Riccati-like PDE in (27)-(29) is quadratic

and must be evaluated backwards in time, like the Riccati

differential equation for finite-dimensional systems.

D. Simulation Example

In this section we present simulation examples of the

linear quadratic regulator. Until now the presented results

are independent of the specific numerical scheme used to

implement the controller. That is, the theory is general to any

simulation technique, e.g. finite difference, finite element,

or spectral methods to name a few. In this paper we use
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Fig. 1. Simulation example of state trajectories for the (a) LQR and (b) backstepping controllers.

TABLE I

PARAMETER VALUES FOR LQR SIMULATION EXAMPLES

Parameter Value

Reaction coefficient c = 1

State weight kernel Q(x, y) = 10−2 · I(x, y)

Control weight kernel R = 1

Final state weight kernel Pf (x, y) = I(x, y)

Initial state
u(x, 0) = 0.5 + 0.05 sin(2π × 2x)+

0.02 sin(2π × 5x)− 0.01 sin(2π × 21x)

Time Horizon T = 1

the Crank-Nicolson method to solve PDEs [19]. Throughout

these examples we consider the class of linear parabolic

partial differential equation systems described by (1)-(4).

Here we demonstrate the linear quadratic regulator results,

where the optimal control is given by (26), and the time-

varying linear operator P t is the unique solution of the

Riccati PDE (27)-(29). The parameters for this example are

shown in Table I. Note the state is initialized to an arbitrary

non-zero initial condition. The evolution of the state for the

closed-loop system is displayed in Fig. 1(a), which settles to

the origin by the end of the time horizon. This can also be

seen in the tracking error provided in Fig. 2(a). The boundary

control input is displayed in Fig. 2(b), which decays to zero

as the state reaches the origin. The initial boundary control

value exhibits a sharp spike because it corresponds to the

initial state at the boundary.

E. Comparison to Backstepping

In this section we compare the LQR results to a well-

established boundary control technique - backstepping [20].

The heart of backstepping involves the design of a linear

Volterra transformation that forces the dynamics to an expo-

nentially stable target system. The target system is usually

the heat equation (wt = wxx) with zero boundary conditions

(wx(0, t) = w(1, t) = 0), and is the one we will consider

in this paper. Like the methods presented here, backstepping

ultimately involves the solution of a PDE related to the gain

kernels. It is important to note that the backstepping gains are

static in time, where as the optimal regulator and estimator

gains for finite-time problems are time-varying.

For the state-feedback control problem, it has been shown

in [21] that the backstepping control input is given by

U(t) = 〈k(1, y), u(x, t)〉 =

∫ 1

0

k(1, y)u(y, t)dy (30)

where the gain kernel k(x, y) is related to the solution of the

following Klein-Gordon hyperbolic PDE

kxx(x, y)− kyy(x, y) = ck(x, y) (31)

k(x, x) = −
1

2
cx (32)

ky(x, 0) = 0 (33)

solved on the region {x, y : 0 < y < x < 1}. Using a

summation of successive approximation series, one can show

that the solution to this PDE is

k(x, y) = −cx
I1(

√

c(x2 − y2))
√

c(x2 − y2)
(34)

where I1 is the first-order modified Bessel function of the

first kind. Then the backstepping control input is given in

state-feedback form as

U(t) = −

∫ 1

0

c
I1(

√

c(1− y2))
√

c(1− y2)
u(y)dy (35)

The state-trajectories for the backstepping controller are

shown in Fig. 1(b), adjacent to the LQR controller results.

In comparison, one can see that LQR is more aggressive than

backstepping in forcing the state to the origin. This fact is

also seen in the L2-norm of tracking error plotted in Fig.
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Fig. 2. (a) Tracking error and (b) boundary control inputs for LQR and
backstepping controllers

2(a). The faster convergence rate for LQR is due to higher

magnitude boundary control inputs, as seen in Fig. 2(b). One

may increase the convergence speed for backstepping by

modifying the target system to have a diffusion coefficient

whose value is greater than one, for example. Regardless, the

LQR controller performs well compared to the battle-tested

backstepping approach. The critical design difference is that

tuning the controller amounts to adjusting weighting kernels

in LQR or adjusting the target system in backstepping.

