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Abstract: A distributed control was provided to regulate the 
active power of photovoltaic (PV) generators installed on a 
distribution power system network, making a group of PVs 
converge and operate at the same ratio of available power. 
The sufficient conditions that guarantee the convergence of 
the closed-loop system was discussed, including the minimal 
requirement of communication topology among the PVs. 
Simulation on a radial distribution network was provided to 
verify the validness of the control.  
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I. Introduction 

In recent years, there are more and more distributed 
generators (DG) integrated into the modern distribution 
network [1], especially for the PVs due to their clean and 
renewable characteristics. If a distribution network with 
many PVs, it is necessary to control and dispatch those 
units to provide some ancillary services [1, 2].  

Usually, there are three control modes to control the 
outputs of the PVs: the centralized mode, the decentralized 
mode and the distributed mode. The methods based on the 
optimal power flow strategy [3, 4] are of the centralized 
mode, which were employed in a distribution network that 
has some distributed generators [5]. This mode needs global 
information, so it is a difficult way for a distribution 
network which has numerous and geographically dispersed 
DGs. Another mode is the decentralized mode, such as the 
constant PQ of operation, the maximum photovoltaic 
power tracking or constant VF (Voltage and Frequency) 
with droop mode [6-8]. However, it is not easy to use this 
mode when the number of units becomes large and their 
outputs are intermittent.  

Compared to the centralized and the decentralized 
control modes, the distributed control mode can use local 
communication networks and combine the positive features 
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of both centralized and decentralized controls while 
limiting their disadvantages [9-12]. Thus, given the 
advances in modern communication, the distributed mode is 
practical to implement and also necessary to accommodate 
various changes of PVs. This idea was used in [13] for 
multiple PVs and its strategy is to make all PVs converge 
to an uniform output ratio autonomously. The simulation 
shows good feasibility for multiple PVs in a future smart 
grid, but the strict proof is not provided. This problem will 
be partly solved in this paper, in which the strict proof for 
the active power management will be given.  

This paper provides a distributed control for many PVs 
in a distribution power systems network in order to control 
the PVs’ active power outputs for some ancillary services. 
The requirement of the communication networks under 
which the control strategy is valid is presented and the 
stability will be proved under some trivial assumptions.  

II. Problem Formulation 

A. Dynamical Models 
Consider a distribution power system network with n 

three-phase inverter based PVs, which use a decoupled d-q 
control method via Phase Locked Loops. The d-axis and 
q-axis are to be controlled for the active power and reactive 
power, respectively.  

Ignoring the control in the q-axis, the dynamics of the 
distribution system can be denoted by [13]:  

1
ref
di iI u         (1) 

ref
i i diP U I         (2) 

10 ( ,..., , ,ng P P ) X       (3) 

where the sub-script ‘i’ denotes the ith PV,  is the active 
power; equation (1) denotes the dynamics in the d-loop; 

 is the input to be designed in order to control the power 
output; 

iP

1iu
  is a vector of appropriate dimensions, which 

denotes the internal state variables of the system;  is a 
vector denoting the algebraic variables in the distribution 
network such as the voltages of buses; and (3) denotes the 
power flow equation of the distribution network.  

X

B. Problems to be Solved 
The control strategy is to make all PVs run at the same 

active power output ratios, and it is to be realized by the 
practical distributed control mode. The basic idea is that 
each PV can share its information with some others. Thus, 
the control of each PV should be of the general form  

0 0 1 1 2 2( , , ,..., )i i i i i in nu w s s s s y y y y ,   (4) 1,2,...i  n
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where  denotes the output of the high level control;  
 denotes the output variable of ith PV unit; 

 is a time-variant matrix denoting the 
communication topology, defined as  
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where  is satisfied for all ;  if the output 
of the j-th PV generator is known to the i-th PV generator 
at time , and  if otherwise;  if the i-th 
PV can get information from the high level control (or 
remote control) and  if otherwise.  

