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Abstract— Geometric fault detection and isolation filters are
known for having excellent fault isolation properties. However,
they are generally assumed to be sensitive to model uncertainty
and noise. This paper proposes a robust model matching
method to incorporate model uncertainty into the design of
geometric fault detection filters. Several existing methods for
robust filter synthesis are described to solve the robust model
matching problem. It is then shown that the robust model
matching problem has an interesting self-optimality property
for multiplicative input uncertainty models. Finally, a simple ex-
ample is presented to study the effect of parametric uncertainty
and unmodeled dynamics on the performance of a geometric
filter.

I. INTRODUCTION

Fault tolerance is vital to ensuring the integrity and avail-

ability of safety critical systems. A fault tolerant system must

also include the logic and algorithms for fault detection, fault

diagnosis, fault containment, and reconfiguration to continue

operation in face of failures. Filters to detect and isolate faults

from system measurements form a key component of fault

tolerant systems. The basic requirements for fault detection

and isolation (FDI) filters typically include the following:

• Capability to isolate faults that occur simultaneously.

• Sensitivity to a particular fault and insensitivity to other

faults.

• Robustness to modeling uncertainty.

• Good disturbance attenuation of external disturbances

and noises

One popular FDI filter design technique, originally pro-

posed by Massoumnia and Willsky [17], is based on geo-

metric techniques. The original method was developed for

systems with no disturbance or model uncertainty. As the

name suggests, the geometric filter design technique exploits

geometric properties of the system state-space. If the faults

in the system have non-parallel signature directions then

it is possible to design operators and output mixing maps

that project the faults into disjoint, mutually orthogonal

subspaces. The filter spectrum can be tuned to obtain desired

transient response to faults. The geometric filter design

paradigm was further extended in subsequent works to many

different classes of systems [6], [15], [14], [9], [4], [2]. H2

and H∞ model matching approaches to FDI filter design are

also popular [23], [16], [10], [25], [13].

The basic requirements for FDI filters are often in conflict

and a particular design approach can typically satisfy only a
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subset of the requirements. The geometric design approach,

for example, is known for its excellent fault isolation, fault

reconstruction and sensitivity properties under small model-

ing uncertainty and noise. However it is assumed to be sensi-

tive as the model uncertainty and noise increase. This paper

proposes a method that incorporate model uncertainty into

the design. First, a geometric filter is designed on the nominal

plant. Next a robust model matching problem is solved to

design a filter that robustly matches the performance of the

geometric filter over the set of uncertain plants. Several

existing methods for robust filter synthesis are described to

solve the robust model matching problem. It is then shown

that the robust model matching problem has an interesting

self-optimality property for multiplicative input uncertainty

sets. Specifically, the filter designed on the nominal plant

is the optimal filter in the robust model matching problem.

Finally, a simple example is presented to study the effect

of parametric uncertainty and unmodeled dynamics on the

performance of a geometric filter.

II. NOTATION

R and C denote the set of real and complex numbers,

respectively. RH∞ denotes the set of proper, rational func-

tions with real coefficients that are analytic in the closed

right half of the complex plane. Rm×n, Cm×n, and RH
m×n
∞

denote the sets of m×n matrices whose elements are in R, C,

and RH∞, respectively. A single superscript index is used to

denote vectors, e.g. Rl denotes the set of l×1 vectors whose

elements are in R. For a matrix M ∈ Cm×n, M∗ denotes

the complex conjugate transpose. σ̄(M) and σ(M) denote

the maximum and minimum singular values. ‖M‖ denotes

the matrix norm induced by the vector 2-norm. It is known

that ‖M‖ = σ̄(M). For a vector v ∈ Cn, Re[v] denotes the

real part of v. For G ∈ RH
m×n
∞ , ‖G‖∞ := supω σ̄(G(jω)).