IV. OPTIMAL LINEAR ESTIMATOR RESULTS

A. Problem Statement

In the second part of the paper, we study the estima-

tion problem which considers the following linear parabolic

diffusion-reaction PDE system:

ut(x, t) = uxx(x, t) + cu(x, t) + w(x, t) (36)

ux(0, t) = 0 (37)

u(1, t) = U(t) (38)

u(x, 0) = u0(x) (39)

y(t) = u(0, t) + v(t) (40)

which adds a single measurement at the boundary x = 0
with measurement noise v(t). Moreover, the plant dynamics

contain spatially distributed process noise w(x, t) which rep-

resents model uncertainty. The covariance kernels for process

and measurement noise are W (x, y) and V , respectively.

The initial state is also unknown and modeled as a zero

mean random variable with covariance S0(x, y). Our goal is

to design an optimal boundary measurement observer that

estimates the state variable throughout the domain, in the

presence of process and measurement noise.

The proposed linear estimator is as follows:

ût(x, t) = ûxx(x, t) + cû(x, t) + Lt(y(t)− û(0, t))(41)

ŷ(t) = û(0, t) (42)

with boundary conditions

ûx(0, t) = Lt
0(y(t)− û(0, t)) û(1, t) = U(t) (43)

and initial condition

û(x, 0) = û0(x) (44)

where Lt and Lt
0 are time-varying gains on the output

estimation error. Namely, Lt : C(0, 1) × R
+ → R is a

continuous function over the spatial domain that weights

the innovations and adds them to the dynamics. The gain

Lt
0 : R+ → R is scalar and adds weighted innovations to

the boundary condition.

B. Optimal Signal Injection

As an intermediate step to solving the optimal estimator

problem, we consider optimal signal injection. That is the

output injection terms Lt(y(t) − û(0, t)) and Lt
0(y(t) −

û(0, t)) are replaced with arbitrary signals l(x, t) and l0(t),
respectively. We now design these signals to minimize the

following quadratic cost criteria

J = E

{

1

2
〈ũ(x, T ), S0(ũ(x, T ))〉 (45)

+
1

2

∫ T

0

[〈ũ(x),W (ũ(x))〉] dt

+
1

2

∫ T

0

[

〈l(x), V l(x)〉+ V l20
]

dt

}

where ũ(x, t) = u(x, t) − û(x, t) and represents the state

estimation error. This formulation mimics the open loop

control problem in Section III-B. Here the observer error

states are analogous to the regulated states, the injected

signals are analogous to the control inputs, and the initial

state uncertainty is analogous to the final desired state. Also

note that the cost involves the expectation operator, since

the states are stochastic due to process and measurement

noise. In essence, this cost function optimally balances model

uncertainty with measurement accuracy. Then our immediate

goal is to determine the first-order necessary conditions for

the injection signals which minimize the cost (45).

Lemma 4: Consider the linear diffusion-reaction PDE that

describes the estimation error dynamics (ũ(x, t) = u(x, t)−
û(x, t)) defined on the finite-time horizon t ∈ [0, T ] with

quadratic cost criteria (45). Assume the covariance ker-

nels W (x, y), V (t), S0(x, y) are zero-mean, Gaussian, and

mutually independent. Replace the output injection terms

Lt(y(t)− û(0, t)) and Lt
0(y(t)− û(0, t)) with the injection

signals l(x, t) and l0(t). Let ũ∗(x, t), l∗(x, t), l∗0(t), and

λ(x, t) respectively denote the optimal error state, dynam-

ics injection signal, boundary injection signal, and co-state

that minimize the quadratic cost (45). Then the first order

necessary conditions for optimality are:

ũ∗

t (x, t) = ũ∗

xx(x, t) + cũ∗(x, t)− l∗(x, t) (46)

−λt(x, t) = λxx + cλ(x, t) +W (ũ∗(x, t)) (47)

with boundary conditions

u∗

x(0, t) = −l∗0(t) u∗(1, t) = 0 (48)

λx(0, t) = 0 λ(1, t) = 0 (49)
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and split initial/final conditions

ũ∗(x, 0) = ũ0(x) λ(x, T ) = S0(ũ
∗(x, T )) (50)

and the optimal injection signals are

l∗(x, t) =
1

V
λ(x, t) l∗0(t) = −

1

V
λ(0, t) (51)

Proof: The necessary conditions are derived via weak

variations [18] using the exact same approach as in Section

III-B.

