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Abstract— This paper investigates modeling and control
problems of the speed governing system of a hydro-generator
unit with one upstream surge tank, driven by a Francis turbine.
This governing system is organized into four main functional
blocks, namely the hydrodynamic, mechanical, electrical, and
servo subsystems. Mathematic models of the individual com-
ponents are developed and are subsequently interconnected to
obtain a model for the governor design. From the viewpoint of
modern control theory, only a part of states of this speed govern-
ing system are measurable. By introducing an additional state
variable, a reduced order sliding mode controller is presented.
Simulation results illustrate the feasibility and robustness of the
presented method.

I. INTRODUCTION

WITH the coming of low carbon epoch, low-carbon
power generation will be realized by developing
and popularizing zero-emission thermal power

generation, advanced atomic power generation, renewable
energy, e tc [1]. As a kind of zero-carbon generation form,
hydropower, currently accounting for 19% of global electric-
ity generated from primary sources [1], offers an important
low-carbon energy solution.

Generally speaking, a typical hydroelectric power plant
is made up of reservoir, water tunnel, surge tank, penstock,
hydraulic turbine, speed governor, generator, and grid [2].
This system possesses strong couplings between hydraulic
and mechano-electric dynamics. Due to the existence of
different operating conditions, the system characteristics will
change the moment that operating condition changes [3].
These undesired properties trouble the governor design of
this complex system.

As Kishor et al [2] pointed out that a key item of
any hydro power plant was its governor, many approaches
concerning the governor design problem of hydro-generator
units have been reported in the last three decades. Two
classes of the governors can be roughly seen. The first class
is with the proportional-integral-derivative (PID) or PID-type
governor, [3], [4] and [5], the other with the state feedback
or intelligence-based governor, [6], [7] and [8].

Since the PID governor methodology only focuses on the
system output and harnesses the information of the current
error (P), the sum of errors in history (I), the rate at which
the error has been changing (D), this methodology would
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lose the inner information of this system. Moreover, such
the PID governor is designed at one load condition and is
re-tuned for the worst operating condition, which does not
ensure the governing system is stable under all operating
conditions. Modern control theory not only employs the
system output, but also uses the system inner states to decide
the final control input. With the development of modern
control approaches, e.g. predictive control [6], intelligent
method control [7], robust control [9], multi-model control
[10], e tc, these methods are now being turned to practical
accounts of the governor design of hydroelectric turbines.

Sliding mode control (SMC)is a form of variable structure
control (VSC) [11]. It is a nonlinear feedback control method
that alters the dynamics of a nonlinear system by application
of a high-frequency switching control. It switches from one
continuous structure to another based on the current position
in state space so that the system trajectories always move
toward a switching condition and the ultimate trajectory
will slide along the boundaries of the control structures.
The geometrical locus consisting of the boundaries is called
the sliding (hyper)surface. The motion taking place on the
surface is called a sliding mode. The main strength of SMC
is its robustness. It is insensitive to parameter variations and
extraneous disturbance that enter into the control channel.
Additionally, the sliding mode is reached in finite time, i.e.,
better than an asymptotic behavior. This nonlinear method of-
fers an alternative method to solve the speed control problem
of hydroelectric turbines. In [12] – [14], variable structure
control methods with no sliding mode were turned into
practical accounts for governing the hydroelectric turbine
speed. So far, there has been rather rare literature about the
applications of SMC on this field.

This paper investigates a new approach for the speed
control of hydro-turbines by means of SMC. After modelling
the speed governing system of a hydroelectric power plant
with one upstream surge tank, a reduced-order sliding mode
controller is proposed. To validate the feasibility and robust-
ness of the control method, simulation results are illustrated.
The reminder of this paper is organized as follows. In Section
2, the dynamic model of the speed governing system is
depicted. The reduced-order sliding mode control law is
designed in Section 3. The presented method in Section
4 is taken into practical accounts to verify the controller’s
feasibility and robustness. Finally, conclusions are drawn in
Section 5.

II. DYNAMIC MODEL

In [15], a linear model of speed governing system was
taken for a low-to-medium head plant with either a very
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large or no surge tank, which involved no surge tank part. In
the referred papers, most of them [4] – [14] took this model
to verify their control methods. But the model neglected the
effect of a surge tank and may deteriorate the accuracy of
the system performance. Though Fang et al [3] reported a
model of hydro power plants with two surge tanks, more
than half of hydroelectric power plants are only with one
surge tank at their upstream tunnels. In this section, we will
capture the dynamic model of hydropower plants with only
one upstream surge tank.