Finally, let G ∈ RH
(n+k)×(n+m)
∞ and ∆ ∈ RH

n×n
∞ be given

and partition G :=
[

G11 G12

G21 G22

]

with G11 ∈ RH
n×n
∞ and

G22 ∈ RH
k×m
∞ . If I − G11∆ is invertible at ω = ∞, then

define Fu(G, ∆) as the linear fractional transformation (LFT)

obtained by closing ∆ around the upper channels of G:

Fu(G, ∆) := G22 + G21∆(I − G11∆)−1 G12 (1)

III. GEOMETRIC FDI FILTERS

This section briefly describes the formulation of fault

detection filters designed using geometric concepts. The

derivation of the geometric FDI filters is presented for LTI

systems with no disturbance, no uncertainty and the detection

and isolation of two faults. Consider the LTI system with two
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additive actuator faults:

ẋ(t) = Ax(t) + Bu(t) + L1f1(t) + L2f2(t) (2)

y(t) = Cx(t)

where L1 and L2 represent the faults directions in the state

space. f1 and f2 are the fault signals. The fault signals

are zero if there is no fault but nonzero if the particular

fault occurs. Only actuator faults are considered here but

sensor faults can also be considered within the theory. The

fundamental problem of residual generation is to synthesize

residual generators (filters) with outputs ri (i = 1, 2) that

have the following decoupling property: ri is sensitive to fi

but insensitive to fj , i 6= j. More precisely, if fi = 0 then

limt→∞ ri(t) = 0 and if fi 6= 0 then ri 6= 0.

The solution of this problem depends on the (C, A)-
invariant subspaces and certain unobservability subspaces

[17]. A (C, A)-unobservability subspace S is a subspace such

that there exist matrices G and H with the property that S is

the maximal (A + GC) invariant subspace contained in Ker

HC. The family of (C, A)-unobservability subspaces con-

taining a given set L has a minimal element. Define Li = Im

Li (i = 1, 2) and denote by S∗ the smallest unobservability

subspace containing L2. Then the fundamental problem of

residual generation has a solution if and only if S∗∩L1 = 0
[17]. The condition S∗ ∩ L1 = 0 ensures that the fault to

be detected is not hidden in the unobservability subspace

of the detection filter. In fact, the fault direction will be

decoupled from the rest of the fault directions since they

are contained in the unobservability subspace of the residual

generator. This result can be extended to LPV systems [5].

The residual generator associated with fault direction L1

can be described by an observer of the form:

ẇ(t) = Nw(t) − Gy(t) + Fu(t) (3)

r1(t) = Mw(t) − Hy(t)

where u and y are the known input and measured output

signals of the original LTI system. w is the state of the

residual generator and r1 is the residual.

Denote by P the projection operator P : X → X/S∗.

The state matrices can be determined as follows [17]. H
is a solution of the equation Ker HC = Ker C + S∗, and

M is the unique solution of MP = HC. Consider a gain

matrix Ĝ chosen such that (A + ĜC)S∗ ⊆ S∗ and define

Â = P (A+GC)PT . Â is not necessarily Hurwitz. To obtain

quadratically stable filters one can set N = Â+ G̃M, where

G̃ := X−1K and X , K are determined from the linear

matrix inequality (LMI):

0 � ÂT X + XÂ + MT KT + KM (4)

0 � X = XT (5)

Then set G = PĜ + G̃H and F = PB.

Using this approach there are as many filters as faults to

detect, and their state dimensions are equal to the dimension

of X/S∗. The filter poles can be tuned by imposing con-

straints in the LMI resulting in perfect reconstruction of fault

signals fi. One issue is that the filter design does not consider

model uncertainty and the fault detection performance may

not be robust. The next section discusses a model matching

approach for recovering the geometric filter performance in

the presence of model uncertainty.

IV. ROBUST MODEL MATCHING

This section considers a robust model matching problem

for geometric filter design on uncertain plants. Then several

existing methods for robust filter synthesis are described.

The final subsection shows that the robust model matching

problem has an interesting self-optimality property for mul-

tiplicative input uncertainty sets.

A. Problem Formulation

Let Gu denote an uncertain plant for which the filter will

be designed. The standard linear fractional transformation

(LFT) framework [19] can be used to model the uncertainties.

