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Abstract— This paper presents the mean-square joint state
filtering and parameter identification problem for uncertain
nonlinear polynomial stochastic systems with unknown
parameters in the state equation over nonlinear polynomial
observations, where the unknown parameters are considered
Wiener processes. The original problem is reduced to the
filtering problem for an extended state vector that incorporates
parameters as additional states. The obtained mean-square
filter for the extended state vector also serves as the mean-
square identifier for the unknown parameters. Performance of
the designed mean-square state filter and parameter identifier
is verified for both, positive and negative, parameter values.

I. INTRODUCTION

The problem of the optimal simultaneous state estimation

and parameter identification for stochastic systems with

unknown parameters has been receiving systematic treatment

beginning from the seminal paper [1]. The optimal result was

obtained in [1] for a linear discrete-time system with constant

unknown parameters within a finite filtering horizon, using

the maximum likelihood principle (see, for example, [2]), in

view of a finite set of the state and parameter values at time

instants. The application of the maximum likelihood concept

was continued for linear discrete-time systems in [3] and

linear continuous-time systems in [4]. Nonetheless, the use of

the maximum likelihood principle reveals certain limitations

in the final result: a. the unknown parameters are assumed

constant to avoid complications in the generated optimization

problem and b. no direct dynamical (difference) equations

can be obtained to track the state and parameter estimates

dynamics in the ”general situation,” without imposing special

assumptions on the system structure. Other approaches are

presented by the parameter identification methods without

simultaneous state estimation, such as designed in [5], [6],

[7], which are also applicable to nonlinear stochastic systems.

Robust approximate identification in nonlinear systems using

various approaches, such as H∞ filtering, is studied in

a variety of papers [8]–[22] for stochastic systems with

bounded uncertainties in coefficients.

This paper presents the mean-square joint filtering and

parameter identification problem for uncertain nonlinear

polynomial stochastic systems with unknown parameters in
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the state equation over nonlinear polynomial observations.

The solution starts with reduction of the original identi-

fication problem to the mean-square filtering problem for

nonlinear polynomial system states over nonlinear polyno-

mial observations, upon considering the unknown parameters

as additional system states satisfying linear stochastic Ito

equations with zero drift and unit diffusion, i.e., standard

Wiener processes. In doing so, the unknown parameters

are incorporated into the extended polynomial state vector,

which should be mean-square estimated over polynomial

observations. The obtained filtering problem is then further

reduced to the filtering problem for polynomial system states

over direct linear observations, assuming the nonlinear drift

components in the observation equation as more additional

states and including them in the extended state vector. The

latter filtering problem is solved using the mean-square

filter for nonlinear polynomial states over linear observations

([23]). The designed mean-square filter for the extended

state vector also serves as the identifier for the unknown

parameters.

In the illustrative example, performance of the designed

mean-square filter is verified for a nolinear system state

over nonlinear polynomial observations with multiplicative

unknown parameter in the state equation. Both, positive and

negative, values of the parameter in the state equation are

examined. The simulation results demonstrate reliable perfor-

mance of the filter: in both cases, the state estimate converges

to the real state and the parameter estimate converges to the

real parameter value rapidly.

II. MEAN-SQUARE JOINT STATE AND PARAMETER

ESTIMATION PROBLEM FOR NONLINEAR POLYNOMIAL

SYSTEMS

Let (Ω,F , P ) be a complete probability space with an

increasing right-continuous family of σ-algebras Ft, t ≥ t0,

and let (W1(t),Ft, t ≥ t0) and (W2(t),Ft, t ≥ t0) be

independent standard Wiener processes. The Ft-measurable

random process (x(t), y(t)) is described by a nonlinear

polynomial differential equation for the system state

dx(t) = F (x(t), θ(t), t)dt+ b(t)dW1(t) (1)

and a nonlinear polynomial equation for the observation

process

dy(t) = h(x(t), t)dt+G(t)dW2(t) (2)

here x(t) ∈ ℜn is the state vector and y(t) ∈ ℜm is the

observation vector, m ≤ n. The expressions F (x(t), θ(t), t)
and h(x(t), t) are considered polynomials of n variables,
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components of the state vector x(t) ∈ ℜn. Since x(t) is

a vector, this requires a special definition of the polynomials

for n > 1. In accordance with [24], a p-degree and an r-

degree polynomials of a vector x(t) ∈ ℜn are regarded as

p-linear and r-linear forms of n components of x(t)

F (x(t), θ(t), t) = F0(θ(t), t) + F1(θ(t), t)x(t)
+F2(θ(t), t)x(t)x

⊤(t) + . . .