( ) 1iis t 

t

i 1ijs 

0 ( )is t( ) 0ijs t 

0 ( )is t

1

0

The problems to be solved are stated as follows.  
Problem 1: For the system given by (1)-(3), design the 

controls for  ( ) such that at the equilibrium 
points there are  

1iu 1,2,...,i 

01 2

1max 2 max max

... n
P

n

P P P

P P P
         (6) 

where 0
P  is the given output ratio for the active power; 

 is the maximal power of the ith PV unit;  is 
supposed to be positive without loss of any generality.  

maxiP maxiP

It should be noted that in formula (5) ( ) 1iis t   will be 
always satisfied for each PV. Whether other PVs’ 
information is used or not is completely determined by a 
nonzero entry in the communication matrix. In general, 
only a part of the neighboring information is necessary to 
ensure convergence. In addition, the communication matrix 
is considered to be time-varying in general, not a matrix of 
constants. This is a necessary to be considered since 
communication equipment may malfunction or some PVs 
could be out of service due to environmental reasons. This 
means that the communication matrix is piecewise 
continuous. Specifically, let  

:0 0 1 2{ , , ,...}t t t t � ,    (7) :0 0 1{ ( ), ( ),...}S S t S t �

which means matrix changes at time  (S it 0 0t  ), i.e., 

 for .  :0( ) ( )kS t S t S  1[ , )k kt t t 

Once problems 1 is solved, then those PVs can be 
considered to be a virtual generator with a larger capacity. 
Now, for each virtual generator, only the operating ratio 
need to be decided, resulting in a much simpler way to 
design a high level control for the ancillary services 
problems. In this paper, the ancillary service is to keep the 
active power consumed by loads in an area or feeder to be 
constant. This problem can be stated as:   

Problem 2: Based on the solutions of problem 1, design 
an additional control for (1)-(3) such that the active power 
across some transmission line to be constant. Namely, at 
the equilibrium there is 

( ) ref
tranP P          (8) 

where  is a given constant;  denotes the active 
power across a concerned line (it is a function of the PVs’ 
output, so  is used).  

refP ( )tranP 

( )

C. Control Strategy 
It follows from (1)-(2) that  

1
ref ref i

i i di i di i i
i

U
P U I U I P U u

U
   


  

i     (9) 

Choose the control law for the ith PV to be  
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where ( ) max{ , }i idz U U U  and 0U   is a given constant; 

 is the gain;  0 0K 

0

ij
ij n

ij
j

s
D

s





, 1,2,...i n       (11) 

where ( )ijW w  denotes the weight matrix with positive 

elements (in this paper, those elements are set to 1 for 
simplicity); ijs  ( , 1,2,...i j n ) are the entries of the 

communication matrix defined in (5).  
In addition, to satisfy problem 2, the 0

P  is updated by a 
simple gradient rule shown in (12), thus the closed-loop 
equations can be compactly expressed by:  

0 ( )P ref tranz K P P           (12) 

0 0 0
1,2,...

i i i ij
j n

z K z D z D z


j

 
    

 
     (13) 

1( ,..., , , ) 0ng z z χ Χ       (14) 

where 0
0 Pz  , maxi i iz P P  and other variables are 

defined previously.  
The communication matrix  is designed according to 

the following rule.  
S

Rule 1: the communication topology among the PVs 
may be intermitted, but the communication matrix  is 
piecewise continuous. Mathematically the sequence 

S

:0 1{ (0), ( ),...}S S S t   is sequentially complete.  

It should be noted that the convergence rate of the closed 
loop dynamical system depends upon connectivity of the 
communication network [14].  

Remark: In the proposed control strategy, we do not 
consider the parameter uncertainty issue, such as stochastic 
loads and irradiance, which is a common phenomenon in 
distribution power systems. If the uncertainty is considered, 
the distributed H-  control [15] may be used for this kind 
of dynamical models, which is one of our future work.  