Let G ∈ RH
(n+k)×(n+m)
∞ and ∆ ⊆ RH

n×n
∞ be given.1

Define the set of models

M := {Gu = Fu(G, ∆) : ∆ ∈ ∆, ‖∆‖∞ ≤ 1} (6)

It is assumed that Fu(G, ∆) is well defined for all ∆ ∈ ∆

with ‖∆‖∞ ≤ 1. ∆ is typically a set describing a block

structured system that can include (repeated) real parametric

and LTI dynamic system uncertainties. Nonlinear and/or

time-varying uncertainties can also be modeled using integral

quadratic constraints [18]. The restriction that ∆ be a square

system is only for notational simplicity.

Each Gu ∈ M is a system that relates the faults and plant

inputs to the signals available to the fault detection filter:
[

y
u

]

= Gu

[

f
u

]

(7)

The objective is to design a filter F with inputs [ y
u ] and

output residuals r such that the residuals have “good” fault

decoupling properties for all models Gu ∈ M.

A robust model matching problem is now described to

meet this objective. The nominal plant in the set M is given

by ∆ = 0, i.e. G0 := Fu(G, 0) is the nominal plant. First,

design a geometric filter F0 to solve the fundamental problem

of residual generation on the nominal plant G0. The model

matching method attempts to design a filter F such that the

performance on the uncertain plant Gu robustly matches the

designed behavior of F0G0. Mathematically, the proposed

design problem is:

Problem 1: Let G ∈ RH
(n+k)×(n+m)
∞ , ∆ ⊆ RH

n×n
∞ and

F0 ∈ RH
l×k
∞ be given. The robust model matching problem

is:

min
F∈RHl×k

∞

max
Gu∈M

‖F0G0 − FGu‖∞ (8)

The interconnection for this robust model matching prob-

lem is shown in shown in Figure 1. The reference model is

given by F0G0. The nominal residual response r0 will have

1G and F were used in the previous section to denote gain matrices in
the geometric filter. In this section G and F will denote systems in the
model matching design.
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the desired decoupling properties given by the fundamental

problem of residual generation. The optimization in Equa-

tion 8 designs a filter F that most closely matches, in a worst-

case sense, the desired residual generation behavior F0G0. In

this paper the focus is on fault detection filters designed using

the geometric approach but the model matching problem can,

in principle, be used to robustly match the behavior of any

filter F0 designed on the nominal system G0. It is worth to

note, that other methods dealing with the uncertain system

directly like [8], obtain different FDI solution for a different

problem, which might lead to better overall performance.

e
� e?

r
F �

[

y
u

]

G

- ∆

�
�

[

f
u

]

Gu

�
r0

F0G0
�

Fig. 1. Robust model matching

B. Filter Synthesis

There are several approaches to solve the robust model

matching problem. Sun and Packard observed that robust

filter design (Equation 8) is an infinite-dimensional convex

optimization in the filter [22]. They developed an algorithm

to compute the globally optimal robust filter for the special

case where ∆ only models repeated real uncertainties [22].

It does not seem possible to extend this algorithm to sets

∆ that include dynamic uncertainties, nonlinearities and/or

time-varying operators.

The standard approach to handle more complicated uncer-

tainty sets is to replace maxGu∈M ‖F0G0 − FGu‖∞ with

an upper-bound. For example, when ∆ contains only LTI

uncertainty the maximization over M can be replaced with

the µ upper bound which involves a minimization over D
scales [19]. The design problem can then be recast as a µ-

synthesis problem involving a search for the filter and the

D scales. µ-synthesis is, in general, a nonconvex problem

and the coordinate-wise D-K iteration has been applied to

solve for the filter and uncertainty multipliers [1]. The D-

K iteration yields sub-optimal solutions but is a standard

method to handle the nonconvexity that arises in robust

control synthesis.

In robust filter design problem, the filter enters the design

interconnection in an open loop (rather than a feedback)

configuration and this structure can be exploited. There

are two different approaches to convert the µ-synthesis

problem into an infinite dimensional convex optimization

problem ([20] and [21]). Both approaches use the more

general IQC framework to model the uncertainty and obtain

an upper bound on the worst-case performance. In [20],

the filter synthesis problem is converted into an infinite-

dimensional (convex) semi-definite program (SDP) [7]. The

set of allowable IQC multipliers is infinite dimensional and a

finite dimensional optimization is obtained by restricting the

multipliers to be a combination of chosen basis functions.