The optimal signal injection does not provide a practical

implementation approach to the observer problem. Indeed,

the goal here is to provide an intermediate step to the next

result.

C. Output Injection

Now we consider output injection. Namely, we postulate

that the co-state for the optimal signal injection problem

is related to the estimator’s output error according to the

following time-varying linear transformation:

λ(x, t) =

∫ 1

0

S(x, y, t)δ(y)ũ(y, t)dy = S(x, 0, t)ũ(0, t)

(52)

where δ(y) is the Dirac delta function used to sift out the

boundary value where the sensor is located.

Theorem 5: The optimal gains for Lt and Lt
0 can be found

by solving the following dual Riccati PDE:

St = Sxx + 2cS −
1

V
S(x, t)S(0, t) +W (x, 0)(53)

S(1, t) = Sx(0, t) = 0 (54)

S(x, 0) = S0(x, 0) (55)

which are related to the output injection gains according to

Lt =
1

V
S(x, t) (56)

Lt
0 = −

1

V
S(0, t) (57)

Proof: The proof consists of evaluating each λ term

in (47), (49), and (50) using the postulated form in (52).

In this derivation the sifting and derivative properties of the

Dirac-delta function, described in Section II, are useful. As

in the state-feedback control derivation, boundary conditions

arise from (49) and integration by parts. This eventually

produces a Riccati-type PDE that is solved backward in

time. We rewrite this PDE by scaling time by a factor of

-1, which produces a PDE that is solved forward in time.

Finally, we note that two boundary conditions arising from

integration by parts and the derivative of the Dirac-delta

function indicate that S(x, y, t) has no variation across the

y dimension. This reduces the PDE into one spatial and one

temporal dimension, providing the result indicated above.

In an analogous situation to finite-dimensional optimal

linear estimators, the dual-Riccati PDE (53)-(55) is solved

forward in time, while the Riccati-PDE in (27)-(29) is solved

backward in time. It is also interesting to note that the dual-

Riccati PDE is 1-D spatial and 1-D temporal, while the

Riccati PDE is 2-D spatial and 1-D temporal. This difference

is related to the fact that the domains of the state-feedback

and output-injection operators are infinite-dimensional and

scalar, respectively.

TABLE II

PARAMETER VALUES FOR ESTIMATOR SIMULATION EXAMPLES

Parameter Value

Reaction coefficient c = 1

Process noise cov. kernel W (x, y) = 10−1 · I(x, y)

Measurement noise variance V = 1

Initial state cov. kernel S0(x, y) = 0.1 · I(x, y)

Exogenous input U(t) = 0.5 + 0.1 sin(2πt)

Initial plant state u(x, 0) = 0.3 ∀x

Initial observer state û(x, 0) = 0.1 ∀x

Time Horizon T = 1

D. Simulation Example

Here we demonstrate the optimal linear estimator results,

where the optimal output injection gains are given by (56)

and (57), and the time-varying linear operator S(x, t) is

the unique solution of the dual Riccati PDE (53)-(55). The

parameters for this example are provided in Table II. The

optimal output injection gains are shown graphically in

Fig. 3. The initial gain is proportional to the covariance
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Fig. 4. Simulation example of state estimation error trajectories for the (a) optimal linear and (b) backstepping observers.
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kernel for the initial state uncertainty. In simulation the noise

covariance kernels used to tune the gains are also applied

on the plant itself. An exogenous input U(t) given by the

expression in Table II is also applied to the system. Finally,

we intentionally initialize the plant and observer at different

initial states (see Table II).

