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Abstract— In this paper, we consider nonlinear affine-in-
control systems and present the L1 adaptive controller for
the case when the performance specifications are defined via
a nonlinear system of similar structure. The L1 adaptive con-
troller ensures that the nonlinear, affine-in-control, uncertain
system follows its ideal model during the transient and steady-
state, if the adaptation gain is selected sufficiently large and
the bandwidth of the low-pass filter is adjusted appropriately.
Simulations verify the theoretical results.

I. INTRODUCTION

We consider a class of uncertain, nonlinear, affine-in-

control systems and present the L1 adaptive controller for it.

The control objective is to compensate for uncertainties in the

system dynamics, while retaining the essential nonlinearities

of the system. This problem formulation is motivated by

power grids and voltage balance problems. The nominal sys-

tem behavior in these applications is highly nonlinear, which

motivates further development of L1 adaptive controller to

accommodate the desired nonlinear reference behavior.

Adaptive controllers for nonlinear systems have been

developed by resorting to neural networks for approximation

of nonlinearities, [1], [2]. Such approximations have enabled

the use of parameter update laws from adaptive control

literature with local domains of attraction. The L1 adaptive

controller in this paper helps to obtain semiglobal results,

with uniform transient and steady-state performance bounds.

These performance bounds are decoupled into two distinct

terms, which can be adjusted independently by increasing

the rate of adaptation and the bandwidth of the low-pass

filter. The nonlinear nature of the desired reference system

necessitates development of a new mathematical machinery,

which constitutes the main contribution of this paper.

This paper is organized as follows. Section II gives the

problem formulation. Section III presents the L1 adaptive

controller for nonlinear control-affine systems. Performance

bounds are analyzed in Sections IV and V. Simulation results

are given in Section VI. Conclusions are in Section VII. All

the proofs are in Appendix.

Notation: We denote by R
n the n-dimensional real vector

space and by R
+ the real positive numbers. We also use

R
+
0 = R

+ ∪ {0}. ‖ · ‖ is the 2-norm of a vector. ‖ · ‖L1 is

the L1 norm of a linear system and and ‖ · ‖L∞
is the L∞

norm of a function. The truncated L∞ norm of a function

x : R+
0 → R

n is defined as ‖x‖L[0,τ]
∞

= sup0≤t≤τ ‖x(t)‖.

Also, e is used for exponential function to distinguish it from
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the tracking error e. The Laplace transform of a function x(t)
is denoted by x(s) = L[x(t)]. The inverse Laplace transform

of x(s) is denoted as L
−1[x(s)].

II. PROBLEM FORMULATION

We consider the single-input system:

ẋ = f(t, x) + g(t, x)(u+ h(t, x)), x(0) = x0, (1)

where x : R+
0 → R

n is the state trajectory, u : R+
0 → R is

the control input, f : R+
0 × R

n → R
n, g : R+

0 × R
n → R

n

are known functions, and h : R+
0 ×R

n → R is an unknown

function. Let the performance specifications be given via the

following ideal system

ẋideal = fm(t, xideal), xideal(0) = x0 ,

where fm(t, x) = f(t, x) + g(t, x)k(t, x) is associated

with the ideal feedback uideal = k(t, xideal) − h(t, xideal),
with k(t, x) being piecewise continuous in t and Lipschitz

continuous in x. The ideal controller depends upon the

unknown h(t, x) and is therefore not implementable. The

objective is to design a state feedback controller, using only

known information, to ensure that the state x(t) of the real

system in (1) follows the state xideal(t) of the ideal system

in (2) with uniform and quantifiable performance bounds.

Assumption 1: fm(t, x), ∂fm
∂x

, g(t, x), and h(t, x) are con-

tinuous, bounded, and Lipschitz in x, uniformly in t, for all

t ∈ R
+
0 and all x in any compact set.

Assumption 2: ∂g
∂t

, ∂g
∂x

, ∂h
∂t

and ∂h
∂x

are bounded for all

t ∈ R
+
0 and all x in any compact set.

Assumption 3: There exists a function ψ : R+
0 × R

n →
R

1×n, such that ψ(t, x)g(t, x) ≡ 1. Moreover, ψ, ∂ψ
∂t

, ∂ψ
∂x

are bounded for all t ∈ R
+
0 and all x in any compact set.

Assumption 4: There exist positive constants γ, c1, c2, c3,

c4, and a positive definite function V : R+
0 × R

n → R
+
0 ,

such that for all t ≥ 0 and all e ∈ {e ∈ R
n | ‖e‖ ≤ γ}, the

following inequalities hold:

c1‖e‖2 ≤ V (t, e) ≤ c2‖e‖2 (2)

∂V

∂t
+
∂V

∂e
fm(t, e) ≤ −c3‖e‖2 (3)

∥

∥

∂V
∂e

∥

∥ ≤ c4‖e‖,
∥

∥

∥

∂2V
∂2e

∥

∥

∥
≤ c5,

∥

∥

∂V
∂e∂t

∥

∥ ≤ c6‖e‖.(4)

Assumption 5: There exist positive constants d1, d2, d3,

and a positive definite function W : R+
0 × R

n → R
+
0 , such

that for all t ≥ 0 and all x ∈ {x ∈ R
n | ‖x‖ ≤

√

d2
d1
‖x0‖}:

d1‖x‖2 ≤W (t, x) ≤ d2‖x‖2 (5)

∂W

∂t
+
∂W

∂x
fm(t, x) ≤ −d3‖x‖2 (6)

∥

∥

∥

∥

∂W

∂x

∥

∥

∥

∥

≤ B∂W . (7)
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Assumption 5 ensures that the ideal system in (2) is

asymptotically stable. Let

ρref =

√

d2

d1
‖x0‖+ ε and ρ = γ + ρref , (8)

where ε > 0 is an arbitrarily small constant. One can

straightforwardly verify that d1ρ
2
ref > W (0, x0).