In [21], the robust filter design problem is turned into

a frequency-dependent, infinite dimensional linear matrix

inequality (LMI) in the filter and multipliers. Next, a fi-

nite dimensional optimization is obtained by enforcing the

frequency-dependent LMI on a dense frequency grid and

restricting the filter to be a linear combination of chosen

basis functions. The frequency-dependent IQC multipliers

are allowed to be arbitrary functions on the frequency

grid. To summarize, the two approaches use roughly dual

methods to convert the robust filter design problem to a finite

dimensional convex optimization: In [21], basis functions are

used for the filter but the multipliers (scalings) are allowed

to be arbitrary functions on the frequency grid. In [20] basis

functions are chosen for the multipliers but the filter is

allowed to be an arbitrary, linear system.

The various methods to solve the robust filter design

problem have benefits and drawbacks in terms of computa-

tional complexity and ease of formulating the problem (e.g.

picking basis functions for the filter or for the uncertainty

scalings). The next section shows that the robust model

matching problem has an interesting self-optimality property

for multiplicative input uncertainty sets. Specifically, F0

itself is the optimal filter for this uncertainty structure.

C. Multiplicative Input Uncertainty

This section considers the robust model matching problem

for input multiplicative uncertainty. The uncertain system is

given by Gu := G0(I + w∆) where w ∈ RH∞ is a weight

that specifies the level of uncertainty at each frequency by

|w(jω)|. |w(jω)| = 1 corresponds to 100% input uncer-

tainty at frequency ω and hence weights typically satisfy

‖w‖∞ ≤ 1. Input multiplicative uncertainty is a commonly

used uncertainty model because the effect of uncertainty

can be quickly assessed by choosing simple weights w, and

it is sufficiently general since other uncertainty structures

can be recast into input multiplicative form. For example, a

reasonable uncertainty model is obtained by choosing w to be

a first order system with small magnitude at low frequencies

and magnitude close to one at high frequencies, to represent

that we have fairly good model of the system around steady

state, while at high frequencies the system model is less

accurate. Alternatively, the Matlab function ucover [3] can

be used to compute a w so that the uncertainty set M
contains a given, finite set of LTI systems. The weight can

generally be chosen as a full matrix but the result in this

section is restricted to weights of the form w(s)I .

The design interconnection for the robust model matching

problem with input multiplicative uncertainty is shown in

Figure 2. G0 again denotes the nominal system and F0 is a

filter that has been designed to achieve some desired perfor-

mance on the nominal plant. For this uncertainty structure the

robust model matching problem can be equivalently stated as:
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Problem 2: Let F0 ∈ RH
m×n
∞ , G ∈ RH

n×k
∞ and w ∈

RH∞ be given. The robust model matching problem is:

min
F∈RHm×n

∞

max
∆∈RHk×k

∞
,‖∆‖∞≤1

‖F0G − FG(I + w∆)‖∞ (9)

e
� e?

r
F � G0

� e�?

wI � ∆ �
Gu

r0� F0G0
�

Fig. 2. Robust model matching with multiplicative input uncertainty

The next theorem presents the main result of this section.

Theorem 1: If ‖w‖∞ ≤ 1 then F0 is the optimal filter for

the robust model matching problem.

Proof: The robust model matching problem can be

equivalently written as:

min
F∈RHm×n

∞

max
ω

max
∆∈RHk×k

∞

|∆(jω)|≤|w(jω)|

‖ (F0G − FG(I + ∆)) (jω)‖

The min-max is always greater than the max-min and hence

a lower bound on the model matching problem is obtained

by:

max
ω

min
F∈RHm×n

∞

max
∆∈RHk×k

∞

|∆(jω)|≤|w(jω)|

‖ (F0G − FG(I + ∆)) (jω)‖

(10)

Next, the constraints that F and ∆ be stable are dropped:

max
ω






min

F∈Cm×n

max
∆∈Ck×k

|∆|≤|w(jω)|

‖(F0G)(jω) − FG(jω)(I + ∆)‖







(11)

The max over ∆ is unchanged by dropping the stability

constraint but the min over F is potentially lower once we

drop the stability constraint. Thus the result of Equation 11

is no greater than the optimal value for Equation 10.

