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Abstract— In this paper, a fractional order adaptive feedforward
cancellation (FO-AFC) scheme is proposed to cancel the periodic
disturbance. This FO-AFC offers one more tuning knob – the fractional
order, for the performance improvement of the periodic disturbance
cancellation, according to the interests of the users. The equivalence of
fractional order internal model principle (FO-IMP) scheme is derived
for FO-AFC. So, the FO-IMP equivalence can be used to analyze the
performance of the cancellation for the target periodic disturbance
and the suppression for the harmonics and noise. Two FO-AFC cases,
fractional order α ∈ (0, 1) and α ∈ (1, 2), are discussed for the
performance analysis, respectively. FO-AFC with additional tuning
knob α ∈ (0, 2) has many advantages, and is much more flexible over
the integer order adaptive feedforward cancellation (IO-AFC) with only
α = 1. Simulation results are presented to validate the performance
analysis of FO-AFC comparing with IO-AFC.

Index Terms— Fractional order calculus, periodic disturbance, frac-
tional order adaptive feedforward cancellation, fractional order internal
model principle.

I. INTRODUCTION

In practice, the periodic disturbances exist in variety of elec-

tromechanical systems. For example, the repeatable runout (RRO)

problem in hard disk drive (HDD) digital servo systems is typically

caused by the periodic disturbance which is one of the main

contributors to track misregistration [1][2]; the cogging force in the

permanent magnetic motors was defined as the position periodic

disturbance in [3] and [4]. The challenges of compensating for

periodic disturbances appear in various applications. Numerous

control design methods have been developed specifically for elimi-

nating periodic disturbances. Repetitive control [5] and disturbance

observer (DOB) based control [6][7] have demonstrated effec-

tive compensation for repeatable disturbances. However, repetitive

control tends to amplify nonrepeatable disturbances between the

frequencies of the repeatable disturbances while DOB based control

can alter the closed-loop properties of the system.

Another method of designing controllers to cancel periodic

disturbances is the Internal Model Principle (IMP) proposed by

Francis and Wonham [8] in 1976, which showed that a suitably

reduplicated model of the disturbance dynamic structure should be

included in feedback loop for perfect disturbance cancellation.

Adaptive feedforward cancellation (AFC) is also a well estab-

lished method to reject sinusoidal disturbance with a known period

but with unknown amplitude and unknown phase [9], which is

essentially a special case of more general narrow-band disturbance

rejection methods [10]. The adaptive algorithm can be used to

estimate the unknown amplitude and unknown phase of the periodic

disturbance. So, the negative of the disturbance value can be added

to the input of the plant, then the periodic disturbance can be

cancelled simply. AFC has been used in hard disk drive industry

as a standard technique to cancel the once per revolution (OPR)

disturbance due to the spindle motor runout [5]. AFC technique

has also been extended to the case when the period is constant but
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unknown [11][12] and to the case when the disturbance is sinusoidal

with respect to the state rather than the time [13].

In [9], the authors observed that the AFC algorithm was not only

successful in eliminating the first harmonic but also in reducing

the third harmonic of the periodic disturbance. The AFC algorithm

designed to cancel the first harmonic may be capable of reducing

the amplitude of the third harmonic as well. The generation of

harmonics in the AFC algorithm was found to be due to the

time-variation of the adaptive parameters and was explained using

modulation arguments from standard signals and systems theory.

The results of the analysis originate from the fact that the AFC

algorithm is equivalent in some sense to an IMP algorithm.

