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Abstract— This paper presents a direct adaptive control
design to suppress vibrations in nonlinear base-isolated build-
ings arising due to severe earthquakes. The control design is
based on discrete direct adaptive neural control, where the
neural controller parameters are adapted using Lyapunov-
based tuning laws. There is no explicit identification phase in
this control scheme, and the resulting controller operates di-
rectly on measurements without a state estimator. Performance
of the proposed control scheme is evaluated on a full-scale
nonlinear three-dimensional base-isolated benchmark structure
incorporating lateral-torsion superstructure behavior, and bi-
axial interaction of nonlinear bearings. The results show that
the proposed controller scheme is capable of achieving good
response reductions for a wide range of near-fault earth-
quakes, without corresponding increases in the superstructure
responses.

I. INTRODUCTION
The problem of vibration minimization in seismically

excited linear/nonlinear structures have received significant
attention in the literature [1]–[4]. Recently, considerable at-
tention is on the development of adaptive control algorithms
such as adaptive back-stepping, feedback linearization and
intelligent control, to effectively control the vibration of
nonlinear structures with parameter uncertainties [5]–[7]. The
results from these works indicate the potential importance
of using adaptive control algorithms to control nonlinear
structural systems.

In [5], adaptive back-stepping controller is designed for
an uncertain base-isolated hysteretic structure with nonlin-
earities. However, the numerical sensitivity in its imple-
mentation influences the steady-state performance of the
controller considerably. In [6], [8], function approximation
capabilities of Gaussian kernels are exploited to approximate
the nonlinear control law, and the proposed controller is
capable of handling parameter uncertainties and unknown
nonlinearities. Here, the initial controller parameters are
obtained using off-line training process with a perturbed
structure model. Recently, a direct adaptive controller using
extended minimal resource allocation network (EMRAN)
[7] with-out off-line learning process is proposed to handle
uncertainty and failures in base-isolated structure. Here, the
EMRAN controller uses computational intensive extended
Kalman filter for controller parameter updates, and does not
provide a mathematical proof for overall system stability.

The main idea of this paper is to present a discrete
direct adaptive control design using linearly parameterized
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neural controller to handle uncertainties and system non-
linearities. Using Implicit function theorem, the existence
of a nonlinear control law for vibration minimization of
base-isolated system is shown, and it is approximated us-
ing linearly parameterized neural network. The proposed
direct adaptive controller projects the structural response
to a nonlinear hyper-dimensional space using random in-
put weights [9], and active control input is determined as
linear function of random projections. The neural controller
weights are adapted online and the update laws are derived
using Lyapunov approach. Unlike classical approaches using
NNs where a formal identification phase precedes controller
development, there is no need for identification, which is the
main advantage of the proposed controller.

Numerical simulations are performed on the nonlinear
benchmark base-isolated building [10] with an isolation sys-
tem comprising of hysteretic lead-rubber bearings (LRBs).
The structure is excited simultaneously in two directions
using a suite of severe near-fault earthquakes. The earth-
quakes considered in this study are the fault-normal (FN)
and fault-parallel (FP) components of Newhall, Sylmar, and
El Centro. The performance of the controller is measured
using a comprehensive set of eight performance indices. The
results clearly show that the proposed linearly parameterized
direct adaptive control design is effective in minimizing the
structural response under a wide range of seismic excitations.

II. PROBLEM STATEMENT

A nonlinear three-dimensional base-isolated benchmark
structure based on a full-scale structure located in Los
Angles, USA is considered in this study [10]. This structure
is a eight story steel-braced base-isolated building, with
isolators connected between the ground and a rigid concrete
base slab. More details on structure and base-isolation can
be found in [11]. A three degree-of-freedom (3-DOF) model
at the center of mass is used to construct the mathematical
model of the structural system (3-DOF for the base and 24-
DOF for the superstructure).

A. Base-Isolation Model

The isolation system consists of a linear elastomeric
bearing with a lead core (31 linear elastomeric bearings and
61 nonlinear lead rubber bearings). The lead core provides
the energy dissipation due to plastic deformations, while the
elastomeric part provides the re-centering stiffness. A biaxial
interaction hysteric model given in [1] is used to model
the behavior of the lead-rubber composite bearing, and is
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described as:
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where, zx and zy are dimensionless hysteretic variables
bounded by values ±1. α , β and γ are dimensionless
quantities, and Ubx, Uby, U̇bx and U̇by are the displacements
and velocities in the x and y directions, respectively, at the
isolation bearing, and Uy is the yield displacement.

