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Abstract— This article considers the problem of using a net-
work of NC dynamic pan, tilt, zoom cameras, each mounted at
known and fixed locations, to track and obtain high resolution
imagery for NT (t) mobile targets each maneuvering within
a confined space. The number of targets is time-varying, the
targets are free to maneuver, the targets may enter or leave the
region under surveillance so that NT (t) is time-varying and
may exceed NC .

Tracking a target is defined as estimating the position of the
target with horizontal uncertainty less that a specified threshold
P̄ . Imaging a target is defined as obtaining an image with
vertical resolution exceeding r̄. The problem is to organize the
pan, tilt, and zoom parameters of the network of cameras at
each sampling instant such that the tracking specification for all
targets and the imaging specification for specific targets at times
of opportunity is achieved. This problem could be addressed
by centralized or decentralized methods. In this article, we are
focused on distributed control of the camera network.

We develop a distributed optimization solution, where we
consider each camera to be an individual decision making agent.
The solution involves formulation of the approach, design of
a value function, and design of a probability-based camera
ordering mechanism to aid convergence of the distributed
network solution towards an optimal solution. Our approach is
developed within a Bayesian approach to appropriately trading-
off value V (target tracking accuracy and target resolution)
versus risk (probability of losing track of a target). This article
presents the theoretical solution along with simulation results.
Implementation on a camera network are in progress.

I. INTRODUCTION

Networks of video cameras are being installed for a variety

of applications, such as surveillance and security, environ-

mental monitoring, and disaster response. Existing camera

networks consist mostly of fixed cameras covering large

areas. This results in situations where some targets are often

not covered at the desired resolutions or viewpoints, making

the analysis of the video difficult, while some cameras are

imaging space that is devoid of interesting entities. Networks

of actively controlled pan, tilt, zoom cameras could allow for

maximal utilization of the imaging resources by allowing

the cameras to differentially focus on multiple regions of

interest through dynamic camera parameter selection. Such

a setup will thus provide greater flexibility while requiring

less hardware.

A prototypical application is a security screening check-

point at the entrance to a building. Over the course of each
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day a high volume of people flow through the room. The

number of cameras is fixed while the number of persons in

the room is time varying. At any given time, the objective

of the camera network is to maintain tracking (i.e., state

estimation) for all persons in the room and to capture high

resolution images for certain persons in the room.

In this paper, we focus on the problem of controlling

the cameras in a wide-area active camera network so as

to maximize multi-target tracking performance. In order to

achieve this, it is necessary to assign the camera parameters,

dynamically so as to obtain high fidelity target imagery

and tracking. This means that based on the tracks and

tracking error estimates, we need to control the cameras so

as to minimize the tracking error and get imagery at the

desired resolutions and poses. It is also desirable in many

applications for the tracking and control mechanisms to be

distributed due to bandwidth and security constraints. This

would require each camera to act as an autonomous agent

and cooperatively track targets and decide actions.

II. PROBLEM DESCRIPTION

The overall goal of this paper is to develop distributed

camera control for optimal tracking in wide-area environ-

ments. Our problem domain envisions a number of cameras

NC placed in and around the region under surveillance and a

time-varying number of targets NT (t). These cameras have

known fixed locations with dynamic pan ρ, tilt τ , and zoom ζ

parameters. In a decentralized framework, the cameras coop-

erate such that each camera selects its dynamic parameters

(ρ, τ, ζ) to optimize a global value function cooperatively.

The target locations vary with time in a manner that is not

known a priori to the cameras; therefore, the state of each

target must be estimated from the camera imagery.

Targets are not directly assigned to cameras. Instead, the

i-th camera selects its parameters ai = (ρi, τi, ζi), which

results in a field-of-view (FOV) for the resulting image. That

image may contain multiple targets and each target may be

imaged by multiple cameras.

At the time that each camera selects its parameters for

the image scheduled to occur at the future time tk+1, the

target locations at tk+1 are unknown. Based on the last set

of imagery from time tk, the target state estimation process

provides a prior mean x̂j(k + 1)− and covariance matrix

Pj(k + 1)− for all targets (i.e., j = 1, . . . , NT ). Due to

uncertainty in the target state xj(k + 1) there is a tradeoff
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in the camera parameter selection between tracking gain and

coverage risk. Therefore, we develop our approach within a

Bayesian framework.