+Fp(θ(t), t)x(t)x(t) . . .p times . . . x
⊤(t),

h(x(t), t) = H0(t) +H1(t)x(t) + . . .

+Hr(t)x(t)x(t) . . .r times . . . x
⊤(t)

(3)

where F0(θ(t), t) is a vector of dimension n, F1(θ(t), t) is

a matrix of dimension n × n, F2(θ(t), t) is a 3D tensor of

dimension n × n × n, Fp(θ(t), t) is a (p + 1)D tensor of

dimension n×n . . .(p+1) times . . .×n and x× . . .p times . . . x

is a pD tensor of dimension n × . . .p times . . . × n obtained

by p times spatial multiplication of the vector x(t) by itself.

Such polynomial can also be expressed in the sumation form

Fk(x(t), θ(t), t) = F0k(θ(t), t) +
∑

i

F1 ki(θ(t), t)xi(t)

+
∑

ij

F2 kij(θ(t), t)xi(t)xj(t) + . . .

+
∑

i1i2...ip

Fp ki1i2...ip(θ(t), t)xi1(t)xi2(t) . . . xip(t),

k, i, j, i1 . . . ip = 1, . . . , n
(4)

and the vector H0(t), the matrix H1(t), the (r+1)D tensor

Hr(t) are defined in a similar way but of dimension m.

θ(t) ∈ ℜp, p ≤ n+n×n+ . . .+n×n . . .p times . . . n in (3)

is the state vector of unknown entries of F0(θ(t), t) ∈ ℜn,

F1(θ(t), t) ∈ ℜn×n, . . ., Fp(θ(t), t) ∈ ℜn×n...
p+1 times ...n.

The unknown entries in Fj(θ(t), t), j = 0, . . . , p are such

that F0i1
= θl(t), l = 1, . . . , p1 ≤ n, F1i1i2

= θl(t), l =
p1 + 1, . . . , p2 ≤ n + n × n, . . ., Fpi1i2...ip

= θl(t), l =
p1+ p2+ . . .+ pp−1+1, . . . , p ≤ n+n×n+ . . .+n×n×
. . .p times . . . n, i1, i1i2, . . . , i1i2 . . . ip represent known and

unknown parameters in F0, F1, . . . , Fp. The initial condition

x0 ∈ ℜn is a Gaussian vector such that x0, W1(t) and W2(t)
are independent. It is assumed that G(t)G⊤(t) is a positive

definite matrix. The coefficients in (1)-(2) are deterministic

functions of appropriate dimensions.

The estimation problem is to find the mean-square estimate

x̂(t) of the system state x(t), based on the observation

process Y (t) = {y(s), 0 ≤ s ≤ t}, that minimizes the

conditional expectation of the Euclidean 2-norm

J = E
[

(x(t)− x̂(t))⊤(x(t)− x̂(t)) | FY
t

]

at every time moment t. E[ξ(t) | FY
t ] means the condi-

tional expectation of a stochastic process ξ(t) = (x(t) −
x̂(t))⊤(x(t)− x̂(t)) with respect to the σ-algebra FY

t gener-

ated by the observation process Y (t) in the interval of time

[t0, t]. As known, this estimate is given by the conditional

expectation

x̂(t) = E
[

x(t) | FY
t

]

of the system state x(t) with respect to the σ-algebra FY
t

generated by the observation process Y (t) in the interval of

time [t0, t]. As usual, the symmetric matrix function

P (t) = E
[

(x(t)− x̂(t))(x(t)− x̂(t))⊤ | FY
t

]

is the estimation error variance.

The solution is based on the results of [23] and is given

as follows.

III. PROBLEM REDUCTION

It is considered that there is no useful information on

the values of the unknown parameters θk(t), k = 1, . . . , p
and this uncertainty even grows as time tends to infinity.

In other words, the unknown parameters can be modeled as

Ft-measurable Wiener processes

dθ(t) = β(t)dW3(t), (5)

with unknown initial condition θ(t0) = θ0 ∈ Rp, where

(W3(t), Ft, t ≥ t0) is a Wiener processes independent of

x0, W1(t) and of W2(t), β(t) ∈ ℜp×p is an intensity matrix.