In recent years, the applications of fractional calculus have been

attracting more and more researchers in science and engineer-

ing [14][15][16][17][18][19][20][21][22]. In this paper, a fractional

order adaptive feedforward cancellation (FO-AFC) scheme is pro-

posed to cancel the periodic disturbance, which offers one more

tuning knob, the fractional order, for the performance improvement

of the periodic disturbance cancellation according to the interests

of the users. The equivalence of fractional order internal model

principle (FO-IMP) scheme is derived for FO-AFC. Thus, the FO-

IMP equivalence can be used to analyze the performance of the

cancellation for the target periodic disturbance and the suppression

for the harmonics and noise, by the Bode plots of the sensitivity

functions of the closed-loop system. Two FO-AFC cases, fractional

order α ∈ (0, 1) and α ∈ (1, 2), are proposed for the performance

analysis, respectively. First, FO-AFC with α ∈ (0, 1) has narrower

slot around the frequency of the target periodic disturbance over IO-

AFC in the Bode plots of the sensitivity functions, which means

FO-AFC with α ∈ (0, 1) is more selective for the cancellation

of the target periodic disturbance with the desired cancellation

capability shown as the slot depth in the Bode plots. Meanwhile,

the amplitude of FO-AFC with α ∈ (0, 1) is much smaller over that

of IO-AFC at higher frequency in the Bode plots of the sensitivity

functions, which reveals that the suppression capability of FO-AFC

with α ∈ (0, 1) is stronger than that of IO-AFC for the high-order

harmonics of the target periodic disturbance or the high frequency

noise. Second, FO-AFC with α ∈ (1, 2) has deeper slot at the

frequency of the target periodic disturbance over IO-AFC, and

the amplitude of FO-AFC with α ∈ (1, 2) around the frequency

of the target periodic disturbance is lower than that of IO-AFC,

which indicates FO-AFC with α ∈ (1, 2) is not so selective as

IO-AFC for the cancellation of the target periodic disturbance,

but the suppression performance of FO-AFC with α ∈ (1, 2) is

better than that of IO-AFC for the disturbances or noise around the

frequency of the target periodic disturbance. Meanwhile, there is

also a disadvantage for FO-AFC with α ∈ (1, 2), the amplitudes of

FO-AFC with α ∈ (1, 2) is bigger than that of IO-AFC at a range

of higher frequency in the Bode plots of the sensitivity functions,

which means FO-AFC with α ∈ (1, 2) may amplify the high-order

harmonics of the target periodic disturbance or the high frequency

noise comparing with IO-AFC. Anyhow, FO-AFC with additional

tuning knob α ∈ (0, 2) has advantages and is much more flexible

over IO-AFC with only α = 1 for the cancellation of the target

periodic disturbance and the suppression of the harmonics or the

noise. Simulation results are presented to validate the performance

analysis of FO-AFC comparing with IO-AFC.
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The major contributions of this paper include: 1) a new fractional

order adaptive feedforward cancellation scheme; 2) equivalence

derivation of the fractional order internal model principle scheme;

3) analysis of the benefits and trade-offs of using the fractional order

adaptive feedforward cancellation scheme with the additional tuning

knob – fractional order α ∈ (0, 1) and α ∈ (1, 2); 4) Simulation

illustration of the performance analysis of FO-AFC comparing with

that of IO-AFC.

The remaining part of this paper is organized as follows. In

Sec. II, the new fractional order feedforward cancellation scheme

is proposed. In Sec. III, the equivalence of the fractional order

internal model principle is deduced and in Sec. IV, the performance

of FO-AFC is analyzed through the Bode plots of the sensitivity

functions. Simulation illustration is presented in Sec. V. Finally, the

conclusion is given in Sec. VII.

II. FRACTIONAL ORDER ADAPTIVE FEEDFORWARD

CANCELLATION

In this section, a fractional order adaptive feedforward cancel-

lation scheme is proposed with an extra tuning knob – fractional

order. Assuming that the disturbance is set as follows,

d(t) = A sin(ω1t + φ) = a1 cos(ω1t) + b1 sin(ω1t). (1)

As shown in Fig.1, the control input of the plant is selected to be,

u(t) = θ1(t) cos(ω1t) + θ2(t) sin(ω1t), (2)

and the plant output can be written as,

y(t) = Ł
−1[Ł((θ1(t)−θ∗

1) cos(ω1t)+(θ2(t)−θ∗

2) sin(ω1t))P (s)],
(3)

where, Ł(·) stands for the Laplace transform; θ∗

1 and θ∗

2 denote the

nominal values of θ1(t) and θ2(t), respectively. So that, when

θ∗

1 = −a1, θ
∗

2 = −b1,

and if the parameters θ1(t) and θ2(t) converge to the nominal

values, the disturbance d(t) can be exactly canceled.

Fig. 1. Fractional order adaptive feedforward cancellation.

In this study the following Caputo definition is adopted for

fractional derivative, which allows utilization of initial values of

classical integer-order derivatives with known physical interpreta-

tions [23], [22],

0D
α
t f(t) =

dαf(t)

dtα
=

1

Γ(α − n)

∫ t

0

f (n)(τ )

(t − τ )α+1−n
dτ, (4)

where n is an integer satisfying n − 1 < α ≤ n, α is the order of

the fractional derivative, f (n)(τ ) is the n − th derivative of f(τ ),

and Γ(x) is the Gamma function with the definition below,

Γ(x) =

∫
∞

0

tx−1e−tdt.