III. Stability Analysis for the Closed-Loop System 

A. Reduced dynamical model for stability analysis 
In the section IV, the communication topology and the 

control among all PVs are given. The remaining problem is 
to analyze the stability of the dynamical system (14). 

It flows from formulas (12)-(14) that the equilibrium of 
the dynamical-algebraic equations satisfies 

0 0 0 0
1 2 ... n Pz z z    

0 0 0 0

,     (15) 0
ref tranP P

1 1( ,..., , , ) 0g z z  χ Χ       (16) 

where the super-script ‘0’ denotes the variables evaluated at 
the equilibrium.  
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If the equilibrium is a nonsingular point of the power 
flow equation, it follows from the inversed function 
theorem that around the equilibrium there exist smooth 
functions of appropriate dimensions, say 1( )   and 2 ( )  , 

satisfying the power flow equation, i.e.,  
1 1 2( ,..., , ( ), ( )) 0ng z z       

Thus, there exists a smooth function 1( )   such that 

 can be expressed as:  tranP

1 1( ,..., )tran nP z z






       (17) 

Substituting (17) into (12)-(14), the reduced dynamical 
equations can be expressed as 

0 1 1( ,..., )P ref nz K P z z       (18) 

0 0 0
1,2,...

i i i ij
j n

z K z D z D z



   

 
 j  1,2,...,i n,   (19) 

Thus, the stability is completely determined by system 
(18)-(19). In the next subsection, the stability will be 
proved under some additional assumptions that are usually 
satisfied in power systems.  

B. Basic properties for the stability analysis 
For a general distribution network, the following facts 

can be assumed to be satisfied:  
Fact 1: The positive direction of  is chosen to be an 

increasing function of 
tranP

0
P , so 1( )sumP    is an increasing 

smooth function of , i.e.,  iP

1( ) 0iP           (20) 

Fact 2: the angles at both sides of the transmission line 
of concern satisfy that  

1 2 1 2sin( ) cos( )   �       (21) 

where i  ( ) denotes the angle of the concerned 

transmission line.  

1,2i 

The linearization system of (18)-(19) at equilibrium 
(denoted by ) can be expressed as:  0E

0
0 1

1

1
0 0 0

1,2,...

( )
n

P j j P
j

i i i ij
j n

z K c z

jK z z D z D z


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   
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








    (22) 

where 
0

1 1j j E
c z � .  

Changing the equilibrium of (22) to the origin results in 
a system with the same stability property as that of the 
following system:  



1 T
0 0 1

*0 0

Pz K K c

D z

  


   

z

z I



 D z
      (23) 

where ,  is the T
*0 10 20 0[ , ,..., ]nD D D D D n n  matrix 

whose entries are time-varying .  ijD

Thus, the stability of system (18)-(19) is locally 
determined by system (23).  

Lemma 1. Suppose facts 1-2 are satisfied, then in (23), 
 is satisfied. 1 0T

PM K c  1

Proof: facts 1-2 implies 1 jc  is positive, thus the 

conclusion is correct obviously.  
It follows from lemma 1 and lemma 3 (in appendix) that 

the stability of system (23) can be stated as:  
Theorem 1. Consider system (23). Suppose that the 

following conditions are satisfied:  
1) PK  is small enough;  

2) Facts 1-2 are satisfied;  
3) The communication among the PVs satisfies the 

sequentially complete (rule 1 in section III).  
Then system (23) is asymptotically stable.  
Proof: Clearly, system (23) can be rewritten as the 

system considered in lemma 3. It follows from the given 
conditions 1-2 and Lemma 1 that the condition 1 in lemma 
3 is satisfied. The given condition 3 implies that the 
condition 2 in lemma 3 is also satisfied. Thus, it follows 
from lemma 3 that system (23) is asymptotically stable. □ 

It follows from this theorem that the linearized system is 
asymptotically stable, so if the initial states lie in the 
neighborhood of the equilibrium, the active outputs of PVs 
satisfies T 0

0 1[ , ,..., ]nz z z P 1 , where 0
P  satisfies (8). 