To apply the mean-square filtering equations from [23] to

the state vector z(t) = [x(t), θ(t)], governed by equations

(1) and (5) over the nonlinear polynomial observations (2),

the state equation (1) should be transformed into a poly-

monial form and the observation equation (2) into a linear

form. For this purpose, a vector A0(t) ∈ ℜn+p, a matrix

A1(t) ∈ R(n+p)×(n+p), an Ap+1(t) tensor of dimension

(n + p) × (n + p) . . .p+2 . . . (n + p), a vector C0 ∈ ℜm,

a matrix C1(t) ∈ ℜm×(n+p), an (r + 1)D tensor Cr(t) ∈
ℜm×(n+p)...(r+1) times ...(n+p)

are introduced as follows.

The equation for the i-th component of the state vector is

given by

dxi(t) = (F0i(t) +
n
∑

j=1

F1ij (t)xj(t)

+

n
∑

j1=1

n
∑

j2=1

F2ij1j2
(t)xj1(t)xj2(t)

+
n
∑

j1=1

n
∑

j2=1

· · ·
n
∑

jp=1

Fpij1j2···jp
(t)xj1(t)xj2(t) . . . xjp(t))dt

+
n
∑

j=1

bij(t)dW1j (t),

xi(t0) = x0i . i = 1, . . . , n

Then: 1.

1) If the variable F0i(t) is a known function, then the i-th

component of the vector A0(t) is set to this function,

A0i(t) = F0i(t); otherwise, if the variable F0i(t) is

an unknown function, then the (i, n + k1)-th entry of

the matrix A1(t) is set to 1, where k1 is the number

of the current unknown parameter in the vector F0(t).
2) If the variable Flij1j2...jl

(t) is a known function, then

the (i, j1, j2, . . . , jl)-th component of the tensor Al(t)
is set to this function, Alij1j2...jl

(t) = Flij1j2...jl
(t);

otherwise, if the variable Flij1j2...jl
(t) is an unknown

function, then the (i, j1, j2, . . . , jl, n + k)-th entry of

the (l + 1)D tensor Al+1(t) is set to 1, where k is

the number of the current unknown entry in the matrix

F1ij1j2...jl
(t), and other matrices of lower dimension
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counting the unknown entries by rows from the first to

the n-th entry in each row.

3) All other unassigned entries of the vector A0(t), matrix

A1(t), lD-tensor Alj1j2...jl
(t), are set to 0.

2.

1) C0i(t) = H0i(t), i = 1, . . . ,m,

2) C1ij1j2...jr
(t) = H1ij1j2...jr

(t), i =
1, . . . ,m, j1, j2, . . . , jr = 1, . . . , n,

3) All other unassigned entries of matrix C1(t), (r+1)D
tensor Cr(t) are set to 0.

Using the introduced notation, the equations for the ex-

tended state vector z(t) = [x(t), θ(t)] ∈ Rn+p and the

polynomial observation process (2) can be rewritten like

dz(t) = (A0(t) +A1(t)z(t) +A2(t)z(t)z
⊤(t) + . . .

+Ap+1(t)z(t)z(t) . . .p+1 times . . . z
⊤(t))dt

+diag[b(t), β(t)][dW⊤
1 (t), dW⊤

3 (t)]⊤,
z(t0) = [x0, θ0],

(6)

dy(t) = (C0(t) + C1(t)z(t) + C2(t)z(t)z
⊤(t)

+ . . .+ Cr(t)z(t)z(t) . . .r times . . . z
⊤(t))dt

+G(t)dW2(t),
(7)

where the vector A0(t), matrix A1(t), . . . , (p + 2)D ten-

sor Ap+1(t), vector C0(t), (r + 1)D tensor Cr(t) have

already been defined. The right-hand sides of (6) and (7)

are polynomials with respect to the extended state vector

z(t) = [x(t), θ(t)].
The estimation problem is now reformulated as to find the

mean-square estimate x̂z(t) = [x̂x(t), x̂θ(t)] of the system

state z(t) = [x(t), θ(t)], based on the observation process

Y (t) = {y(s), 0 ≤ s ≤ t}. This estimate is given by the

conditional expectation

x̂z(t) = [x̂x(t), x̂θ(t)] =
[

E(x(t) | FY
t ), E(θ(t) | FY

t )
]

of the system state z(t) = [x(t), θ(t)] with respect to the σ

- algebra FY
t generated by the observation process Y (t) in

the interval [t0, t]. The symmetric matrix function

P (t) = E
[

([x(t), θ(t)]− [x̂x(t), x̂θ(t)])

× ([x(t), θ(t)]− [x̂x(t), x̂θ(t)])
⊤
| FY

t

]

is the estimation error variance for this reformulated problem.