Next, apply Lemma 2 in the appendix with A :=
F0(jω), B := G(jω), and α := |w(jω)|. By this lemma

and the assumption ‖w‖∞ ≤ 1, the optimization in the

brackets of Equation 11 has an optimal cost equal to

|w(jω)|‖(F0G)(jω)‖ at each ω and the optimal value is

achieved by F = F0(jω).
Thus the optimal cost for the robust model matching prob-

lem is lower bounded by ‖wF0G‖∞. This cost is achieved

by the choice F = F0 and hence F0 is the optimal filter.

Roughly, this result implies that the robust model matching

filter design is self optimal for this input multiplicative

uncertainty set. The uncertainty degrades the performance

but it does so in a way that apparently cannot be exploited

by any other filter. Note that this result is not specific to

nominal filters F0 designed with the geometric method. The

result only depends on the formulation of the robust model

matching problem and the specific structure of the input

multiplicative uncertainty.

V. EXAMPLE

Consider the fault detection example from [11], [24]. The

nominal fault system G0 has the form of Equation 2 with

state space matrices given by:

A =





−0.8 0 0
0 −0.5 0.6
0 −0.6 −0.5



 , B =





1 1
1 0
0 1



 (12)

L1 =





1
1
0



 , L2 =





1
0
1



 , C =

[

0 1 1
1 1 0

]

(13)

The following FDI filter F0 was designed to generate fault

residuals for this system using the geometric method:

ẇ(t) =

[

−1.10 0.48 0 0
−0.64 −3.90 0 0

0 0 0.390 1.89
0 0 −5.89 −8.22

]

w(t)

+

[

0.26 0.34
2.40 −2.19
−1.47 0.84
7.73 −4.16

]

y(t) +

[

1.00 0
−0.71 0

0 −0.71
0 1.00

]

u(t) (14)

[

r1(t)
r2(t)

]

=
[

0 3.25 0 0
0 0 −5.66 −8.01

]

w(t) +
[

−2.30 2.30
8.01 −4.00

]

y(t)

(15)

The Bode magnitude plots of F0G0 from faults f to residuals

r is shown in Figure 3. The geometric filter demonstrates the

desired decoupling properties. The transfer functions from fi

to ri (i = 1, 2) have low pass characteristics with steady state

gain of 1. The response of ri to fj (j 6= i) is extremely small.
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Fig. 3. Bode magnitude plot of nominal response from f to r

The robust model matching approach described in Sec-

tion IV applies to uncertainty structures that can be for-

mulated within the LFT framework. The remainder of the

section considers the effect of parametric uncertainty and

unmodeled dynamics.

First, consider the effect of parametric uncertainty in the

plant state matrix:

A =





−0.8 0 0
0 −0.5(1 + δ1) 0.6(1 + δ2)
0 −0.6(1 + δ2) −0.5(1 + δ1)



 , (16)
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where |δ1| ≤ 0.1 and |δ2| ≤ 0.1. Let M denote the set of

models described by this uncertainty. M can be described by

an LFT Gu = Fu(G, ∆) as in Equation 6. The performance

of the filter F0 on any Gu ∈ M will deviate, in general,

from the nominal. The dashed curve in Figure 4 shows the

worst-case performance of F0:

max
Gu∈M

‖F0G0 − F0Gu‖∞ (17)