A. Overall Problem

Consider the time interval t ∈ (tk, tk+1) where tk is

the time of the last set of images and tk+1 is the time

scheduled for the next set of images. During this time interval

several processes must be accomplished, see Fig. 1. Each of

the cameras in our network has its own embedded target

detection module, an Extended Kalman-Consensus tracker

[1], [2] that provides a distributed consensus estimate on

the state of each target, and finally a distributed camera

parameter selection mechanism. Fig. 2 depicts the series

of temporal events. Below the timeline in Fig. 2 variables

are listed at the time that they are available. Notation as

described below is summarized in Table I.

The first process is target detection. The target detection

module in each camera takes its raw image and returns the

image plane positions of each target recognized in the image.

Communication between cameras is allowed to enhance the

processes of feature detection and association for target

recognition [3]. In Fig. 2 the time of completion of this

process is denoted as tβ . At tβ , each camera has computed

the pixel coordinate measurement of each recognized target

within its FOV. Assuming that target j is within the FOV of

camera i, this image frame measurement of the pixel location

of target j by camera i valid at time tk is denoted by iuj(k).
This measurement is broadcast to neighboring cameras.

The second process is target state estimation. Using its

own image plane position measurements and those received

from the camera network, each camera implements a con-

sensus state estimation algorithm [1], [2], [3], [4] to compute

a posterior mean x̂j(k)+ and covariance matrix Pj(k)+

for all targets (i.e., j = 1, . . . , NT ). Using the posterior

information from tk and the assumed target model, the prior

mean x̂j(k + 1)− and covariance matrix Pj(k + 1)− for

all targets is computed as an input to the camera parameter

selection process. In Fig. 2 the time of availability of the

prior information is indicated as tδ.

The third process is selection of the camera parameters

for the next image. This process is the main focus of the

present article. In Fig. 2, the parameter selection process

occurs for t ∈ (tδ, tǫ), leaving the interval t ∈ (tǫ, tk+1) for

the cameras to achieve the commanded parameter settings.
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Fig. 1. Information exchange shown is only between neighboring cameras.

TABLE I

NOTATION SUMMARY

Parameter Variable

Pan, Tilt, Zoom (ρ, τ, ζ)
Focal length F
No. of Cameras, No. of Targets in region NC , NT

i-th camera, j-th target Ci, T
j

(ρ, τ, ζ) settings for Ci, all cameras except Ci ai, a
−i

(ρ, τ, ζ) settings for all cameras a

Tracking Utility, Imaging Utility for T j U
j
T
(a), Uj

I
(a)

Global Utility U(a)
Expected value of U(a) over all targets V (a)
Weight for importance of imagery of T j wj

State vector for T j xj

State est., state est. covariance for T j x̂j , Pj

Fisher Information Matrix J

Measurement Vector, Measurement Covariance u, C

Rotation Matrix from frame a to frame b b
aR

Entity b before, after new measurement b−, b+

Entity b in global frame, frame defined by Ci
gb, ib

Entity b at time-step tk b(k)
Entity b for target T j bj

The camera parameter selection process is designed as a

distributed optimization. Let ai, a−i, and a, respectively,

represent the vector of parameter settings for the i-th camera,

all cameras other than the i-th camera, and all cameras. At

the time that camera i is adjusting ai the parameters in a−i

are held constant. Over the time interval t ∈ (tδ, tǫ), each

camera will have various opportunities to adjust its parameter

settings and communicate its revised settings to the network,

such that the entire vector a converges towards the optimal

settings for the upcoming image at tk+1.

It must be noted that cameras take images at times tκ =
κT
M

, where κ is the image number and M is the number

of frames the designer may choose to have between per-

forming the parameter selection process. Thus, optimization

occurs every tk = tκM , and measurements and KF time

propagation occur each tκ. If desired, the designer can have

M = 1.

The sequence of activities repeats in the time interval

between any two images.