IV. MEAN-SQUARE JOINT STATE FILTER AND

PARAMETER IDENTIFIER DESIGN

Let us reformulate the problem by introducing the stochas-

tic process

z1(t) = h(z(t), t) = C0(t) + C1(t)z(t) + C2(t)z(t)z
⊤(t)

+ . . .+ Cr(t)z(t)z(t) . . .r times . . . z
⊤(t)

Using the Ito formula (see [25], Section 5.10) for the

stochastic differential of the nonlinear function h(z, t), the

following equation is obtained for z1(t)

dz1(t) =
∂h(z,t)

∂t
dt+ ∂h(z,t)

∂z
(A0(t) +A1(t)z(t) +A2(t)

×z(t)z⊤(t) + . . .+Ap+1(t)z(t)z(t) . . .p+1 times . . .

z⊤(t))dt+ ∂h(z,t)
∂z

(diag[b(t), β(t)][dW⊤
1 (t), dW⊤

3 (t)]⊤)dt

+ 1
2 tr

∂2h(z,t)
∂z2 diag[b(t), β(t)]diag[b(t), β(t)]⊤dt

(8)

with the initial condition z1(0) = z10.

The initial condition z10 ∈ Rm is considered a condi-

tionally Gaussian random vector with respect to observa-

tions. This assumption is quite admissible in the filtering

framework, since the real distributions of z(t) and z1(t) are

actually unknown. Indeed, as follows from [26], if only two

lower conditional moments, expectation x̂0 and variance P0,

of a random vector x̂0 = [z10, z0] are available, the Gaussian

distribution with the same parameters, N(x̂0, P0), is the best

approximation for the unknown conditional distribution of

x̂0 = [z10, z0] with respect to observations. This fact is also

a corollary of the central limit theorem [27] in the probability

theory.

A. Case study: Second degree polynomial state and

second degree polynomial observations

Let us consider the second degree polynomial functions

F (x(t), θ(t), t) = F0(θ(t), t) + F1(θ(t), t)x(t)
+F2(θ(t), t)x(t)x

⊤(t)
h(x(t), t) = H0(t) +H1(t)x(t) +H2(t)x(t)x

⊤(t)
(9)

where x(t) is an n-dimensional vector and F0(θ(t), t),
F1(θ(t), t), F2(θ(t), t), H0(t), H1(t) and H2(t) were previ-

ously defined.

In this case, equations (6)-(7) take the following form

dz(t) = (A0(t) +A1(t)z(t) +A2(t)z(t)z
⊤(t)

+A3(t)z(t)z(t)z
⊤(t))dt

+diag[b(t), β(t)][dW⊤
1 (t), dW⊤

3 (t)]⊤,
z(t0) = [x0, θ0],

(10)

dy(t) =
(

C0(t) + C1(t)z(t) + C2(t)z(t)z
⊤(t)

)

dt

+G(t)dW2(t),
(11)

and z1(t) = C0(t) + C1(t)z(t) + C2(t)z(t)z
⊤(t).

Upon calculating the partial derivatives of h(z, t) in equa-

tion (9), equation (8) takes the form

dz1(t) = (Ċ0(t) + Ċ1(t)z(t) + Ċ2(t)z(t)z
⊤(t))dt

+C1(t)[A0(t) +A1(t)z(t) +A2(t)z(t)z
⊤(t)

+A3(t)z(t)z(t)z
⊤(t)]dt+ C2(t)z(t)[A0(t)

+A1(t)z(t) +A2(t)z(t)z
⊤(t) +A3(t)z(t)z(t)z

⊤(t)]⊤dt
+C2[A0(t) +A1(t)z(t) +A2(t)z(t)z

⊤(t)
+A3(t)z(t)z(t)z

⊤(t)]z⊤(t)dt+ C1(t)
×diag[b(t), β(t)][dW⊤

1 (t), dW⊤
3 (t)]⊤ + C2(t)