Perfect matching of F0G0 would correspond to a gain

of zero. The gain of the reference system F0G0 is ap-

proximately 1.0 at low frequencies (Figure 3). Thus the

performance of F0 degrades by approximately 33% over the

uncertainty set. One of the filter synthesis methods described

in Section IV-B could be applied to improve the robust

matching of the nominal performance F0G0. However, it is

possible to compute a lower bound on the optimal worst-case

performance achieved by any filter [12], [21]. The solid curve

in Figure 4 shows the lower bound on the best achievable

filter performance. The nominal filter F0 is very close to

achieving the optimal performance and hence a robust filter

synthesis will not yield significant improvements on the

worst-case performance.
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Fig. 4. Worst-case performance of F0

Next consider the effect of input multiplicative uncertainty

with the weight

w(s) :=
s + 0.1

s + 2
(18)

The parametric uncertainty in A is not considered in this

part of the analysis. This weight corresponds to 100%

uncertainty at high frequencies and 5% uncertainty at low

frequencies. The dashed curve in Figure 5 shows the worst-

case performance of F0. The performance of F0 degrades by

approximately 51% over the uncertainty set. The solid curve

in Figure 4 shows the lower bound on the best achievable

filter performance. The two curves are equal as expected

based on Theorem 1. Thus F0 is the optimal filter for robustly

matching its own performance on the nominal plant. In future

work, it is our intention to compare the results obtained

here with methods dealing with uncertain system description

directly [8], to assess the drawback of formulating the robust

FDI problem as a model matching problem.
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Fig. 5. Bode plot of optimal filter

VI. CONCLUSIONS

This paper proposed a method incorporate model uncer-

tainty into the design of geometric fault detection and isola-

tion filters. First, a geometric filter is designed on the nominal

plant. Next a robust model matching problem is solved to

design a filter that robustly matches the performance of the

geometric filter over the set of uncertain plants. Several

existing methods for robust filter synthesis were described to

solve the robust model matching problem. It was then shown

that the robust model matching problem has an interesting

self-optimality property for multiplicative input uncertainty

sets. Finally, a simple example was presented to study the

effect of parametric uncertainty and unmodeled dynamics on

the performance of a geometric filter.

VII. ACKNOWLEDGMENTS

This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 0931931 entitled

“CPS: Embedded Fault Detection for Low-Cost, Safety-

Critical Systems”. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the

National Science Foundation.

REFERENCES

[1] B. Appleby, J. Dowdle, and W. VanderVelde. Robust estimator design
using µ synthesis. In Proc. of the IEEE Conference on Decision and
Control, pages 640–645, 1991.

[2] S. Armeni, A. Casavola, and E. Mosca. Robust fault detection and
isolation for LPV systems under a sensitivity constraint. International
Journal of Adaptive Control and Signal Processing, 23(1):55–72,
2008.

[3] G. Balas, R. Chiang, A. Packard, and M. Safonov. Robust Control

Toolbox. MathWorks, 2010.

[4] G. J. Balas and J. Bokor. Detection filter design for LPV systems.
4

th IFAC SAFEPROCESS Symposium, 2:653–656, 2000.

[5] J. Bokor and G. Balas. Detection filter design for LPV systems - A
Geometric approach. Automatica, 40:511–518, 2004.

[6] J. Bokor, A. Edelmayer, and L. Keviczky. An H∞ filtering approach
to robust detection of failures in dynamical systems. Proc. 33rd IEEE
Conf. on Decision and Control, 3:3037–3039, 1994.

[7] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix
Inequalities in System and Control Theory, volume 15 of Studies in

Applied Mathematics. SIAM, 1994.

[8] F. Castang, A. Zolghadri, D. Henry, and M. Monsion. A lmi approach
for designing robust fdi filters with guaranteed fault sensitivity perfor-
mance. In Systems, Man and Cybernetics, 2002 IEEE International

Conference on, page 6 pp. vol.7, 2002.

230



[9] C. De Persis and A. Isidori. A geometric approach to nonlinear fault
detection and isolation. IEEE Transactions on Automatic Control,
46(6):853–865, 2001.

[10] Steven X. Ding. Model-based Fault Diagnosis Techniques. Springer,
2008.

[11] A. Edelmayer and J. Bokor. Optimal H∞ scaling for sensitivity
optimization of detection filters. International Journal of Robust and

Nonlinear Control, 12:749–760, 2002.