B. High Resolution Image Capture

In addition to target tracking we are interested in obtaining

high-resolution imagery for certain targets. The importance

of imagery for specific targets is indicated by weights

{wj}NT

j=1 in the utlity function. This weight can be made to

change subject to scene analysis or if prior high-resolution
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Fig. 2. Timeline of events between image sample times.
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imagery of the target has been performed. Imagery from

specific aspect angles may also be desirable and would be

achieved using the assumption that the aspect angle is related

to the direction of target motion. By including resolution

specifications, aspect angle, and target importance in the

utility function, we can further enhance the performance of

the network, by making it possible to procure high resolution

images of targets.

C. Related Work

The research presented in this paper is related to active

vision [5], [6], [7]. Active vision in a camera network is

a relatively unexplored area that involves cooperation and

coordination between many cameras. There is a large amount

of recent work dealing with networks of vision sensors.

Some recent work has dealt with computing the statistical de-

pendence between cameras, computing the camera network

topology, tracking over unobserved areas of the network, and

camera handoff [3], [8], [9], [10], [11], [12], [13]. However,

there is little work that deals with distributed tracking and

control in active camera networks. The most relevant papers

on the topics of tracking and camera parameter selection are

discussed below.

In [14], a distributed cluster-based Kalman filter was

proposed as a target tracking approach. This method required

a camera to aggregate all the measurements of a target to

estimate its position before transmitting the result to a central

base station. The approach in [3], used herein, considers

a different network topology where each camera can only

communicate with its neighboring cameras. Each camera has

a consensus-based estimate of each target’s state removing

the need to aggregate measurements at a single cluster head.

A method for tracking targets in a network of PTZ

cameras was proposed in [15]. The authors used a mixture

of passive and active PTZ cameras to persistently track

pedestrians in a virtual environment. This was achieved using

a partially distributed, partially centralized hybrid approach.

In our method we consider a completely distributed solution

using consensus algorithms for tracking and a distributed

optimization framework for camera parameter selection.

An interesting game-theoretic consensus based approach

to the agent-target assignment problem was proposed in [16].

That article is not related to camera networks and addresses

a different class of problems: targets are stationary at known

locations, agents are mobile with known locations, one target

is explicitly assigned to each agent.

A game-theoretic approach to camera control, limited to

the area coverage problem was presented in [4]. The authors

proposed a distributed tracking and control approach that

requires the camera control and tracking to run independently

and in parallel. The camera control used game theory to

assign camera settings that provided coverage over regions of

interest while maintaining a high resolution shot of a target.

Concurrently, a Kalman-Consensus filter provided tracks of

each target on the ground plane.

Our proposed method differs from this in that the camera

control is aware of the state of the Kalman-Consensus filter

and actively seeks to provide it with the best measurements.

Furthermore our approach considers the estimate error co-

variance in addition to the estimated state of each target.

This allows us to gauge the risk of failing to capture a

feature when attempting high resolution shots. Our goal in

this paper is to show that through active control of cameras

we can minimize the tracking error of targets in a network

of cameras.

III. SYSTEM MODEL

The position of the i-th camera in the global frame is

indicated by gpi. In addition to the global frame, each camera

defines a frame of reference. The position of T j in the global

frame would be indicated as gpj and in the frame of the i-th

camera as ipj . The time propagation models [17] for state

estimation of T j are stated below.

A. Time propagation models

The continuous-time state space model of target T j is:

ẋj(t) = Fxj(t) + Gωj(t) (1)

where, xj = [gpj ; gvj ], where gpj and gvj are position

and velocity, and j = 1, . . . , NT is the target number. The

process noise vector ω ∈ ℜ3 is zero mean Gaussian with

power spectral density Q.

The discrete-time equivalent model is:

xj(k + 1) = Φxj(k) + γ(k) (2)

Here, Φ = eFT , γ ∼ N (0,Qd), and T = tk+1 − tk is

the sampling period. Thus, the state estimate and its error

covariance matrix are propagated between sampling instants

using:

x̂
j(k + 1)− = Φx̂

j(k)+ (3)

Pj(k + 1)− = ΦPj(k)+Φ⊤ +Qd (4)

B. Coordinate Transformations

Target T j’s position in the i-th camera frame is related to

its position in the global frame by:

gpj = g
i R ipj + gpi (5)

ipj = i
gR[gpj − gpi]. (6)

where i
gR is a rotation matrix that is a function of the camera

mounting angle, the pan angle, and the tilt angle.