The forces f mobilized in the elastomeric isolation bear-
ings can be modeled by a elastic-viscoplastic model with
strain hardening:

fx = kpUbx + cvU̇bx +(ke− kp)Uyzx (2)
fy = kpUby + cvU̇by +(ke− kp)Uyzy (3)

where, ke is the pre-yield stiffness, kp is the post-yield stiff-
ness, cv is the viscous damping coefficient of the elastomeric
bearing, and Uy is the yield displacement. The details of
the isolation system parameters have been specified in the
benchmark definition papers [2], [10], [11].

B. Superstructure Model

The equations of motion for the linear superstructure are
expressed as,

Mn×nÜn×1+Cn×nU̇n×1+Kn×nUn×1 =−Mn×nRn×3(Üg+Üb)
(4)

in which, n is three times the number of floors (excluding
base), M is the superstructure mass matrix, C is the super-
structure damping matrix in the fixed base case, K is the
superstructure stiffness matrix in the fixed base case and R
is the matrix of earthquake influence coefficients, i.e. the
matrix of displacements and rotation at the center of mass
of the floors resulting from a unit translation in the X and Y
directions and unit rotation at the center of mass of the base.
Furthermore, Ü, U̇ and U represent the floor acceleration,
velocity and displacement vectors relative to the base, Üb is
the vector of base accelerations relative to the ground and
Üg is the vector of ground accelerations.

C. Base Model

The equations of motion for the base are given by,

RT
3×nMn×n

[
(Ü)n×1 +Rn×3(Üg + Üb)3×1

]
n×1

+Mb3×3(Üg + Üb)3×1 +Cb3×3U̇b3×1
+Kb3×3Ub3×1 + fb3×1

(
Ub, U̇b

)
+ fc3×1

= 0 (5)

where fb consists of fx, fy and fr, which are the forces in
the nonlinear isolation system at the center of mass of the
base in the x, y, and rotational directions respectively. fr is
calculated by transforming the spatially distributed fx and fy
to the center of mass of the base. Mb is the diagonal mass
matrix of the rigid base, Cb is the resultant damping matrix of
viscous isolation elements, Kb is the resultant stiffness matrix
of elastic isolation elements, fb is the vector containing the
nonlinear bearing forces and fc is the vector containing the
control forces.

D. Combined Model

Using Eq. 5 and Eq. 4, the discrete-time model for the
nonlinear base-isolated building can be written as

z(k+1) = f1(z(k),η(k))+G1Fc(k)+G1Ag(k) (6)
η(k+1) = f2(z(k),η(k))+G2Ag(k) (7)

where, Ag(k) are the earthquake accelerations,
[z(k) η(k)]T ∈ Ωx ⊂ ℜn are the states of the
discrete-time system corresponding to the base and
the superstructure respectively on the compact set Ωx, where(
Ωx :=

{
z,η ,‖z‖ ≤Mz;‖η‖ ≤Mη

})
, Mz, Mη are arbitrary

positive constants, and Fc ∈Ωu ⊂ℜm are the actuator inputs
on the compact set Ωu, (Ωu := {u,‖u‖ ≤Mu}), where
Mu is a arbitrary positive constant. G1 and G2 are the
discrete-time control matrices.

III. DIRECT ADAPTIVE NEURAL CONTROL
DESIGN

The control objective in this paper is to construct a
robust adaptive nonlinear control law which minimizes the
vibrations caused by severe earthquake disturbances. Assume
that the disturbance input to the structure is bounded and the
nonlinear functions f1 and f2 are smooth and continuous in
the operating region. Based on existing studies in nonlinear
adaptive control [12], [13], the theoretical nonlinear adap-
tive control input (F∗c) which satisfies the objective can be
expressed as:

F∗c (k) = Ḡ1

(
F∗c (k−1), · · · ,F∗c (k−n),z(k−1), · · · ,
z(k−n),Ag(k), · · · ,Ag(k−n),zd(k)

)
(8)

where, Ḡ1 is a smooth nonlinear map and n represents the
number of delays. The number of delays depends on the
order of the system. The above form of control law is known
to exist and is unique [14]–[16]. If the structural response
follows the desired response, then the signal from F∗c (k−1),
· · · , F∗c (k− n) can be expressed in terms of the reference
outputs and structural responses. Also, if the desired response
is assumed to be near zero, then Eq. 8 can be simplified
further as:

F∗c (k) = Ḡ (z(k−1), · · · ,z(k−n1),Ag(k), · · · ,Ag(k−n1))
(9)

where n1 ≥ n. The above equation can be written as,

F∗c (k) = Ḡ (v) (10)

where, v consists of past states and present and past values
of the ground accelerations. If the mapping Ḡ is known in
Eq. 9, then the desired control force F∗c (k) can be calculated
using n1 past values z, and n1 + 1 current and past values
of the earthquake disturbance (define l = 2n1 +1). Since the
function map Ḡ is unknown, estimating control force F∗c (k)
is not possible. However, since the relationship given by Eq.
9 exists, Ḡ can be modeled using a linearly parameterized
neural network.
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A. Linearly Parameterized Neural Network

A linearly parameterized single hidden layer neural net-
work is used to approximate the unknown nonlinear control
law given in Eq. 9 as follows:

F∗c (k) =
h∗

∑
i=1

α
∗
i σi (v) (11)

where v ∈ℜl×1 is the input to the controller, the nonlinear
function σ : ℜh∗ → ℜh∗ is continuous with respect to its
arguments for all finite (W,v), and the adjustable param-
eters of the controller are elements of α ∈ ℜm×h∗ . Note
that σi ∈ ℜh is the basis function. According to Universal
Approximation principle [17], a sufficiently large number
of hidden neurons (h∗) in a linearly parameterized neural
network can approximate any continuous function, to any
desired accuracy .

Using this principle, a bipolar sigmoidal basis function is
used to approximate the nonlinear control law. The above
equation is written in the matrix form as:

F∗c(k) = α
∗
σ (v) (12)

where

σi =
1.0− exp(−wiv)
1.0+ exp(−wiv)

(13)

where wi ∈ℜl are the input weights. In this paper, the input
weights are chosen randomly. The underlying premise in
this formulation is that a single hidden layer feed-forward
network with random input weights can approximate a given
continuous function [9]. The number of random nodes to
approximate the nonlinear control law is determined using
the procedure given in [18].

For the unknown nonlinear control law given in 9, the
following approximation holds over the compact input v ∈
Ωv:

Ḡ (v) = α
∗
σ (v)+ ε (14)

where ε is the approximation error, and α∗ is the unknown
constant/optimal controller parameter. Here, it is assumed
that the approximation error (ε) over the compact input
region v ∈Ωv is bounded according to:

‖ε(v)‖ ≤ εm (15)

where εm ≥ 0 is an unknown bound.
Remark: The optimal controller parameter α∗ is for

analytical purposes only. Typically, α∗ is chosen as the value
of α and W that minimizes ε for all v∈Ωv, where Ωv ⊂ℜm

is a compact set, i.e.,

(α∗) := arg min
α∈Ωw

{
sup
v∈Ωv

∥∥α
T

σ(v)− Ḡ (v)
∥∥} (16)

in which Ωw := {(α)|‖α‖ ≤Mα}, Mα is a positive constant.
The approximated adaptive control force is then given by,

F̂c = ασ (v) (17)

B. Robust Direct Adaptive Control Design

In this section, the control design procedure for the system
given in Eqs. 6-7 is presented.

Substituting the control law given in Eq. 14 in Eq. 6,

z(k+1) = f1 (ξ ,k)+G1 [α
∗
σ (v)+ ε]+G1Ag(k) (18)

where, ξ = (z(k),η(k)). Now, substituting the approximate
control law given in Eq. 17 in Eq. 6,

ẑ(k+1) = f1

(
ξ̂ ,k
)
+G1 [ασ (v)]+G1Ag(k) (19)

The control objective is to make z(k) follow a desired
response zd(k). The neural controller is selected to force
the error between the actual and desired base structural
responses. Define error: eb(k) = ẑ(k)− z(k); then, the error
dynamics of the system can be written as,

eb(k+1) = f1(ξ̂ ,k)− f1 (ξ ,k)+G1 [ασ (v)−α
∗
σ (v)− ε]

(20)
The error dynamics in Eq. 20 can be written as:

eb(k+1) =
{

A1ξ̂ (k)−A1ξ (k)+ f0(ξ̂ ,k)− f0 (ξ ,k)
+G1 [ασ (v)−α∗σ (v)− ε]

(21)
where, f0(·) is the nonlinear part due to lead-rubber bearing
system. Let the nonlinear higher order term be represented
by γ(ξ̂ −ξ ) = f0(ξ̂ )− f0(ξ ).