From equations (2.242) and (2.248) in [23]

L{0D
−p
t f(t); s} = s−pF (s), (5)

where 0 < p.

L{0D
p
t f(t); s} = spF (s) −

n−1∑
k=1

sk[0D
p−k−1
t f(t)]t=0,

(6)

where 0 ≤ n − 1 ≤ p < n.

Then, a fractional order possible update law for the adaptive

parameters is proposed as follows,

0D
α
t θ1(t) = −gy(t) cos(ω1t), (7)

0D
α
t θ2(t) = −gy(t) sin(ω1t), (8)

where the fractional order α ∈ (0, 2), and g > 0 is an arbitrary

parameter called the fractional order adaptation gain.

In (3.5) of [9], the traditional integrator was used for the adaptive

law, namely, the integer order feedforward cancellation (IO-AFC)

was applied with α = 1 in (7) and (8). IO-AFC algorithm designed

to cancel the first harmonic may be capable of reducing the ampli-

tude of the third harmonic as well. The generation of harmonics in

IO-AFC algorithm was found to be due to the time-variation of the

adaptive parameters and was explained using modulation arguments

from standard signals and systems theory in [9].

In order to compare the proposed FO-AFC with IO-AFC in [9]

fairly, the same plant and disturbance in [9] were used in this FO-

AFC scheme test as shown below,

P (s) =
s + 2

(s + 1)(s + 3)
, (9)

d(t) = sin(0.1t) − 0.2 sin(0.3t), (10)

where all initial conditions are zero, and the adaptive gain is set as

g = 1. The disturbance has a fundamental component at 0.1 rad/s
and a third harmonic at 0.3 rad/s.

Fig. 2(a) shows the response y(t) of the system without any

compensation. The first and third harmonics are clearly visible.

Fig. 2(b) is the response y(t) of the system for θ1(t) and θ2(t)
frozen to θ∗

1(t) and θ∗

2(t), respectively. The first harmonic is

canceled exactly and the third harmonic is unchanged. In Fig. 3,

the blue line stands for the response y(t) using IO-AFC, just the

same as Fig. 5 in [9], not only is the first harmonic eliminated, but

also is the third harmonic significantly reduced; and the red line

shows the response y(t) using FO-AFC with α = 1.5 in (7) and

(8). It is obvious that, the magnitude of the third harmonic using

FO-AFC with α = 1.5 is much smaller than that using IO-AFC,

which can also be seen clearly from the FFT spectrum w. r. t. the

frequency in Fig. 4.

The parameter values of θ1(t) and θ2(t) is shown in Fig. 5.

θ1(t) and θ2(t) should converge to the nominal values θ∗

1(t) =
−a1 = 0 and θ∗

2(t) = −b1 = −1, respectively. If the disturbance

is only the first harmonic, the parameters indeed converge toward

these nominal values. But, because of the third harmonic, there is

substantial fluctuation of the parameters in the steady state, and

the variations can be recognized as second and fourth harmonics

of the fundamental frequency. The solid and dashed blue lines in

Fig. 5 stand for the parameter values of θ1(t) and θ2(t) using IO-

AFC method; the solid and dashed red lines show the parameter

values of θ1(t) and θ2(t) using the proposed FO-AFC scheme with

α = 1.5. We can see that, the fluctuation amplitude of θ1(t) and

θ2(t) using the α = 1.5 FO-AFC is much bigger than that using

IO-AFC.

The time-variation of the parameters θ1(t) and θ2(t) generates a

third harmonic that is not present in the ideal case. This component

of the input reduces the amplitude of the third harmonic observed

at the output of the plant. This leads to the observation that the

adaptive scheme with parameters θ1(t) and θ2(t) performs better

in the presence of higher-order harmonics than the scheme with

the fixed nominal parameters θ∗

1(t) and θ∗

2(t). So, with bigger

fluctuation amplitude of θ1(t) and θ2(t), the α = 1.5 FO-AFC

scheme can reduce the amplitude of the third harmonic more

effectively than IO-AFC scheme, which can be seen in Fig 3 and

Fig. 4.
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(a) Without compensation

(b) With fixed nominal compensation

Fig. 2. Output without compensation / with fixed nominal compensation.