C. Measurement Model

This section presents the nonlinear and linearized mea-

surement models for target T j when imaged by camera

i. The linearization is performed relative to the targets

estimated position gp̂j . In the remainder of this section, all

measurement vectors are computed at tk. The time argument

and subscripts are dropped to simplify the notation where

understanding of the material is not compromised.

We assume that positions gp̂j and gpi are known, that

the rotation matrix i
gR(ρi, τi) is a known function of the pan

and the tilt angles, and that the focal length Fi is a known

function of the zoom setting ζi.
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Let the coordinates of target T j in the i-th camera

frame be ipj =
[

ixj , iyj , izj
]⊤

. Using the standard pin-

hole camera model with perspective projection [18], the

projection of ipj onto the image plane of camera i is

iuj =
[

Fi

ixj

izj , Fi

iyj

izj , Fi

]⊤

. Thus, the image plane

measurement iuj is:

iuj =

[

Fi

ixj

izj

Fi

iyj

izj

]

+ iηj (7)

where the measurement noise iηj ∼ N (0,C
j
i ) with C

j
i > 0

and C
j
i ∈ ℜ2×2.

Given the estimated state and the camera model, the

predicted estimate of the measurement is:

iû
j =

[

Fi

ix̂j

iẑj

Fi

iŷj

iẑj

]

. (8)

The measurement residual iũ
j

is defined as:

iũ
j = iuj − iû

j
. (9)

D. Observation Matrix H
j
i

Given gpi,
gp̂

j
, and i

gR, subsequent analysis will use the

linearized relationship given by the first order Taylor series

expansion of eqn. (7) around the estimated state. The linear

relationship between the residual and the state error vector

is:
iuj − iû

j ≈ H
j
i (

gpj −g p̂
j) (10)

where H
j
i =

∂iuj

∂gpj

∣

∣

∣

g p̂j
∈ ℜ2×3. Taking the partial derivatives

as defined above, it is straightforward to show that:

H
j
i =

Fi

(iẑj)2

[

gN
j⊤

1

gN
j⊤

2

]

(11)

where,

gN
j
1 = g

i RiN
j
1

iN
j
1 =

[

iẑj, 0,−ix̂j
]⊤

gN
j
2 = g

i RiN
j
2

iN
j
2 =

[

0,i ẑj,−iŷj
]⊤

are the vectors normal to the vector from camera i’s origin to

the j-th target’s estimated position ip̂
j
. Let us define matrix

gNj⊤ as follows:

gNj⊤ =

[

gN
j⊤

1

gN
j⊤

2

]

(12)

Thus, the observation matrix can be written as:

H
j
i =

Fi

(iẑj)2
gNj⊤ (13)

IV. DESIGNING THE VALUE FUNCTION V

This section discusses the value function V (a) and the

properties it should possess. The objective is to allow

distributed optimization over the camera network to select

camera parameters a such that this value function is maxi-

mized. The design of the value function should first ensure

that all targets are tracked at all times, while encouraging

high resolution imagery at instants of time when they are

possible without sacrificing the tracking specification. The

value function will be the sum of two terms.

1) Tracking: The first term, formulated via the Fisher

Information matrix, will be monotonically increasing

with the tracking accuracy of the target that is least

accurately tracked.

2) Imaging: The second term is a function of the

weighted resolution of the target imagery. This second

term is premultiplied by a scalar that is near zero until

the tracking accuracy for all targets exceeds a user-

defined threshold P̄ .

A. Fisher Information

When the target state estimation process completes at tδ,

a prior position estimate gp̂
j(k + 1)− is available for the

j-th target at the future image sample time tk+1, along

with a prior covariance matrix Pj(k+1)−. In the remainder

of this section, all covariance and information matrices are

computed at tk+1. The time argument is dropped to simplify

the notation. The posterior information matrix is denoted as

Jj+ =
(

Pj+
)−1

which is a function of the camera settings

a:

Jj+ = Jj− +

NC
∑

i=1

H
j⊤

i

(

C
j
i

)−1

H
j
i (14)

because each H
j
i is a function of ai, as was shown in Section

III-D. Note also that, through H
j
i , the posterior information is

a function of the target position which is a random variable
gpj ∼ N (gp̂

j
,Pj−); therefore, Jj+ is a random variable.

Finally, note that C
j
i is finite only when T j is within the

field-of-view of Ci; otherwise the corresponding term of the

summation has value zero.