×z(t)(diag[b(t), β(t)][dW⊤
1 (t), dW⊤

3 (t)]⊤)⊤

+C2(t)diag[b(t), β(t)][dW⊤
1 (t), dW⊤

3 (t)]⊤z⊤(t)
(12)

with the initial condition z1(0) = z10. Equation (11) can be

written in the form

dy(t) = z1(t)dt+G(t)dW2(t). (13)

Thus, the estimation problem is reformulated as to

find the mean-square estimate x̂(t) = [x̂z(t), x̂z1(t)] =
[x̂1(t) = (x̂x(t), x̂θ(t)), x̂2(t)], for the state vector [z(t) =
(x(t), θ(t)), z1(t)] governed by the polynomial equations

(10),(12), that is based on the observation process Y (t) =
{y(s), 0 ≤ s ≤ t} satisfying the equation (13). The solution

of this problem is obtained using the mean-square filtering
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equations for fourth degree polynomial states over linear

observations [23] and given by

dx̂1(t) = (A0(t) +A1(t)x̂1(t) +A2(t)[x̂1(t)x̂
⊤
1 (t)

+P11(t)] +A3(t)[3x̂1(t)P (t) + x̂1(t)x̂1(t)x̂
⊤
1 (t)])dt

+P12(t)(G(t)G
⊤(t))−1(dy(t)− x̂2(t)dt),

(14)

dx̂2(t) = (Ċ0(t) + Ċ1(t)x̂1(t) + Ċ2(t)(x̂1(t)x̂
⊤
1 (t)

+P11(t)))dt+ C1(t)(A0(t) +A1(t)x̂1(t) +A2(t)(x̂1(t)
x̂⊤1 (t) + P11(t)) +A3(t)(3x̂1(t)P (t) + x̂1(t)x̂1(t)
x̂⊤1 (t)))dt+ C2(t)(x̂1(t)A

⊤
0 (t) + [x̂1(t)x̂

⊤
1 (t)

+P11(t)]A
⊤
1 (t) + [3x̂1(t)P11(t) + x̂1(t)x̂1(t)x̂

⊤
1 (t)]

×A⊤
2 (t) + 3[P11(t)P11(t) + x̂1(t)x̂

⊤
1 (t)P11(t)

+P11(t)x̂1(t)x̂
⊤
1 (t) + (x̂1(t)x̂

⊤
1 (t))

2]A⊤
3 (t))dt

+C2(t)(x̂1(t)A
⊤
0 (t) + [x̂1(t)x̂

⊤
1 (t) + P11(t)]A

⊤
1 (t)

+[3x̂1(t)P11(t) + x̂1(t)x̂1(t)x̂
⊤
1 (t)]A

⊤
2 (t)

+3[P11(t)P11(t) + x̂1(t)x̂
⊤
1 (t)P11(t) + P11(t)x̂1(t)

×x̂⊤1 (t) + (x̂1(t)x̂
⊤
1 (t))

2]A⊤
3 (t))

⊤dt

+P22(t)(G(t)G
⊤(t))−1(dy(t)− x̂2(t)dt),

(15)

with the initial conditions

x̂1(t0) = E
[

z(t0) | F
Y
t0

]

, x̂2(t0) = E
[

z1(t0) | F
Y
t0

]

,

and

dP11(t) = (A1(t)P11(t) + 2A2(t)x̂1(t)P11(t)
+2(A2(t)x̂1(t)P11(t))

⊤ + 3(x̂1(t)x̂
⊤
1 (t)

×P11(t) + P11(t)P11(t)) + P11(t)A
⊤
1 (t)

+3(x̂1(t)x̂
⊤
1 (t)P11(t) + P11(t)P11(t))

⊤

+L(t)L⊤(t)− P12(t)(G(t)G
⊤(t))−1P21(t))dt

(16)

dP12(t) = (A1(t)P12(t) + 2A2(t)x̂1(t)P12(t) + 3A3(t)

×(P11(t)P12(t) + x̂1x̂
⊤
1 (t)P12(t)) + (Ċ1(t)P11(t)

+2Ċ2(t)x̂1(t)P11(t))
⊤ + (C1(t)(A1(t)P11(t) + 2A2(t)

×x̂1(t)P11(t)) + 3A3(t)(P11(t)P11(t) + x̂1(t)
×x̂⊤1 (t)P11(t)))