Fig. 1 displays the schematic diagram of the hydraulic
installation of a hydroelectric power plant with one upstream
surge tank. The symbols in Fig. 1 are determined as reservoir
head HR, tunnel length L1, tunnel cross-section area A1,
head of surge tank Hs, cross-section area of surge tank As,
penstock length L2, penstock cross-section area A2, tail water
head H0. Both HR and H0 are assumed as constants and
H0 is treated as a standard head. The conduits between the
turbine and the tail water lake is assumed to be of negligible
length. The water in surge tank is considered as steady flow
conditions. All the symbols in this paper are with IS units.

Fig. 1. Schematic of the hydraulic installation of a hydroelectric power
plant with one upstream surge tank

A. Tunnel & Penstock

1) Water Hammer: The classical mass and momentum
equations for one-dimensional water hammer flows in a pipe
[16] are written as

a2

gA
∂Q
∂ l

+
∂H
∂ t

= 0 (1)

1
A

∂Q
∂ t

+ g
∂H
∂ l

+
4

ρD
τw = 0 (2)

where a is acoustic (waterhammer) wave speed, H is piezo-
metric head, A is cross-sectional area of the pipe, Q is cross-
sectional average flow rate, g is gravitational acceleration, D
is pipe diameter, ρ is water density, τw is shear stress at the
pipe wall, l is the spatial coordinate along the pipeline, and
t is temporal coordinate. From the Darcy-Weisbach equation
used in water hammer models [16], we have

τw =
ρ f ||Q||Q

8A2 (3)

here f is Darcy-Weisbach friction factor. If the flow rate Q
from left to right is defined as positive direction, then we

have (4) by substituting (3) into (2).

1
A

∂Q
∂ t

+ g
∂H
∂ l

+
f Q2

2gDA2 = 0 (4)

From the mass equation (1) and the momentum equation
(4), Q and H couple each other according to the viewpoint of
control theory. Fang et al in [3] deduced the transfer function
matrix of flow rate and water head of pipe inlet and outlet. In
[17], the model of penstock water with elastic water hammer
theory and hydraulic loss in a pipe is formulated as

L [ (t)]
L [ (t)]

= −2 · Tw

Tr
· tanh(

Trs
2

+
TrHf

2Tw
) (5)

where is water head relative deviation of the pipe inlet and
outlet, is flow rate relative deviation of the pipe inlet and
outlet, Tr is penstock water reflection time, Hf is hydraulic
loss, L is pipe length, s is Laplace operator, L (•) is Laplace
transfer, Tw = LQr

gAHr
is water inertia time, here A is cross-

section area of the pipe, Hr and Qr are rated head and
rated flow rate, respectively. If penstock or tunnel is short
or medium in length, then water and pipeline are taken to
be incompressible. Thus, one can only consider the inelastic
water hammer effect. (6) can be gotten by simplifying (5).

L [h(t)]
L [q(t)]

= −Tws−Hf (6)

2) Tunnel: In Fig. 1, water tunnel joins reservoir and
surge tank together. The dynamic model of tunnel L1 can
be deduced from (6).

L [h1(t)]
L [q1(t)]

= −Tw1s−Hf 1 (7)

where h1 = HR −Hs is head deviation of the tunnel input
and output, q1 is flow rate deviation of the tunnel input and
output, Hf 1 is hydraulic loss of the tunnel, Tw1 = L1Qr

gA1Hr
is

water inertia time of the tunnel.
3) Penstock: In Fig. 1, penstock joins surge tank and tail

water lake together. From (6), its dynamic model can be
depicted as

L [h2(t)]
L [q2(t)]

= −Tw2s−Hf 2 (8)

where h2 = Hs −H0 is head deviation of the penstock input
and output, q2 is flow rate deviation of the penstock input
and output, Tw2 = L2Qr

gA2Hr
is water inertia time of the penstock,

Hf 2 is hydraulic loss of the penstock.

B. Surge Tank

Assume no hydraulic losses at orifices of surge tank. Its
equation can be derived from the continuity of flow at the
two junctions.

Ts
dhs

dt
= qs (9)

where hs is water head deviation of surge tank, qs is flow
deviation of the surge tank, Ts = AsHr

Qr
is filling time of surge

tank.

5074



C. Wicket Gate & Servomechanism

Gate movement is provided by a hydraulic system. The
transfer function between the control signal u and the wicket
gate servomotor stroke y can be expressed by a first-order
equation, written as

L [y(t)]
L [u(t)]

=
1

Tys+ 1
(10)

here Ty is response time of wicket gate servomotor.