Eqn. (14) can be decomposed as:

Jj+ =

(

Jj− + H
j⊤

−i

(

C
j
−i

)−1

H
j
−i

)

+ H
j⊤

i

(

C
j
i

)−1

H
j
i .

This decomposition is convenient for decentralized optimiza-

tion, because while Ci is optimizing its parameters ai, the

contribution from prior information and all other cameras

(term in parenthesis) is constant.

After optimizing ai, Ci broadcasts its parameter settings

to its neighbors which propagate them through the network.

In this manner, while any camera is locally optimizing its

settings, it is accounting for both the prior information and

the currently best settings of all the other cameras.

Note that in all summations in this section the information

H
j⊤

i

(

C
j
i

)−1

H
j
i for T j from Ci is only actually received if

the actual position of T j at the time of the next image is

within the field-of-view (FOV) of Ci in the next image. In

the subsequent sections, the phrase “if in FOV” will be used

to succinctly indicate this fact.

B. Utility U(a)

The parameter settings a determine the Fisher information

and the FOV for each camera. Define a tracking utility U
j
T (a)

as:

U
j
T (a) = min

(

diag
(

Jj+
))

. (15)
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In addition, define:

θ = min
j

(

U
j
T (a)

)

(16)

j̄ = argmin
(

U
j
T (a)

)

(17)

The symbol θ is the information about least accurately

tracked coordinate over all targets. The integer j̄ is the index

of that target.

The utility function is defined as:

U(a) =

NT
∑

j=1

(

U
j
T (a) + g(θ)wjU

j
I (a)

)

. (18)

In this definition, U
j
I (a) is a function that rewards high

resolution imagery of T j , wj is a possibly time varying

weight that magnifies the importance of imagery for certain

targets relative to others, and g is a continuously differen-

tiable monotonically increasing bounded function such as

g(θ) = 1

1+exp (λ(P̄−θ))
. Such a choice of g, for large λ,

ensures that the maximization of U
j
I (a) for any target is

only factored in if all coordinates of all targets are expected

to exceed the accuracy specified by P̄ .

Assuming quality of image capture to be a function of the

number of pixels on the target being imaged, it is desirable to

have U
j
I (a) as a monotonically increasing function but only

until an imaging threshold r̄(a) is met. Let the threshold r̄(a)
be a function of the maximum number of pixels permissible

on the target in the image for efficient target recognition.

Subsequently, U
j
I (a) should monotonically decrease. Various

choices are possible for U
j
I (a) depending on the desired

behavior. One will be considered in the implementation

section.

In many instances, only one high-resolution image per

target is required. Once one such image is acquire for T j ,

then wj can be set to zero so that high-resolution imagery

for T j has no added value in the future.

C. Bayesian Value V (a)

Because the utility U(a) that is actually received is depen-

dent on the random variables gpj(k+1) for j = 1, . . . , NT ,

through H
j
i and the FOV, the utility is a random variable.

Therefore, the optimization will be based on the Bayesian

value function:

V (a) = E
〈

U(a; gpj , j = 1, . . . , NT )
〉

(19)

=

∫





∑

j

(

U
j
T (a) + g(θ)wjU

j
I (a)

)



 pp (ζ) dζ

The dummy variable ζ is used for integration over the ground

plane and pp is the Normal distribution N (gp̂
j
,Pj−

pp) of

the predicted position of T j in the global frame at the

next imaging instant, where Pj−
pp represents the position

covariance matrix. Note that, U
j
T (a) must account for FOV,

as discussed after Eqn. (14).

V. BIASED PROBABILISTIC CAMERA ORDERING

Each camera will optimize their own camera parameters

ai by maximizing the Bayesian Value Function V (a) defined

in Eqn. (19). The next camera to perform optimization will

be randomly selected in a manner to favor the camera that

is expected to be able to make the largest improvement to

the target that is currently tracked the worst.