Consequently, the theorem 1 guarantees that the proposed 
control strategy is the solution to problems 1-2.  

IV. Simulation 

A 50hz radial network is considered in this section. The 
main voltage in this network is 10KV, and the topology is 
shown in Figure 1, where 5 PVs and 6 loads are considered 
to be connected to the low voltage network.  

 
Figure 1 A radial system with multiple PVs (The dash arrows among 

controllers represent the information flow) 

The detailed parameters of the grid are: 
1) Every segment of the transmission line (from one bus 

to its neighboring bus) is 0.85km; the impedances is 
0.443+j0.3ohm/km; the external grid is considered to 
be an infinite bus whose voltage is 1.05 p.u.; the 
short-circuit voltage of the transformer is 5% and its 
capacity and copper loss are 1MVA and 5kW.  

2) Spot loads (balanced) are shown in Table 1 and the 
constant impedance model is considered.  

3) The communication topology is shown by the dash 
arrows in Figure 1, 0 20K   and 1pK  ; the 

concerned line is chosen to be the objects which are 
measured by the leader control.  

4) The maximum of every PV is 0.2MW+j0.04MVAR 
and the initial output is 0.15MW+j0.0MVAR.  

Table 1 Load information 

Load Active power (KW) Reactive power (KVAR) 
L1 346.28 92.34 
L2 364.50 58.32 
L3 473.85 97.20 
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L4 394.88 63.18 
L5 413.10 121.5 
L6 273.38 77.76 
It follows from the information flow in Figure 1 that the 

communication topology can be represented by the 
following matrix: 

1 0 0 0 0 0

0 1 1 1 0 0

0 1 1 1 0 0

0 0 1 1 1 0

1 0 0 1 1 1

1 0 0 0 1 1

S

 
 
 
 

 
 
 
 
  

      (24) 

Clearly, if the communication network is kept to be 
constant, then its sequence is sequentially complete. 

Suppose that the expected disturbance is that: all loads 
decrease 10% active power and reactive power on their 
normal basis at 0s, and increase 20% on their normal basis 
at 3.5s. Figure 2 plots the dynamical responses of the 
proposed distributed control and the PVs’ outputs. It 
follows from Figure 2 that the distributed control 
guarantees that the active power outputs of PVs converge 
to the uniform ratio. Thus, the requirement of problem 1 is 
satisfied.  

 
Figure 2 Active power output ratios 

V. Conclusion 

A distributed control scheme is provided for the power 
output control for a group of PVs in the distribution 
network. This method has the advantage of robust 
communication topology. Simulations based on a radial 
distribution network show the validity of the proposed 
method. The proposed design methodology is also 
applicable to distribution networks with different types of 
DGs including solar-, wind- and ocean-energy power 
generators.  

Further research should be done on the uncertain 
parameter issue in the dynamical models. How to use the 
distributed H-  control to solve this problem is our future 
work.  
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Appendix 

Lemma 2. Suppose that  is row-stochastic matrix 

for every . The sequence  is 

sequentially complete, then there exist a constant 

( )kD t
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1( )(i i i )I D t t
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where , both 
1

( )i jE e E  and F  are row-stochastic 

matrices with appropriate dimensions.  
Moreover, there exists a  such that  0 0T 

0k kt t   T        (31) 

is uniformly satisfied for every .  0k 
Proof: The results (25)-(27) can be found in [10] (lemma 

4.41). The (25) implies that (31) is satisfied, otherwise, 
there is , so ( 1) 0k kt t    1 0i it t    and  for all 

. The definition in (29) implies that 
iP I

i  : 1k kP     is 

satisfied. It is contradictory to (25). □ 
Lemma 3. Consider a time-varying system as follows: 