Fig. 3. Output with IO-AFC and α=1.5 FO-AFC

III. EQUIVALENCE BETWEEN FRACTIONAL ORDER INTERNAL

MODEL PRINCIPLE AND FRACTIONAL ORDER ADAPTIVE

FEEDFORWARD CANCELLATION

A. Single-Frequency Disturbance Cancellation

For the fractional order adaptive feedforward cancellation for a

single-frequency disturbance, the input and disturbance signals are

shown as (1) and (2), respectively. The fractional order adaptive

updating law is presented as (7) and (8).

Since, one has,

ejω1t = cos ω1t + j sin ω1t,

and

e−jω1t = cos ω1t − j sin ω1t.

So, from (1), we can obtain,

u(t) = θ1(t)(e
jω1t − j sin(ω1t))

+θ2(t)(e
jω1t − cos(ω1t))(−j), (11)

u(t) = θ1(t)(e
−jω1t + j sin(ω1t))

+θ2(t)(e
−jω1t − cos(ω1t))j. (12)

Then add (11) and (12), we can get,

u(t) =
θ1(t)

2
(ejω1t + e−jω1t) +

jθ2(t)

2
(e−jω1t − ejω1t). (13)
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Fig. 5. Adaptive parameter values of θ1(t) and θ2(t) with IO-AFC and
α=1.5 FO-AFC.

In the same way, from (7) and (8), yield,

0D
α
t θ1(t) = −

g

2
y(t)(ejω1t + e−jω1t), (14)

0D
α
t θ2(t) = −

jg

2
y(t)(e−jω1t − ejω1t). (15)

U(s) and Y (s) are the Laplace transforms of the input r(t) and

output y(t), respectively. Similarly, mark Θ1(s) and Θ2(s) as the

Laplace transforms of the θ1(t) and θ2(t) with initial condition,

θ1(t)|t=0 = θ2(t)|t=0 = 0.

From (14) and (15) we can derive that [23] ,

Θ1(s) = −
g

2sα
(Y (s + jω1) + Y (s − jω1)), (16)

Θ2(s) = −
jg

2sα
(Y (s − jω1) − Y (s + jω1)). (17)

Then, from (13), (16) and (17) we can get,

U(s) =
1

2
(Θ1(s − jω1) + Θ1(s + jω1))

+
j

2
(Θ2(s − jω1) − Θ2(s + jω1))

= −
g

2
(

1

(s + jω1)α
+

1

(s − jω1)α
)Y (s)

= −gCIMP (s)Y (s), (18)

where CIMP (s) = (s−jω1)α+(s+jω1)α

2(s2+ω2

1
)α

.

So, the fractional order adaptive feedforward cancellation scheme

in Fig. 1 with adaptive law (7) and (8) can be equivalent to the

0
P(s)

d

yC(s)

Fig. 6. Fractional order internal model principle equivalence of the
fractional order adaptive feedforward cancellatio.
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fractional order internal model principle scheme in Fig. 6 with

C(s) = g. Actually, the controller C(s) is not limited to be equal

to g. For instance, let Yc be a signal after a block F (s), e.g., a

filter, namely, Yc(s) = F (s)Y (s), and replace Y (s) by Yc(s) in

(7) and (8), then, FO-AFC scheme is equal to the FO-IMP scheme

with C(s) = gF (s). This modification can also be used to filter

the signal u in (2) before it is applied to the plant.

B. Generalization to Multi-Frequency Disturbance Cancellation

This equivalence between FO-AFC and FO-IMP can be easily

extended to the case when multiple frequency components are

cancelled. For example, if u is replaced by,

u(t) = θ1(t) cos(ω1t) + θ2(t) sin (ω1t)

+θ3(t) cos(ω2t) + θ4(t) sin(ω2t), (19)

where θ1, θ2 are updated by,

0D
α
t θ1(t) = −g1y(t) cos(ω1t),

0D
α
t θ2(t) = −g1y(t) sin(ω1t),

0D
α
t θ3(t) = −g2y(t) cos(ω2t),

0D
α
t θ4(t) = −g2y(t) sin(ω2t),

then, FO-AFC system is equivalent to a FO-IMP control system

with,

U(s)

Y (s)
= −g1

(s − jω1)
α + (s + jω1)

α

2(s2 + ω2
1)

α

−g2
(s − jω2)

α + (s + jω2)
α

2(s2 + ω2
2)

α
.