The posterior Information matrix for the j-th target Jj+

can be represented in block form as:

Jj+ =

[

Jj+
pp Jj+pv

Jj+
vp Jj+vv

]

(20)

where Jj+
pp represents the position information matrix. Using

Singular Value Decomposition, the position information Jj̄+pp

of the worst tracked target can be factored as:

Jj̄+pp = MΣM⊤ (21)

=
[

m1 m2

]

[

σ1 0
0 σ2

] [

(m1)
⊤

(m2)
⊤

]

(22)

In this factorization, m1 and m2 are orthonormal information

vectors and σ1 and σ2 are the information in the directions

of m1 and m2, respectively. Since we have assumed that

all targets lie on the ground, we care only about horizontal

uncertainty. From Eqns. (12) and (13), we use the horizontal

component gN
j̄
1 of H

j̄
i , for i = 1, · · · , NC to define a set of

scalars α
j̄
i as:

α
j̄
i =

∣

∣

∣

∣

(

gN
j̄
1

)⊤

· m
j̄
2

∣

∣

∣

∣

(23)

The scalar α
j̄
i measures the alignment of Ci’s horizontal

observation vector with T j̄’s worst information vector.

The vector α
j̄
−i = [αj̄

1, . . . , α
j̄
i−1, α

j̄
i+1, . . . , α

j̄
Nc

] is nor-

malized as:

β =
α

j̄
−i

‖αj̄
−i‖1

(24)

to be a probability vector (i.e. ‖β‖ = 1). Given β =
[β1, . . . , βNC−1], define the partition of [0, 1] as:

µl =

l
∑

n = 1

βn

with µ0 = 0, and µNC
= 1. A uniform random number

on [0, 1] will have probability βl of being in [µl−1, µl], for

l = 1, . . . , NC − 1. This interval selects the index, not equal

to i, for the next camera to perform optimization, in a manner

that biases the selection towards those cameras with the best

ability to improve U
j̄
T for the worst tracked target T j̄ .

In a sequentially-ordered network, convergence to an opti-

mum would greatly depend on the number of cameras in the

network. In a ‘best-camera’ approach, the camera with the

highest probability will always be selected to optimize next,

and may lead to ignoring agents in the network that might be

able to add more value. Thus, a probabilistic camera ordering

mechanism is proposed. It should be noted that calculation of

µl is independent of the potential camera settings that might

be selected by the camera but is dependent on the prior Fisher
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information and the current settings a along with the camera

to target normal vector, which is completely independent of

a. The camera with the largest β may or may not currently

be looking at the target for the given settings a. If selected to

optimize next, it may or may not select settings that image

the target.

Optimization stops when either an optimum is achieved, a

user-defined stopping condition is met, or as shown in Fig 2,

the time interval t ∈ [tδ, tǫ] allotted for optimization elapses.

After optimization, cameras reconfigure themselves in the

time interval t ∈ [tǫ, tk+1], in readiness for upcoming images

at tk+1.

VI. IMPLEMENTATION

This section describes an implementation of the procedure

proposed in this article, implemented in a simulation in

MATLAB.

A. Imaging Utility U
j
I (a)

Let us define the imaging utility U
j
I (a) as:

U
j
I (a) = exp



−

(

U
j
T (a)− r̄

σr

)2


 (25)

where r̄ is a user-defined parameter to provide a measure of

the quality of image capture and σr is a parameter defining

the width of acceptable variation about r̄. As future research,

we will define the imaging utility as a function of the

number of pixels captured on the target. With all components

now defined, each camera can now apply an optimization

algorithm of our choosing to maximize V (a).

B. Optimization

Assume that it is Ci’s turn to optimize first. Ci receives

camera parameters a−i. It uses its existing parameters ai,

and incoming parameters a−i, to compute Eqn. (14) and

then optimizes parameters ai, with parameters a−i staying

constant. The sequence in which the NC cameras optimize

Fig. 3. Optimization for scenario 4 with w5 = 1

between t ∈ [tδ, tǫ], is biased using the probabilistic ranking

procedure described in section V. We use the Golden Section

Search method [19], which is a one dimensional optimization

algorithm for optimization.

C. Results

For the purpose of simulation, we assumed an area of

144 m2 being covered by NC = 3 calibrated cameras with

positions:

C1 = [6, 0, 5]⊤ C2 = [0, 6, 5]⊤ C3 = [12, 6, 5]⊤

Using position estimates of NT = 5 targets located randomly

within the area, we evaluated the system for multiple target

position scenarios. In scene 1, the targets were positioned

close to each other. In scene 2, they were split up in two

bunches. For scene 3, the targets were placed isolated from

each other, and in scene 4, one target was kept isolated from

a bunch of other targets.