⊤ + (C2(t)(A0(t)P11 + 2A1(t)x̂1(t)
×P11(t) + 3A2(t)(P11(t)P11(t) + x̂1(t)x̂

⊤
1 (t)P11(t))

+4A3(t)(x̂1(t)x̂1(t)x̂
⊤
1 (t)P11(t) + 3x̂1(t)P11(t)

×P11(t))))
⊤ + (C2(t)(A0(t)P11 + 2A1(t)x̂1(t)P11(t)

+3A2(t)(P11(t)P11(t) + x̂1(t)x̂
⊤
1 (t)P11(t))

+4A3(t)(x̂1(t)x̂1(t)x̂
⊤
1 (t)P11(t) + 3x̂1(t)

×P11(t)P11(t)))
⊤)⊤ + L(t)L⊤(t)C⊤

1 (t) + L(t)L⊤(t)
×(C2(t)x̂1(t))

⊤ + (L(t)L⊤(t)(C2(t)x̂1(t))
⊤)⊤

−P12(t)(G(t)G
⊤(t))−1P22(t))dt,

(17)

dP22(t) = (Ċ1P12(t) + 2Ċ2x̂1P12(t) + (Ċ1P12(t)

+2Ċ2x̂1P12(t))
⊤ + C1(t)(A1(t)P12(t) + 2A2(t)x̂1(t)

×P12(t) + 3A3(t)(P11(t)P12(t) + x̂1(t)x̂
⊤
1 (t)P12(t)))

+(C1(t)(A1(t)P12(t) + 2A2(t)x̂1(t)P12(t) + 3A3(t)
×(P11(t)P12(t) + x̂1(t)x̂

⊤
1 (t)P12(t))))

⊤ + C2(t)(A0(t)
×P12(t) + 2A1(t)x̂1(t)P12(t) + 3A2(t)(P11(t)P12(t)

+x̂1(t)x̂
⊤
1 (t)P12(t)) + 4A3(t)(x̂1(t)x̂1(t)x̂

⊤
1 (t)

×P12 + 3x̂1(t)P11P12(t))) + C2(t)(A0(t)P12(t) + 2A1(t)
×x̂1(t)P12(t) + 3A2(t)(P11(t)P12(t) + x̂1(t)x̂

⊤
1 (t)

×P12(t)) + 4A3(t)(x̂1(t)x̂1(t)x̂
⊤
1 (t)P12 + 3x̂1(t)

×P11(t)P12(t)))
⊤ + (C2(t)(A0(t)P12(t) + 2A1(t)x̂1(t)

×P12(t) + 3A2(t)(P11(t)P12(t) + x̂1(t)x̂
⊤
1 (t)P12(t))

+4A3(t)(x̂1(t)x̂1(t)x̂
⊤
1 (t)P12 + 3x̂1(t)P11(t)P12(t))))

⊤

+(C2(t)(A0(t)P12(t) + 2A1(t)x̂1(t)P12(t)
+3A2(t)(P11(t)P12(t) + x̂1(t)x̂

⊤
1 (t)P12(t))

+4A3(t)(x̂1(t)x̂1(t)x̂
⊤
1 (t)P12 + 3x̂1(t)P11

×P12(t)))
⊤)⊤ + C1(t)L(t)L

⊤(t)C⊤
1 + C1(t)L(t)L(t)

×(C2(t)x̂1(t))
⊤ + (C1(t)L(t)L(t)(C2(t)x̂1(t))

⊤)⊤

+C1(t)L(t)(C2(t)x̂(t))L
⊤(t) + (C1(t)L(t)(C2(t)x̂(t))

×L⊤(t))⊤ + C2(t)x̂1(t)L(t)P11(t)C2(t)x̂1(t)L
⊤(t)

+(C2(t)x̂1(t)L(t)P11(t)C2(t)x̂1(t)L
⊤(t))⊤

+C2(t)x̂1(t)L
⊤(t)P11(t)C2(t)x̂1(t)L

⊤(t)
+(C2(t)x̂1(t)L

⊤(t)P11(t)C2(t)x̂1(t)L
⊤(t))⊤

−P22(t)G(t)G
⊤(t)P22(t))dt

(18)

with the initial condition

P (t0) = E[
(

[z(t0), z1(t0)]− [x̂1(t0), x̂2(t0)]
)