11 12
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where 1nx R ,  are the states; 2nz R 1 1nR c , 1 1
11

n nA R   

and  are constant; 1
12

n nA R  2 0 

*0 ( )D t 

 is a small constant; 

 is the identity;  and 2 2n nRI 2nR 1 2 2( ) n nt R D  

are non-negative piecewise continuous.  
Suppose that the following conditions are satisfied:  
1)  are Hurwitz;  T

11 12A A 1c

2) The expanded matrix  is row-stochastic, 

piecewise continuous, which satisfies 
*0[ , ]e DD D

}

, *0( ) [ ( ), ( )]e k e k k kt D t tD D D� , ,  1[ , )k kt t t  0,1,2...k 

and sequence  is sequentially complete.  ,0 ,1{ , ,...e eD D

Then there exists an 0 0   such that system (32) is 

asymptotically stable for every 0(0, )  . 

Proof: Perform a coordinate transformation as follows:  

T

0

f

    
       

x I x

z 1c I z





D

 

Since the matrix  is row-stochastic, there is  *0[ , ]e DD

 T T
*0 ( ) eD      c x I D 1c x D 1 1 c x 0T  

Thus, in the coordinate [ , ]fx z , (32) can be rewritten as  
T

11 12 12( ) f  x A A 1c x A z       (33) 

( )f f    z I D z

where T T
11 12 21( ) f     w 1c A A 1c x A z .  

Let  

*0

1 0
( )

( ) ( )k k
k k

t
t t

 
  
 

D D
D D

 � ,  
1 0

0

 
 
 

I
I

 �

0 
 
 

w
w

 � , ,0f

f
f

z 
 
 

z
z

 �  

The solution of system (34) can be calculated by: 

,0

( )

(0) 0

f f

f

    




z I D z

z

   



w

}

      (35) 

The sequential completeness of  implies 

that  is also sequentially complete. Thus by 

lemma 2 there exists a 

,0 ,1{ , ,...e eD D

0 1{ , ,...}D D 

(0,1)   and an integer 0   
such that:  

1( )( )i i i

k
t t

i k

e


 


  



 


 
 I D 

 0k,       (36) 

where   is defined in lemma 2.  
Let  

1N             (37) 

1 2
( 1) 1 2

, ,
[ , ) 1 ,

( ) max max { ( ) ( )}
mN m N

f i f i
t t t i i n

y m z t z t
   

 � ,  (38) 0m 

( 1)[ , )
( ) max || ( ) ||

mN m Nt t t
y m x t

 


 � ,     (39) 0m 

where 1     is the maximum integer less than 1  .  

Clearly, there exists two positive constants 1  and 2  

such that  

1 2|| || || || || ||f     w x z 1 2( ) ( )y l y l    (40) 

Consider ( 1)[ , )lN l Nt t t  . The solution of (35) satisfies  

0

1 1

( 1) ( )
0 0

( ) ( ,0) (0) ( , ) ( )

( , ) ( , ) (0)

t

f f

l N

lN iN j iN j f
i j

t t t d

t t t t 

   

 
 

  
 

 







z z w

z

  





d

 

( 1)

( )

1 1

0 0

( , ) ( ) ( , ) ( )
iN j

lN iN j

l Nt t

t t
i j

t d t


 

        



 

 

  w w   (41) 

where ( )( ,0) D tt e   I  .  
Substituting (40) into (41) and considering (26)-(27) and 

(36), we have  

 

( 1)

( )

, ,
,

1 1

0 0

max ( ) ( )

(0) ( ( , )) ( )

( ( , )) ( )

lN

iN j

iN i

f i f j
i j

tlN
f t

l N t

lNt
i i

z t z t

z t w

t w








d

d

     

    





 


 



 







 



 

 

 

 

1 2

1
( 1)

1 2
0

(0) ( ) ( )

( ) ( )
1

Nl
f

l
N l i

i

z y l y l

y i y i

   

   





 



  

    



  (42) 

Since expression (42) is satisfied for all ( 1)[ , )lN l Nt t t  , 

it follows that  

 