1) Consistency: To evaluate consistency of solutions, we

started optimization N = 100 times, from random initial pa-

rameter settings and compare the final results. The optimum

stopping conditions were ρ̃ = 1◦ and F̃ = 10−3 mm. The

results are as shown in Tables II and III, where ρ̄ and F̄ are

the mean for the pan and focal length and σρ and σF are

the standard deviation.

TABLE II

PAN RESULTS FOR MULTIPLE SCENARIOS IN degrees

C1 C2 C3

Scenario ρ̄, σρ ρ̄, σρ ρ̄, σρ

1 8.9, 1.1 2.9, 0.8 11.3, 0.9
2 3.4, 0.8 17.5, 0.5 9.6, 1.2
3 2.7, 0.1 17.2, 1.1 9.2, 1.1
4 9.8, 0.3 6.9, 0.6 2.7, 0.7

For any scenario, all targets were always tracked to an

accuracy better than P̄ = 1 m, and when an opportunity

arose, the network responded to specific highly weighted

targets with high resolution imagery.

Fig. 4. Optimization for scenario 4 with w5 = 10
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TABLE III

FOCAL LENGTH RESULTS FOR MULTIPLE SCENARIOS IN mm

C1 C2 C3

Scenario F̄ , σF F̄ , σF F̄ , σF

1 21.4, 0.8 24.6, 0.9 23.9, 0.2
2 25.5, 0.7 22.4, 0.7 22.8, 0.6
3 22.7, 0.6 23.3, 0.4 22.5, 0.1
4 22.8, 0.2 22.3, 0.3 22.3, 0.1

2) Effect of weights: Assigning weights to specific targets

for denoting importance of high resolution imagery has an

effect on optimization. To describe this effect, let us consider

scenario 4 shown in Figs. 3 and 4. These are overhead (top-

view) plots of camera FOVs after optimization, for distinct

weighting parameters. Targets were placed at the following

locations:

T 1 = [2.5, 6.5, 0]⊤ T 2 = [4.2, 6.2, 0]⊤

T 3 = [3.5, 8.5, 0]⊤ T 4 = [3, 9.5, 0]⊤

T 5 = [7, 3, 0]⊤

For case 1, w = [2, 2, 2, 2, 1], and for case 2, w =
[1, 1, 1, 1, 10]. As can be seen in Fig. 4, due to a higher

weight on T 5 in case 2, a high resolution image of T 5 was

acquired by C3, while the system maintains track on all the

other targets.

VII. CONCLUSION AND FUTURE WORK

In this article, we have used a distributed network of

dynamic cameras to reduce computation and communication

cost, along with reduction in resources required to survey an

area where the number of targets is time-varying. We propose

a method for a distributed camera network to co-operatively

track all targets and procure high resolution images when

the opportunity arises. Distributed optimization within a

Bayesian framework is presented. In addition, a probabilistic

method based on singular vectors of the Fisher information

matrix for biasing the random camera selection process is

suggested.

As future research, due to co-operative behavior between

cameras, a game-theoretic framework could be fruitful. The

problem could be formulated as a game between a set of

cameras competing with a set of targets, where the camera

network scores points when it captures high resolution im-

ages of targets in the area, over the duration of the game.

The set of targets score points every time the camera network

loses track on any target. Each camera tries to co-operatively

attain the maximum global utility. Formulating the problem

as a potential game and using existing convergence proofs

available in game-theory make this framework resourceful.

Additional interesting work could include designing a

dynamic weighting scheme for targets, since the importance

of a target may drastically reduce, once its high resolution

image has been captured by the network.

At UC Riverside, we possess a real-life distributed camera

network test-bed, where testing for the approach described in

this article will be carried out in the near future. Immediate

short term goals are to design an Imaging Utility as a

function of image resolution, followed by application of

the approach on maneuvering targets. Designing a value

function to enforce continuity of optimum parameters versus

time, is critical to minimize mechanical wear of the camera.

Depending on the target’s position, orientation and direction

of motion, an aspect angle utility describing the quality of

image captured by the cameras can also be included in the

value function. Utilities based on target activity is another

intriguing facet that can be explored, along with exploration

of other quality-oriented utilities.
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