×
(

[z(t0), z1(t0)]− [x̂1(t0), x̂2(t0)]
)⊤

| FY
t0
].

and

L(t) = diag[b(t), β(t)]

Theorem 1. The mean-square filter for the extended

state vector [x(t), θ(t), z1(t)], governed by the equations

(1),(5),(12), over the linear observations (13) is given by

the equations (14)-(15) for the mean-square estimate x̂(t) =
[x̂1(t) = (x̂x(t), x̂θ(t)), x̂2(t) = x̂z1 ] = E([z(t) =
(x(t), θ(t)), z1(t)] | FY

t ) and the equations (16)–(18) for

the estimation error variance P (t) = E(([z(t), z1(t)] −
[x̂1(t), x̂2(t)])([z(t), z1(t)] − [x̂1(t), x̂2(t)])

⊤ | FY
t ). This

filter, applied to the subvector θ(t), also serves as the

identifier for the vectors of unknown parameters θ(t) in the

equation (1), yielding the estimate subvector x̂θ(t) as the

parameter estimates.

Proof: The proof directly follows from the steps 1–3

for designing the coefficients in the extended state equations

(10),(12) and the mean-square filtering equations (14)-(18)

for fourth degree polynomial states over linear observations

which were obtained in [23].

V. EXAMPLE

This section presents an example of designing the mean-

square filter for a nonlinear polynomial stochastic system

with a multiplicative unknown parameter in the state equa-

tion, where a conditionally Gaussian state initial condition

for the extended state vector is additionally assumed.
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Let the real scalar state variable x(t) satisfy the nonlinear

equation with an unknown multiplicative parameter

dx(t) = (1 + θx2(t))dt+ dW1(t) x(0) = x0, (19)

and the scalar observation process be given by the nonlinear

equation

dy(t) = x2(t)dt+ dW2(t) (20)

where W1(t) and W2(t) are Wiener processes, independent

of each other and of a Gaussian random variable x0 serving

as the initial condition in (19). Equations (19) and (20)

represent the conventional form for the equations (1) and

(2), where F (θ(t), x(t)) and h(x(t)) satisfy the equations

given in (9). The parameter θ(t) is modeled as a standard

Wiener process, i.e., satisfy the equation (β = 1)

dθ(t) = dW3(t), θ(0) = θ0, (21)

which can also be rewritten as

θ̇(t) = ψ3(t), θ(0) = θ0

where ψ3(t) is a white Gaussian noise. The Wiener process

W3(t) is independent of x0, W1(t), and W2(t).
The filtering problem is to find the mean-square estimate

x̂z(t) = [x̂x(t), x̂θ(t)] for the nonlinear state (19) and

(20), z(t) = [x(t), θ(t)], using the nonlinear observation

(20), confused with independent and identically distributed

disturbances modeled as white Gaussian noises.

Let us reformulate the problem by introducing the stochas-

tic process z1(t) = h(x, t) = x2(t). Ito formula (see [25])

is used for the stochastic differential of x2(t), where x(t)
satisfies the equation (19), the following equation is obtained

for z1(t)

dz1(t) = (1 + 2θ(t)x(t)z1(t))dt+ 2x(t)dW1(t),
z1(0) = z10.

(22)

The initial condition z10 ∈ R is considered a conditionally

Gaussian random variable with respect to observations. This

assumption is quite admissible in the filtering framework,

since the real distributions of z(t) and z1(t) are unknown.

In terms of the process z1(t), the observation equation (20)

takes the form

dy(t) = z1(t)dt+ dW2(t). (23)

The state equation (19) can be written as

dx(t) = 1 + θ(t)z1(t)dt+ dW1(t) (24)

The obtained filtering system includes three equations,

(24), (21) and (22), for the partially measured state [z(t) =
(x(t), θ(t), z1(t)] and an equation (23) for the observations

y(t), where z1(t) is a completely measured third degree state,

z(t) = [x(t), θ(t)] is an unmeasured second degree state,

and y(t) is a linear observation process directly measuring

the state z1(t). Thus, the estimation problem is reformulated

as to find the mean-square estimate x̂(t) = [x̂z(t), x̂z1(t)]
= [x̂1(t) = (x̂x(t), x̂θ(t)), x̂2(t)], for the state vector [z(t) =
(x(t), θ(t)), z1(t)] governed by equations (24), (21) and (22),

that is based on the observation process Y (t) = {y(s), 0 ≤
s ≤ t} satisfying the equation (23).