[12] A. Giusto and F. Paganini. Robust synthesis of feedforward compen-
sators. IEEE Trans. on Automatic Control, 44(8):1578–1582, 1999.

[13] Emmanuel Mazarsand Imad M. Jaimoukha and Zhenhai Li. Compu-
tation of a reference model for robust fault detection and isolation
residual generation. Journal of Control Science and Engineering,
2008:1–12, 2008.

[14] Michel Kinnaert. Robust fault detection based on observers for bilinear
systems. Automatica, 35(11):1829–1842, 1999.

[15] R. S. Mangoubi. Robust Estimation and Failure Detection – A Concise

Treatment. Springer-Verlag, London, 1998.
[16] A. Marcos, S. Ganguli, and G.J. Balas. An application of H∞ fault

detection and isolation to a transport aircraft. Control Engineering

Practice, 13(1):105–119, 2005.

[17] M. A. Massoumnia. A geometric approach to the synthesis of failure
detection filters. IEEE Trans. Automatic Control, AC-31(9):839–846,
1986.

[18] A. Megretski and A. Rantzer. System analysis via integral quadratic
constraints. IEEE Trans. on Automatic Control, 42(6):819–830, 1997.

[19] A. Packard and J. Doyle. The complex structured singular value.
Automatica, 29(1):71–109, 1993.
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APPENDIX

Lemma 1: Let c1, c2 ∈ R be non-negative constants. If

u, v ∈ Cn and Re[u∗v] ≥ 0 then ‖c1u‖ ≤ ‖c1u + c2v‖.

Lemma 2: Let α ∈ R be a strictly positive constant and

let A ∈ Cm×n and B ∈ Cn×k be given matrices. Define

J : C
m×n → R as:

J(X) := max
∆∈Ck×k,σ̄(∆)≤α

‖AB − XB − XB∆‖ (19)

Then

min
X∈C

J(X) =

{

α‖AB‖ if α ≤ 1
‖AB‖ if α > 1

(20)

The minimal cost is achieved by X∗ = A if α ≤ 1 and

X∗ = 0 if α > 1.

Proof: Let u ∈ Ck and v ∈ Cm be the input/output

vectors associated with the maximum singular value of AB,

i.e. u and v satisfy ABu = σ̄(AB)v, ‖u‖ = 1, and ‖v‖ = 1.

Assume α > 1 and pick any X ∈ Cm×n. If

Re[(XBu)∗v] ≥ 0 then choose ∆0 = −αI . J(X) can be

lower-bounded as:

J(X) ≥ ‖AB − XB − XB∆0‖

= ‖AB + (α − 1)XB‖

≥ ‖ (AB + (α − 1)XB)u‖

≥ ‖σ̄(AB)v + (α − 1)XBu‖

≥ σ̄(AB)

The first inequality follows from the definition of J(X) in

Equation 19 while the equality follows from the definition of

∆0. The next two inequalities follow from the definition of

the matrix norm (maximum singular value) and the choices

of u and v. The final inequality follows from Lemma 1. If

Re[(XBu)∗v] ≤ 0 then similar steps can be used to again

show that J(X) ≥ σ̄(AB) with the choice ∆0 = +αI . Thus

J(X) ≥ σ̄(AB) and the lower bound is achieved by X = 0.

Next assume α ≤ 1. Pick any X ∈ Cm×n and define

Y := −A+ X . If Re[(Y Bu)∗v] ≥ 0 then choose ∆0 = αI .

Similar to the steps above, J(X) can be lower-bounded as:

J(X) ≥ ‖αAB + (α + 1)Y B‖

≥ ‖ασ̄(AB)v + (α + 1)Y Bu‖

≥ ασ̄(AB)

The first inequality follows from the choice of ∆0 and the

definition of Y . The next inequality again follow from the

choices of u and v while the final inequality follows from

Lemma 1. If Re[(Y Bu)∗v] ≤ 0 then similar steps can

be used to show that J(X) ≥ ασ̄(AB) with the choice

∆0 = −αI . Thus J(X) ≥ ασ̄(AB) and the lower bound is

achieved by X = A.
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