Simulation results for the estimation error are provided in

Fig. 4(a), which approaches zero as time increases. This fact

can also be seen in the L2-norm of the estimation error,

shown graphically in Fig. 5. Thus, the proposed optimal

estimator converges toward the true state.

E. Comparison to Backstepping

In the estimation problem, the backstepping observer

takes the exact same form as the linear optimal estimation

described in (41)-(44). The backstepping procedure renders

the estimation error dynamics into the heat equation target

system. The authors of [22] demonstrated that the observer

gains are related to the solution of the following hyperbolic

Klein-Gordon PDE:

pxx(x, y)− pyy(x, y) = cp(x, y) (58)

p(x, x) =
1

2
c(x− 1) (59)

p(1, y) = 0 (60)

solved on the region {x, y : 0 < y < x < 1} where L(x) =
py(x, 0) and L0 = p(0, 0). Using a summation of successive

approximation series, one can show that the solution to this

PDE is

p(x, y) = −c(1− x)
I1(

√

c(2− x− y)(x− y))
√

c(2− x− y)(x− y)
(61)

where I1 is the first-order modified Bessel function of the

first kind. Then the backstepping observer gains are given

by

L(x) =
c(1− x)

x(2− x)
I2(

√

cx(2− x)) (62)

L0 = −
c

2
(63)

A comparison of the time-varying optimal observer gains

and time-invariant backstepping observer gains are shown

in Fig. 3. In general, these figures indicate that the back-

stepping observer provides more aggressive corrections to

errors in the predicted output, both in the dynamics and at

the boundary. This makes the backstepping observer more

sensitive to noise, however. Both of these properties are seen

in the trajectory of the observer error shown in Fig. 4(b),

adjacent to the optimal estimator results. In particular, the

output injection applied at the boundary condition ux(0, t)
for backstepping results in significantly noisier estimates

relative to the optimal observer. Nonetheless, the overall

estimation error measured in terms of the L2-norm across

the spatial domain in Fig. 5 indicates that the optimal

and backstepping observers have similar convergence rates.

One may desensitize the backstepping estimator to noise

by adjusting the target system, as in the control problem.

Nonetheless we see that the optimal estimator compares

favorably with backstepping. The key differences in each

approach are in the design criteria. The optimal estimator
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is tuned by adjusting the noise covariance kernels whereas

the backstepping observer is tuned by adjusting the target

system.

V. CONCLUSIONS

This paper presents methods for optimal control and

optimal estimation of linear parabolic PDEs characterized

by diffusion-reaction dynamics and actuators/sensors at the

boundaries. The focus is limited to Dirichlet actuation and

anti-collocated actuators/sensors. Through optimal control

techniques first order necessary conditions are derived for

both the optimal control and optimal estimation problems.

In the control case, both open loop and state-feedback

results are presented. In the estimation case, open loop

signal injection provides an intermediate step to obtain output

injection results. In both cases the optimal linear transforma-

tion kernels are governed by Riccati-like partial differential

equations, which have clear connections to the traditional

Riccati differential equations for finite-dimensional systems

and the operator Riccati equations from semigroup theo-

retical techniques for infinite-dimensional systems. These

results are elegant, computationally tractable, and intuitive to

tune. Finally, numerical examples and a comparative analysis

to the established backstepping approach demonstrate the

results presented here.

ACKNOWLEDGMENTS

The authors would like to thank the National Science

Foundation Graduate Research Fellowship Program (NSF

GRFP) for their financial support.

REFERENCES

[1] G. Avalos and I. Lasiecka, “Differential Riccati equation for the active
control of a problem in structural acoustics,” Journal of Optimization

Theory and Applications, vol. 91, no. 3, pp. 695 – 728, 1996.

[2] I. Aksikas, A. Fuxman, J. F. Forbes, and J. J. Winkin, “Lq control
design of a class of hyperbolic pde systems: Application to fixed-bed
reactor,” Automatica, vol. 45, no. 6, pp. 1542–1548, 2009.