The filtering equations (14)–(18) take the following form

for the system (24), (21) and (23)

dx̂x(t) = (1 + x̂2(t)x̂θ(t) + Pθ2(t))dt
+Px2(t)(dy(t)− x̂2(t)dt)

dx̂θ(t) = Pθ2(t)(dy − dx̂2(t))
dx̂2(t) = (1 + 2x̂x(t)x̂2(t)x̂θ(t) + 6x̂x(t)

×Pθ2(t))dt+ P22(t)(dy(t)− x̂2(t)dt)

(25)

with the initial conditions x̂x(0) = E(x0 | y(0)), x̂θ(0) =
E(θ0 | y(0)) and x̂2(0) = E(x20 | y(0)), and

dPxx(t) = (1 + 4x̂2(t)Pxθ(t))dt− P 2
x2(t)dt

dPxθ(t) = (2x̂2Pθθ(t)− Px2Pθ2(t))dt
dPx2(t) = (2x̂2Pθ2(t) + 6x̂x(t)x̂2(t)Pxθ(t))dt

+(6Px2(t)Pxθ(t) + 2x̂x(t)− Px2(t)P22(t))dt
dPθθ(t) = (β2 − P 2

θ2(t))dt
dPθ2(t) = (6x̂x(t)x̂2(t)Pθθ(t) + 6Px2(t)Pθθ(t))dt

−P22(t)Pθ2(t)dt
dP22(t) = 12x̂x(t)x̂2(t)Pθ2(t)dt+ 12Px2(t)Pθ2(t)dt

+(4x̂2x(t) + 4Pxx(t)− P 2
22(t))dt

(26)

with the initial condition

P (0) = E
(

(

[x0, θ0, z10]− [x̂x(0), x̂θ(0), x̂2(0)]
)

×
(

[x0, θ0, z10]− [x̂x(0), x̂θ(0), x̂2(0)]
)⊤

| y(0)
)

.

Here, x̂x(t) is the estimate for the state x(t), x̂θ(t) is the

estimate for the state θ(t) and x̂2(t) is the estimate for the

state z1(t) = x2(t).
Numerical simulation results are obtained by solving the

systems of filtering equations (25)–(26). For the filter (25)–

(26) and the reference system (21)–(24), involved in simu-

lation, the following initial values are assigned: x(0) = .4,

x̂2(0) = 1, Pxx(0) = 180, Pxθ(0) = 12, Px2(0) = 12,

Pθθ(0) = 50, Pθ2(0) = 56, P22(0) = 150. The unknown

parameter θ in the state equation is assigned as θ = −0.5 in

the first simulation and as θ = 0.5 in the second one, thus

considering stable and unstable cases. Gaussian disturbances

dW1(t), dW2(t), dW3(t) are realized using the built-in

MatLab white noise functions.

Figure 1 shows the graphs of the estimate for the parameter

x̂θ(t), (for θ = −0.5), the reference state variable x(t) and

its estimate x̂x(t), the state z1(t) = x2(t) and its estimate

x̂2(t), in the simulation interval [0,1]. Figure 2 shows the

graphs of the estimate for the parameter x̂θ(t), (for θ = 0.5),

the reference state variable x(t) and its estimate x̂x(t), the

state z1(t) = x2(t) and its estimate x̂2(t), in the simulation

interval [0,0.7]. The simulation results show very reliable

behavior of the designed filter and parameter identifier in

both cases.
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Fig. 1. Negative parameter value of θ. Above. Graphs of the parameter θ
(thin line) and its estimate x̂θ(t) (dotted line). Middle. Graphs of the state
x(t) (thin line) and its estimate x̂x(t) (dotted line). Below. Graphs of the
state z1(t) (thin line) and its estimate x̂z1 (t) (dotted line) in the interval
[0, 1].
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Fig. 2. Positive parameter value of θ. Above. Graphs of the parameter θ
(thin line) and its estimate x̂θ(t) (dotted line). Middle. Graphs of the state
x(t) (thin line) and its estimate x̂x(t) (dotted line). Below. Graphs of the
state z1(t) (thin line) and its estimate x̂z1 (t) (dotted line) in the interval
[0, 0.7].
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