IV. FREQUENCY-DOMAIN ANALYSIS OF FO-AFC

PERFORMANCE FOR THE PERIODIC DISTURBANCE

As introduced in Sec. III, FO-AFC scheme proposed can be

equivalent to the FO-IMP scheme in Fig. 6 with C(s) = g. Thus,

FO-AFC performance of the the cancellation of the target periodic

disturbance and the suppression of the harmonics and noise can be

analyzed in frequency-domain using the FO-IMP equivalence.
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The sensitivity function of the system with FO-IMP in Fig. 6 is,

Gs(s) =
1

1 + C(s)CIMP (s)P (s)
, (20)

where CIMP (s) = (s−jω1)α+(s+jω1)α

2(s2+ω2

1
)α

. Since the FO-IMP equiv-

alence is used for the analysis of FO-AFC scheme, the stabil-

ity/instability boundary of the adaptive system can be predicted,
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Fig. 8. Bode plots of the sensitivity function with ω1 = 0.1 and α ∈ [1, 2).

according to the Lyapunov theory [24], Nyquist criterion [9], or

the averaging analysis [25]. It can be seen that, the absolute value

and the sign of the adaptive gain g are constrained for the stability

of the adaptive system [25]. Therefore, for the fair comparison

between the integer order AFC and the proposed FO-AFC, the same

adaptive gain value is used for both schemes, e.g., g = 1. Then, the

disturbance rejection performance using FO-AFC can be discussed

and compared with that using traditional AFC scheme.

Following the plant (9) in Sec. II which is from [9], the sensitivity

function of Gs(s) can be derived as,

Gs(s) =
2(s2 + ω2

1)
α(s + 1)(s + 3)

D(s)
, (21)

where

D(s) = 2(s2 + ω2
1)

α(s + 1)(s + 3)

+g(s + 2)[(s + jω1)
α + (s − jω1)

α]. (22)

Thus, the Bode diagram of Gs(s) can be plotted in Fig. 7 and

Fig. 8 with α ∈ (0, 2) and ω1=0.1 rad/s.

From Fig. 7, it can be seen that, around the disturbance frequency

ω1=0.1 rad/s, the magnitudes of the sensitivity function with AFC

compensation are much smaller than that without compensation

presented by the dashed blue line. FO-AFC with α ∈ (0, 1) have

narrower and shallower slot around the frequency ω1=0.1 rad/s
over IO-AFC, which means FO-AFC with α ∈ (0, 1) can also

cancel the disturbance at the frequency ω1=0.1 rad/s, and FO-

AFC with α ∈ (0, 1) are more selective than IO-AFC for the

cancellation of the target periodic disturbance with the desired

cancellation capability shown as the slot depth in Fig. 7. Mean-

while, the magnitudes around ω1=0.1 rad/s from 0.02 rad/s to

0.5 rad/s using FO-AFC with α ∈ (0, 1) are bigger than that

using IO-AFC. But after 0.5 rad/s and before 0.02 rad/s, the

magnitude with IO-AFC is bigger than that using FO-AFC with

α ∈ (0, 1), which means FO-AFC with α ∈ (0, 1) have better

effect of suppressing the higher-order harmonic disturbance or high

frequency noise after 0.5 rad/s and before 0.02 rad/s; however,

from 0.02 rad/s to 0.5 rad/s, the disturbance or noise suppression

effect using FO-AFC with α ∈ (0, 1) is not as good as that using

IO-AFC.

In Fig. 8, using FO-AFC with α ∈ (1, 2), we can see that,

the magnitudes of the sensitivity function with AFC compensation

are also much smaller than that without compensation, FO-AFC

with α ∈ (1, 2) have deeper and wider slots around the frequency
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ω1=0.1 rad/s over IO-AFC, which means the disturbance at the

frequency ω1=0.1 rad/s can also be cancelled by the AFC with

α ∈ [1, 2), and FO-AFC with α ∈ (1, 2) are not so selective as

IO-AFC for the cancellation of the target periodic disturbance. At

the same time, before 0.6 rad/s, the magnitudes with FO-AFC of

α ∈ (1, 2) are smaller than that with IO-AFC. So, the disturbance or

noise before 0.6 rad/s can be suppressed more effectively by FO-

AFC of α ∈ (1, 2) than IO-AFC. However, there is also a trade-off,

after the frequency 0.6 rad/s, the disturbance harmonics or noise

should be amplified by FO-AFC with α ∈ (1, 2) comparing with

using IO-AFC.

To sum up, FO-AFC with additional tuning knob α ∈ (0, 2)
has advantages and is more flexible over IO-AFC with only α =
1 for the cancellation of the target periodic disturbance and the

suppression of the harmonics or the noise.