D. Hydro-turbine

Assume no other performance information on the turbines
was available except data on net water head, full-load flow,
and turbine efficiency. Then, the ideal turbine model [18] can
be gotten as

M =
ηρgHQ

X
Q = CtGt

√
H

(11)

Here M is the turbine torque, X is the turbine speed, and
η is its efficiency at flow rate Q and water head H. ρ and
g are the density of water and gravitational acceleration. Ct

is the wicket gate valve coefficient and Gt is the equivalent
gate position of the wicket gates in a range of 0 to 1. So
that the linearized small-signal model for flow deviation q
and torque deviation m of the turbine is written as

m = exx + eyy + ehh

q = eqxx + eqyy + eqhh
(12)

where m is turbine torque relative deviations, q is turbine
flow rate relative deviations, h is turbine water head relative
deviations, x is turbine speed relative deviations, y is wicket
gate servomotor stroke relative deviations. The expressions
of the six partial derivatives of the Francis turbine are ex =
∂ (M/Mr)
∂ (X/Xr)

, ey =
∂ (M/Mr)

∂ (Gt/Gmax) , eh =
∂ (M/Mr)
∂ (H/Hr)

, eqx =
∂ (Q/Qr)
∂ (X/Xr)

, eqy =
∂ (Q/Qr)

∂Gt/Gmax
, and eqh = ∂ (Q/Qr)

∂ (H/Hr)
, here Mr and Xr are rated turbine

torque and rated speed, Gmax = 1 is the maximum equivalent
gate position. These six coefficients can be obtained from
(11) at an operating point. Note that eqx is always zero [19].

E. Generator and Grid

Assume there is no other generation source except this
hydropower plant in one grid, then the dynamic process
of the generator unit with the load characteristic can be
described as

dX
dt

=
M−Mg0 −XR

J
(13)

here J is the moment of inertia of a unit, M is the turbine
torque, Mg0 is the electrical torque, X is the speed of the
system, and R is the rotational loss coefficient. In the small-
signal per-unit form, the generator and grid can be modeled
as

L [x(t)]
L [m(t)−mg0]

=
1

Tas+ eg
(14)

here Ta is generator unit mechanical time, eg is rotational

loss coefficient. Ta is determined as GD2X2
r

3580Pr
× 10−3, where

GD2 is generator unit inertia torque, Pr is generator-rated
power output, Xr is rated speed.

Equations (7) – (10), (12), and (14) capture each of
the individual component models of a typical hydroelectric
power plant with one upstream surge tank, driven by a
Francis turbine, the transfer function block diagram of which
is displayed in Fig. 2. In Fig. 2, the bright blue solid
means hydroelectric turbine part, the pink solid represents
penstock part, the black solid depicts surge tank part, the red
solid illustrates generator and grid part, and the blue solid
demonstrates wicket gate and servomechanism.

III. CONTROL DESIGN

With the development of sensoring and measuring tech-
nology, the methods of getting data of an industrial process
have been raised up, which enable us to employ the inner
information of a system to achieve our control objective.
As for the speed control problem of a hydroelectric turbine,
we have obtained its mathematic model with a 4th-order
ordinary differential equation (except the yellow part in Fig.
2), which implies that four independent state variables can
depict this system from the viewpoint of modern control
theory. In Fig. 2, it is obvious that the measurable variables
are y, q, h, m, and x. But they are linear correlation in (12).
This case indicates that only 3 independent and measurable
variables can be harnessed in state space for our purpose of
its control design.

Due to the advantages SMC possesses, we intend to design
a sliding mode controller for governing the turbine speed.
With the independent and measurable variables y, m, and x,
a sliding mode controller is going to be gradually deduced.
For forcing the steady state of x to tend to zero, the integral
of x is utilized as an additional state x4 with a known gain
KE [20], which is defined as

x4 = KE

∫ ∞

0
x dt (15)

The yellow dash in Fig. 2 shows the extra state. Then, the
sliding surface takes the form as

S = cT x (16)

here x = [x1 x2 x3 x4]
T , x1 = x, x2 = m, x3 = y, c =

[c1 c2 c3 c4]
T , ci (i = 1, 2, 3, 4) is constant.