Hence, the simplified error dynamics for the base can be
written as,

eb(k+1) = A1e1(k)+ γ(e1)+G1 [ασ (v)−α
∗
σ (v)− ε]

(22)
Where, e1 = ξ̂ −ξ , and A1 = f

′
1|ξ̂=ξ

.
Similarly,

es(k+1) = A2e1(k) (23)

where, A2 = f
′
2|0. Combining Eq. 22 and Eq. 23,

e1(k+1) = Āe1(k)+ D̄γ(e1,k)+ B̄ [ασ (v)−α
∗
σ (v)− ε]

(24)

where Ā =
[

f
′
1|0 f

′
2|0
]T

, D̄ = [1 0]T , and B̄ = [G1 0]T .
Define the parameter errors as, α̃ := α−α∗. Then, the error
dynamics can be written as,

e1(k+1) = Āe1(k)+ D̄γ(e1,k)+ B̄ [α̃σ(v)− ε] (25)

Now, the parameter update law is presented such that overall
system stability is ensured in a Lyapunov sense. It will also
be shown that the neural network parameters are bounded
for suitably small tracking error e1, and hence the control
inputs are bounded.

First, assume that the neural network can approximate the
control law F∗c (k) given in Eq. 8 with a given accuracy of
εn, for all input v in a compact set.

With the above assumption, define a positive definite
Lyapunov function,

V =
1
2
[
e1(k)T Pe1(k)+ tr

(
α̃(k)F1α̃(k)T )] (26)

3131



where F1 is a constant matrix that satisfies F1 = FT
1 > 0. The

matrix P is a positive-definite symmetric solution obtained
from ĀT P+PĀ=−Q, where Q is a positive definite matrix.

The first difference of the Lyapunov function can then be
written as,

∆V =

{
−eT

1 Qe1− eT
1 PB̄ε + eT

1 PD̄γ(e1)
+trα̃[σeT

1 PT B̄+F1∆α̃
T ]

(27)

Assume that F1∆α̃
T = −σeT

1 PT B̄. Then, the first differ-
ence of Lyapunov function reduces to,

∆V =−eT
1 Qe1− eT

1 PB̄ε + eT
1 PD̄γ(e1) (28)

Using the error dynamics and parameter update laws, Eq.
(28) can be re-written as:

∆V ≤
{
‖e1‖λmin(Q)‖e1‖+‖e1‖λmax(P)‖B̄‖F εM+
‖e1‖λmax(PD̄)γh

(29)

where, γh is the upper bound of magnitude error for nonlinear
terms in lead rubber bearing (γh = max

(
| f0(ξ̂ )− f0(ξ )|

)
.

Since the ideal parameters are constant (α∗, the adaptive
update laws for the parameters can be written as,

α(k+1)T = α(k)T −F−1
1 σeT

1 PT B̄ (30)

The error bound condition for the negative semi-
definiteness of the Lyapunov difference in Eq. 27 can be
written as,

‖e1‖>
λmax(P)

[
‖B̄‖F εM + D̄γh

]
λmin(Q)

(31)

To prevent large parameter errors, the parameters of the
network are initialized off-line, using finite time samples
generated from an approximate model. For offline training,
we have used perturbed structural system and Sylmar earth-
quake records. The offline training strategy is similar to the
one described in [8]. The estimated parameters so obtained
are used as a starting point for the on-line adaptation. For
the error analysis, consider maximum value for structural
system, i.e., ‖zx‖= 1 and ‖zy‖= 1. The bound γh depends on
the eb. Since, the network is trained off-line, the actual base
states approximately follows the estimated states. Hence, the
term γh is small and it can be neglected.

Hence, the error bound condition is reduced to,

‖e1‖>
λmax(P‖B̄‖F)εM

λmin(Q)
= Ea (32)

By using Universal Approximation theorem [17], it can
be said that the approximation error εM is reduced to zero
by a proper selection of network parameters. By the proper
selection of a user defined matrix P, the error bound Ea
is reduced to a small quantity. If ‖e1‖ is less than the
error bound, then it will result in a drift of parameters.
Such parameter drifts can be prevented using a projection
algorithm explained in [19]. The projection algorithm directs
the parameters within the radius of ball Ωw, and ensures that
the parameters do not grow unbounded.