V. SIMULATION ILLUSTRATION

In order to test the frequency-domain analysis results of distur-

bance cancellation performance of FO-AFC scheme, the simulation

illustration is presented in this section. In the simulation, the system

P (s) as (9) is also used for the fair comparison, and the disturbance

is designed as,

d(t) = 0.5 sin(0.05t) + sin(0.1t) − 0.2 sin(0.3t)

−0.1 sin(0.5t) + N(t), (23)

which contain the disturbance components in (10), where N(t)
is the white noise. In the control law (2), ω1 is also chosen as

0.1 rad/s.

For FO-AFC with α ∈ (0, 1), we choose α = 0.5 to test the

performance and compare with IO-AFC, as shown in Figs. 9, 10
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Fig. 11. FFT spectrum of the outputs with IO-AFC and FO-AFC of α =
0.5 (ω ∈ [0, 5] rad/s).
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Fig. 12. Output signals with IO-AFC and FO-AFC of α = 1.5.

and 11. Fig. 9 is the output comparison of FO-AFC with α = 0.5
and IO-AFC, where it is not easy to distinguish the performances

of two methods because of the white noise. So, the FFT plots are

presented in Fig. 10 and Fig. 11. In Fig. 10, it is obvious that, the

disturbance at the frequency ω1 = 0.1 rad/s is almost canceled

completely by not only IO-AFC but also FO-AFC of α = 0.5.

The disturbance magnitudes at the frequencies ω = 0.05 rad/s,

ω = 0.3 rad/s and ω = 0.5 rad/s using FO-AFC with α = 0.5
are higher than that using IO-AFC, which is corresponded to the

Bode plot feature in the frequency range (0.02, 0.5) rad/s in Fig. 7.

Meanwhile, the disturbance magnitude at the higher frequency

range after 0.5 rad/s using FO-AFC with α = 0.5 is lower than

that using IO-AFC method, which can be seen in Fig. 11.

As far as FO-AFC of α ∈ (1, 2) is considered, we choose

α = 1.5 to test the performance and compare with IO-AFC, which

can be seen in Figs. 12, 13 and 14. The output comparison of

FO-AFC with α = 1.5 and IO-AFC is shown in Fig. 12, and

the FFT plots are presented in Fig. 13 and Fig. 14. In Fig. 13,

it can be seen that, the disturbance at the frequency ω1 = 0.1
is almost canceled completely by both IO-AFC and FO-AFC of

α = 1.5. The disturbance magnitudes at the frequencies ω = 0.05,

ω = 0.3 and ω = 0.5 using FO-AFC of α = 1.5 are lower than

that using IO-AFC, which is corresponded to the Bode plot feature

in the frequency range ω < 0.6 rad/s in Fig. 7. This result is

consistent with Fig. 3 and Fig. 4 of the simpler disturbance example

in Sec. II. Meanwhile, the disturbance magnitudes at the higher

frequency after 0.6 rad/s using FO-AFC of α = 1.5 is amplified

comparing with that using IO-AFC, which can be seen in Fig. 14.
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Fig. 13. FFT spectrum of the outputs with IO-AFC and FO-AFC of α =
1.5 (ω ∈ [0, 0.6] rad/s).
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Fig. 14. FFT spectrum of the outputs with IO-AFC and FO-AFC of α =
1.5 (ω ∈ [0, 5] rad/s).

VI. EXPERIMENT VALIDATION

Omitted due to space limit.

VII. CONCLUSION

In this paper, a FO-AFC scheme is proposed to cancel the

periodic disturbance. This FO-AFC offers one more tuning knob,

the fractional order, for the performance improvement of the

periodic disturbance cancellation according to the interests of the

users. The equivalence of the FO-IMP scheme is derived for FO-

AFC. Thus, the FO-IMP equivalence can be used to analyze the

performance of the cancellation for the target periodic disturbance

and the suppression for the harmonics and noise, by the Bode plots

of the sensitivity functions of the closed-loop system. Two FO-AFC

cases, fractional order α ∈ (0, 1) and α ∈ (1, 2), are proposed

for the performance analysis, respectively. FO-AFC with additional

tuning knob α ∈ (0, 2) has advantages and is much more flexible

over IO-AFC for the cancellation of the target periodic disturbance

and the suppression of the harmonics or the noise. Simulation

results are presented to validate the performance analysis of FO-

AFC comparing with IO-AFC.
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