[3] G. Ferrari-Trecate, A. Buffa, and M. Gati, “Analysis of coordination
in multi-agent systems through partial difference equations,” IEEE

Transactions on Automatic Control, vol. 51, no. 6, pp. 1058 – 1063,
2006.

[4] T. Zariphopoulou, “Optimal investment and consumption models with
non-linear stock dynamics,” Mathematical Methods of Operations

Research, vol. 50, no. 2, pp. 271 – 96, 1999.

[5] R. Vazquez and M. Krstic, “Explicit output feedback stabilization of
a thermal convection loop by continuous backstepping and singular
perturbations,” in 2007 American Control Conference, 2007 2007, pp.
2177–2182.

[6] S. Dubljevic, “Optimal boundary control of cardiac alternans,” Inter-

national Journal of Robust and Nonlinear Control, vol. 19, no. 2, pp.
135–50, January 2009.

[7] D. Del Vecchio and N. Petit, “Boundary control for an industrial under-
actuated tubular chemical reactor,” Journal of Process Control, vol. 15,
no. 7, pp. 771 – 784, 2005.

[8] M. Doyle, T. Fuller, and J. Newman, “Modeling of galvanostatic
charge and discharge of the lithium/polymer/insertion cell,” Journal

of the Electrochemical Society, vol. 140, no. 6, pp. 1526 – 33, 1993.
[9] T. Fuller, M. Doyle, and J. Newman, “Simulation and optimization

of the dual lithium ion insertion cell,” Journal of the Electrochemical

Society, vol. 141, no. 1, pp. 1 – 10, 1994.
[10] J. C. Forman, S. Bashash, J. L. Stein, and H. K. Fathy, “Reduction

of an electrochemistry-based li-ion battery degradation model via
constraint linearization and pade approximation,” accepted to Journal

of the Electrochemical Society, 2010.
[11] A. Bensoussan, M. C. Delfour, and S. K. Mitter, “The linear quadratic

optimal control problem for infinite dimensional systems over an
infinite horizon; survey and examples,” in Proceedings of the IEEE

Conference on Decision and Control, Dec. 1976, pp. 746–51.
[12] D. Di Domenico, A. Stefanopoulou, and G. Fiengo, “Lithium-ion

battery state of charge and critical surface charge estimation using
an electrochemical model-based extended Kalman filter,” Journal of

Dynamic Systems, Measurement and Control, Transactions of the

ASME, vol. 132, no. 6, 2010.
[13] G. Lube and B. Tews, “Optimal control of singularly perturbed

advection-diffusion-reaction problems,” Mathematical Models and

Methods in Applied Sciences, vol. 20, no. 3, pp. 375 – 395, 2010.
[14] S. Ravindran, “A reduced-order approach for optimal control of fluids

using proper orthogonal decomposition,” International Journal for

Numerical Methods in Fluids, vol. 34, no. 5, pp. 425 – 48, 2000.
[15] A. Bensoussan, Representation and control of infinite dimensional

systems. Birkhauser, 1992.
[16] R. F. Curtain and H. J. Zwart, An introduction to infinite-dimensional

linear systems theory. Springer, 1995.
[17] I. Lasiecka and R. Triggiani, Control theory for partial differential

equations: continuous and approximation theories. Cambridge Uni-
versity Press, 2000.

[18] D. S. Bernstein and P. Tsiotras, A Course in Classical Optimal Control.
Pre-print, 2009.

[19] R. L. Burden and J. D. Faires, “Numerical analysis (7th),” Prindle

Weber and Schmidt, Boston, 2001.
[20] M. Krstic and A. Smyshlyaev, Boundary control of PDEs: A Course

on Backstepping Designs. SIAM Advances in Design and Control
series, 2008.

[21] A. Smyshlyaev and M. Krstic, “Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations,” IEEE Trans-

actions on Automatic Control, vol. 49, no. 12, pp. 2185–202, 12 2004.
[22] ——, “Backstepping observers for a class of parabolic pdes,” Systems

and Control Letters, vol. 54, no. 7, pp. 613–625, 2005.

928