The SMC law usually includes two parts: switching
control law and equivalent control law [11]. The former
is employed to drive the system states moving towards a
predefined sliding surface. The latter guarantees the system
states keep sliding on the sliding surface and converge to the
surface. During our control design, we still adopt such the
approach and define the control law u as

u = ueq + usw (17)

Here usw is the switching control and ueq is the equivalent
control law, both of which expressions are deduced below.
Since ueq and usw are model-based, we have to obtain the
reduced order model of this system. From Fig. 2, we obtain
the servo component with a state x3, the generator and grid
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Fig. 2. Transfer function block diagram of a typical hydroelectric power plant with one upstream surge tank

component with a state x1, and the turbine component with
a linear expression. So the order of the the tunnel, surge
tank and penstock components can be reduced. In Fig. 2,
the transfer function of the three components is

L [h(t)]
L [q(t)]

= − Tw1s+ Hf 1

(Tw1s+ Hf 1)Tss+ 1
−Tw2s−Hf 2 (18)

Since the steady value of the first term of (18) on the right
is −Hf 1, the reduced order model for control design can be
written as

L [hre(t)]
L [qre(t)]

= −Tw2s−Hf 2 −Hf 1 (19)

Note that (19) are only employed for control design of
the reduced order sliding mode controller. In the further
simulations, (18) are still held as the model of these three
components. Thus, the reduced order model of this speed
governor system in state space with the state vector x =
[x1, x2, x3, x4]

T can be depicted as

ẋ = Ax +Bu +Fd(t)

y = C
T x

(20)

here state matrix A, input vector B, output vector C, distur-
bance vector F, disturbance sign d(t) are shown in Appendix.

While the system states keep sliding on the sliding surface,
only the equivalent control ueq works. Differentiating S with
respect to time t and letting Ṡ = 0 obtain

Ṡ = cT ẋ = cT (Ax +Bueq) = 0 (21)

Substituting the nominal system of this reduced-order system
(20) into (21), we have

ueq = −(cT
B)−1cT

Ax (22)

In order to ensure the total control law (17) makes
the sliding surface (16) asymptotically stable, we define a
Lyapunov function as

V (t) =
1
2

S2 (23)

Differentiating V with respect to time t and substituting (20),
(17) and (22) into (23) obtain

dV
dt

= SṠ = S[cT ẋ]

= S[cT (Ax +Bu + cT
Fd(t) )]

= S{cT [Ax +B(ueq + usw)+ cT
Fd(t)]}

= S[cT (Ax +Bueq)+ cT
Busw + cT

Fd(t)]

= S[cT
Busw + cT

Fd(t)]

(24)

Let cT Busw = −κS−ηsgn(S) where κ and η are positive
constants and sgn(·) is sign function, then the switching
control law usw is obtained as

usw = −(cT
B)−1[κS + ηsgn(S)] (25)

The control law can be obtained as

u = ueq+usw = −(cT
B)−1[cT

Ax + κS + ηsgn(S)] (26)

Moreover, (24) becomes

dV
dt

= S[−κS−ηsgn(S)+ cT
Fd(t)]

≤−κS2−η |S|+ |S||cT
Fd(t)|

≤ −κS2− [η −|cT
Fd(t)|]|S|

(27)

By defining DM = sup |cT Fd(t)|, there exist dV
dt ≤ −κS2 −

(η −DM)|S| < 0. If η > DM is satisfied, then the designed
controller is able to stabilize the reduced order model (20).

Comment 1: For the reduced order sliding surface (16), the
fulfillment of the reachability and the existence of sliding
mode conditions become complicated. (16) is a reduced
order system so that the sliding mode will take place in a
subspace of the prototype system. With the reduced order
SMC law, the reachability condition SṠ < 0 can only ensure
each element of x in the reduced order subspace is stable.
But the stability of the reduced components, i.e. surge tank
and tunnel, can not be held by the reduced order SMC law.
So we have to analyze their stability.

Theorem 1: If the reduced order system is stable with the
control law (17), then the prototype is stable as well.
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Proof : From (12), we have

lim
t→∞

(exx + eyy + ehh) = lim
t→∞

m

lim
t→∞

(eqxx + eqyy + eqhh) = lim
t→∞

q
(28)

As pointed out that (17) could stabilize the reduced order
system, m, y, and x possess the stability, i.e. limt→∞ m =
const., limt→∞ y = const., and limt→∞ x = 0. So that

lim
t→∞

h = const.

lim
t→∞

q = const.
(29)

which indicate q and h are still stable. So that each individual
component of the speed governor system is able to stabilized
by this reduced order sliding mode controller. Because the
sliding mode will take place in a subspace of the prototype
system, the reduced order SMC decreases the robustness of
the SMC for the measurbility of the system state variables
in a way. �

IV. SIMULATION RESULTS

Lubuge hydroelectric power plant, with a rated head of
312.0 m, maximum net head is 372.5 m, is on Huangni River
where Yunnan and Guizhou provinces border with Guangxi
Zhuang Autonomous Region, P.R. China. The installments
of this plant are 4× 153MW Fracis turbines. The diversion
system consists of a pressure tunnel with 9387 m in length
and 8 m in diameter, a surge tank with 12 m in inner
diameter and 63.9 m in height, two penstocks with 470 m in
length and 4.6 m in diameter, and four branches with 3.2 m
in diameter. By simplifying the branch of a turbine as its
hydraulic losses, our mathematic model with surge tank is
able to depict the operating condition while one penstock
supplies a solitary turbine. So that the data of this plant
are employed to simulate for load rejection. The data of the
generation unit of this plant are determined as Pr = 153 MW ,
Hr = 312.0 m, Qr = 53.5 m3, Xr = 333.3 r/min, L1 = 9387 m,
A1 = 49.6 m2, As = 113.04 m2, L2 = 470 m, A2 = 16.61 m2,
GD2 = 4.0×104 kN ·m2. Under our operating condition that
is one penstock supplying one turbine, Hf 1 = 0.036 and
Hf 2 = 0.027. The time constants Ta, Ty, TW 1, TW 2, and Ts are
gotten as 8.113, 0.500, 3.312, 1.244, and 659.224, respec-
tively. Assume this hydroelectric generating unit is connected
to an isolated system. The turbine coefficients under the
operating condition case 1 and case 2 are determined as Table
I. KE is picked up as 0.200. The parameter of the reduced
order sliding surface on the operating point Case 1 in Table
I is gotten as c = [500 35 63 600]T from Acker command
of MATLAB by placing the pole of Ackermanns formula in
the specified vector [−1 − 2− 2i − 2 + 2i − 9]T . κ and η
are selected as 1.00 and 0.500.

A. Load Rejection

Fig. 3 illustrates the comparison of 10% load rejection
under the operating condition Case 1 by the reduced order
SMC and PID governor, where the PID gains are tuned as
Kp = 0.85, Ki = 3, and Kd = 2 [21]. Displayed in Fig. 3,
the presented governor possesses a better performance than

TABLE I

TURBINE COEFFICIENTS FOR STEADY-STATE OPERATING POINTS

ex ey eh eqx eqy eqh eg
Case 1 -1.000 1.000 1.500 0.000 1.000 0.500 0.210
Case 2 -0.260 0.322 0.722 0.000 0.573 0.325 0.210

the conventional PID controller from the viewpoint of speed
deviations x. Compared with the slow response of the PID
governor, the wicket gate deviation y under the action of
the reduced order SMC governor can respond the minute
that the load changes. Correspondingly, the flow deviation
q is changed to regulate the unit power. So that x can be
rectified as soon as possible. Further, we can also explain
the reason that the presented control method possesses the
better performance from the viewpoint of information. The
reduced order SMC makes full use of the system information
and the extra state to decide the final control u, whereas,
the PID controller employs the proportional, integral, and
derivative of x to formulate the final control u, only utilizing
a part of the system information.
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Fig. 3. Simulation results of 10% load rejection under the operating
condition Case 1 by the reduced order sliding mode governor, compared
with PID governor

B. Robustness Testing

Fig. 4 demonstrates the results of robustness testing of
10% load rejection under the operating condition Case 1 and
Case 2, by the same controller parameters. As shown in Fig.
4, the presented controller can still hold a robust performance
even when it operates under the different operating condition.
Due to the adopted robust control method, the presented
governor earns a robust performance. This is very meaningful
for the safe and economical operation of hydroelectric power
plants.
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Fig. 4. Simulation results of 10% load rejection under the different
operating conditions, Case 1 and Case 2, by the same controller parameters

V. CONCLUSIONS

This paper has presented a reduced order sliding mode
controller to govern the speed of a hydroelectric turbine.
The model of a hydroelectric power plant with one upstream
surge tank is built up at first. By introducing an additional
state variable, a reduced order sliding mode controller is
presented for the speed governor of this power plant. From
our proof, this reduced order controller possesses the ability
to stabilize the prototype system. For searching the optimized
parameters of the reduced order sliding surface, genetic
algorithm is employed. Finally, simulation results show the
feasibility and robustness of the presented governing method.

The two main contributions of this paper are to model a
hydroelectric power plant with one upstream surge tank & a
penstock, and to present a reduced order sliding mode control
method. How to model a hydroelectric power plant with a
surge tank & more penstocks and to design its controller are
still continuous research field.

APPENDIX

Under the operating condition Case 1 in Table I, the
matrices A, B, C, and F in our example are determined as

A =

⎡
⎢⎢⎣

−0.149 0.123 0 0
−0.939 −1.109 3.425 2.488

0 0 −2.000 −2.000
0.200 0 0 0

⎤
⎥⎥⎦

B = [0 −2.488 2.000 0]T

C = [1 0 0 0]T

F = [−0.123 0.077 0 0]T
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