The parameter update laws in Eqs. 30 requires access to
all the states in the system. In civil structures, full state

measurements is not practical. For nonlinear systems, state
estimation is cumbersome and undesirable. Hence, the update
rules are approximated and specialized for the case of output
feedback. Making the following substitution: eT

1 PT B̄ = ηAb,
where Ab is the base acceleration, and η is a small scalar
quantity (of the order of 10−2−10−4), the following update
law is obtained:

α(k+1)T = α(k)T −ηF−1
1 σAb (33)

Since the base accelerations are relatively easy to measure,
the above simplified control law (33) allows for a relatively
straight-forward implementation. From the update law in Eq.
33, it can be observed that superstructure properties such
as the stiffness, damping and the nonlinear force terms in
the isolation layer do not appear in the update laws. Hence,
the controller is robust to the uncertainties in the system
properties.

IV. SIMULATION RESULTS

The performance of the proposed adaptive controller is
evaluated using Newhall, Sylmar and El Centro earthquake
records, and the results are expressed using a set of per-
formance indices defined in [10]. The indices J1 through
J5 measure the peak values of base shear, structural shear,
base displacement, inter-story drift and floor accelerations,
respectively. These values are normalized by their respective
uncontrolled values, which refers to the case when there is
no force feed back to the structure and the control device
is disconnected from the structure. The performance index
J6 measures the maximum control force (normalized with
respect to the peak base shear in the controlled structure)
developed in the device, or in other words, measures the peak
control demand. The indices, J7 and J8 measure the RMS
values of displacement and base acceleration normalized by
their uncontrolled values. Readers are referred elsewhere
for details [10]. The performance of proposed controller is
compared with online learning EMRAN controller [7] and
off-line/online adaptive Gaussian controller [6].

The results of the proposed neural adaptive control scheme
along with existing EMRAN and Gaussian controllers are
reported in Table I. It can be observed from the results
presented in Table I that all the performance indices for
the adaptive controllers are less than 1, which means that
the controlled responses are less than the corresponding
uncontrolled responses. From the table, we can see that the
proposed discrete direct adaptive control design performs
better than comparable controllers, namely EMRAN con-
troller and Gaussian controllers for a majority of cases. From
Table I, we can see that in some measures EMRAN performs
better than the proposed controller. Such discrepancies are
due to large variation in the magnitude and spectral content
of the selected earthquakes. Hence, the such discrepancies
are to be expected in the controller performances.

V. CONCLUSIONS

A discrete direct adaptive controller using linearly pa-
rameterized neural network was presented and shown to
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TABLE I
PERFORMANCE INDICES FOR THE PROPOSED ADAPTIVE CONTROL

SCHEME

Per. Mea. Cases New Hall Sylmar El Centro
Proposed 0.676 0.458 0.698

J1 EMRAN 0.667 0.684 0.730
Gaussian 0.874 0.721 0.785
Proposed 0.651 0.446 0.715

J2 EMRAN 0.625 0.666 0.790
Gaussian 0.866 0.743 0.822
Proposed 0.991 0.608 0.841

J3 EMRAN 0.650 0.598 0.524
Gaussian 0.909 0.768 0.634
Proposed 0.611 0.489 0.917

J4 EMRAN 0.604 0.621 0.937
Gaussian 0.800 0.689 0.933
Proposed 0.662 0.519 0.863

J5 EMRAN 0.733 0.738 0.953
Gaussian 0.750 0.757 0.834
Proposed 0.654 0.629 0.458

J6 EMRAN 0.497 0.476 0.657
Gaussian 0.402 0.512 0.331
Proposed 0.933 0.507 0.896

J7 EMRAN 0.695 0.651 0.643
Gaussian 0.989 0.650 0.882
Proposed 0.793 0.463 0.910

J8 EMRAN 0.818 0.595 0.968
Gaussian 0.913 0.695 0.930

be effective in reducing the response of nonlinear base
isolated structures subjected to earthquake excitations. The
paper uses random projection of output measurements to
higher dimensional space with linear parameters for ap-
proximation of nonlinear control law. The linearly param-
eterized controller is shown to stable in Lyapunov sense.
The performance comparison with other existing nonlinear
adaptive control schemes clearly show that the proposed
discrete direct adaptive control is effective and also decreases
superstructure drifts and accelerations while reducing the
base displacements.
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