 

1 2

1
( 1)

1 2
0

( ) (0) ( ) ( )

( ) ( )
1

Nl
f

l
N l i

i

y l z y l y l

y i y i

   

   





 



  

    



 

w       (34) 
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 0 1 2( ) ( )la y l y      l  

   

3 3 12

1
( ) 1 13 12

0

(0) ( )

( )
1

l

l
l i N N

i

y l

y i  

   

  
 



 


   



 


     

x A

A

 
  

1
( 1)

3 1 2
0

( ) ( )
l

l i

i

y i y i   


 



       (43) 

where N  , 0 (0)fa z


  , 3 1







.  
1

1
0 2 3

0

( ) ( )
l

l

i

a y l y   


 



      � l i i     (47) 

Next we perform the similar skills for the solution of 
(33). When , the solution of (33) is:  ( 1)[ , )lN l Nt t t  where 0 3 (0)a 


  x , 2 3 12 


  A , 3 12

3 1

  






 



A
.  



T T
11 12 11 12( ) ( )( )

120
( ) (0) ( )

tt t
ft e e d        A A 1c A A 1cx x A z  Since (47) is satisfied for all , we have ( 1)[ , )lN l Nt t t  

l i
1

1
0 2 3

0

( ) ( ) ( )
l

l

i

y l a y l y i   


 



            (48) 
T T

11 12 11 12( ) ( )( )
12(0) ( )

lNk

tt t
ft

e e   d      A A 1c A A 1cx A z

d

 

T( 1)
11 12

( )

1 1
( )( )

12
0 0

( )
iN j

iN j

l N t t
ft

i j

e




    



 
 

 

 A A 1c A z   (44) Since we consider that 0   is small, N  is a large 
integer and   . Thus, simultaneously considering (43) 
and (48), we have Since  are Hurwitz, there exist constants T

11 12A A 1c

3 0   and 4 0   such that  

0 0 1 2 2

1
1

3 1 3 2 3
0

max{ ( ), ( )}

max{ , } max{ , }max{ ( ), ( )}

max{ , } max{ ( ), ( )}

l

l
l i

i

y l y l

a a y l y l

y i y i

    

      


 





    

    

  T
11 12 4( )

3
te te 


A A 1c        (45) 

It follows from lemma 2 that there exists a  such 

that  is satisfied. In addition, it follows 

from the definition in (37) that 

0 0T 

0( )l it t l i T    

1N   is satisfied. Thus 

there exists a  such that  4 0 (0,1)T e    �

i.e.,  
1

1
0 2

0

( ) ( )
l

l

i

y l a M y i  


 



    i     (49) 

T
11 12 4 4 0( )( ) ( ) ( )

3 3
lN iN lN iNt t t t N l i Te e e          


 A A 1c     

3
l i                               (46) 

where 1 1 2 2

is satisfied for every pair of  ( l ).  { , }i l i
It follows from (44) and (46) that  

T
11 12

T
11 12

T( 1)
11 12

( )

( )

( )( )
12

1 1
( )( )

12
0 0

|| ( ) || (0)

( )

( )

lNk

iN j

iN j

t

t t
ft

l N t t
ft

i j

t e

e d

e






 

 

 

d



   




 

 



 
 

 











A A 1c

A A 1c

A A 1c

x x

A z

A z
 

 

 

 

 

 

 

 
 

max{ , }M     ,   1

0 1 01 max{ ,a M a


0}a  ,  

max{ , }y y y ,   1

2 1 3 1 3 21 max{ ,M M 3}     


   .  

Applying the Gronwall-Bellman [16] inequality into (49), 
we have 

1
2

0
1

1
( )

1

l

l M
y l a

M




  
 


      (50) 

Clearly, it follows from (50) that if 0   is small 
enough then ( ) 0y l   is satisfied as . Therefore, 
system (32) is asymptotically stable in turn.    □ 

l 
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