With Assumptions 1 – 3, we have that for all t ≥ 0 and

all x1, x2, x ∈ {x ∈ R
n | ‖x‖ ≤ ρ}:

‖Ξ(t, x1)− Ξ(t, x2)‖ ≤ LΞ
ρ ‖x1 − x2‖ (9)

‖Ψ(t, x)‖ ≤ BΨ
ρ , (10)

where Ψ ∈
{

fm, g, h, ψ,
∂h
∂t
, ∂h
∂x
, ∂g
∂t
, ∂g
∂x
, ∂ψ
∂t
, ∂ψ
∂x

}

and Ξ ∈
{

fm,
∂fm
∂x

, g, h
}

. We assume that for the uncertainty h, the

parameters Lhρ , Bhρ , B
∂h
∂t
ρ , B

∂h
∂x
ρ are known.

Assumption 6: The constant γ from Assumption 4 also

verifies 2L
∂fm
∂x
ρ γ < c1c3

c2c4
.

Remark 1: Assumption 6 restricts the relationship be-

tween the achievable performance bound, given by γ, and

the rate of change of the nonlinearity of the desired ideal

system, given by fm(x). For linear systems, this condition

is trivially satisfied, since L
∂fm
∂x
ρ ≡ 0. For nonlinear systems,

Assumption 6 can be ensured by choosing γ small enough.

III. L1 ADAPTIVE CONTROLLER

A. Definitions

The design of L1 controller involves a strictly proper

and stable low-pass filter C(s), subject to C(0) = 1. Let

the bandwidth of it be ω. For simplicity, let C(s) = ω
s+ω .

Further, let

Bẋρ = Bfmρ + (1 + ‖C(s)‖L1)B
g
ρB

h
ρ

Bġρ = B
∂g
∂t
ρ +B

∂g
∂x
ρ Bẋρ ,

Ba = c3
c2

− (2L
∂fm
∂x
ρ γ + L

∂fm
∂x
ρ ρref)

c4
c1

M = c5B
g
ρ(B

g
ρL

h
ρ + LgρB

h
ρ )‖1− C(s)‖L1 + c6B

g
ρ

+ c5B
g
ρ

(

Lfmγ + L
∂fm
∂x
ρ (2γ + ρref)

)

+ c4B
ġ
ρ

Bḣref
ρref

= B
∂h
∂t
ρ +B

∂h
∂x
ρ (Bfmρref + ‖1− C(s)‖L1B

g
ρref

Bhρ ),
(11)

where Bfmρ , Bgρ , Bhρ , B
∂g
∂t
ρ , B

∂g
∂x
ρ , B

∂h
∂t
ρ , B

∂h
∂x
ρ , L

∂fm
∂x
ρ are

defined in (9) and (10).

Suppose that Assumptions 1- 6 hold. Given any initial

condition x0, let ω verify the following inequalities

ρ2ref ≥
W (0,x0)

d1
+

B∂WBgρref
d2

d1

(

‖h(0,x0)‖
|d3−d2ω| +

B
ḣref
ρref

d3ω

)

(12)

µ = 2L
∂fm
∂x
ρ γ + L

∂fm
∂x
ρ ǫ <

c1c3

c2c4
(13)

δ1(ω) + δ2(ω) < c1, (14)

where T is the convergence time for the reference system to

its ultimate bound (yet to be defined), and

ǫ =

√

e
−

d3
d2
T
W (0,x0)
d1

+
B∂WB

g
ρref

d2

d1
(‖h(0,x0)‖
|d3−d2ω| +

B
ḣref
ρref

d3ω
) (15)

δ1(ω) = Lhρ
c4B

g
ρ+

̺
α̂
(Bac4B

g
ρ+M)

ω
(16)

δ2(ω) =
‖h(0, x0)‖c4Lgρ̺

|α̂− ω| +
Bḣref
ρref

c4L
g
ρ̺

α̂ω
(17)

α̂ =
c3

c2
− µ

c4

c1
> 0, ̺ = e

c4L

∂fm
∂x
ρ ρrefT

c1 ≥ 1. (18)

Note that these conditions can always be satisfied by choos-

ing ω and T large enough. The physical meaning of these

parameters will be further discussed later.

Remark 2: As seen in (15), the larger ω (bandwidth) is,

the smaller T (convergence time) is required for the same

ǫ (ultimate bound). It agrees with the intuition that faster

bandwidth leads to faster convergence to the ultimate bound.

B. L1 Control Architecture

This section introduces the structure of L1 adaptive con-

troller for the nonlinear system in (1). We consider the

following feedback structure:

u(t) = k(t, x) + u2(t), (19)

where u2 : R+
0 → R is the adaptive signal.

To define the adaptive signal, consider the state predictor:

˙̂x = fm(t, x) + g(t, x)(u2 + σ̂) +Amx̃ (20)

with x̂(0) = x0, where x̂ : R+
0 → R

n is the state of the state

predictor, x̃ = x̂−x is the prediction error, and Am ∈ R
n×n

is any n×n Hurwitz matrix. Then, given arbitrary symmetric

matrix Q > 0, there exists a symmetric matrix P > 0, such

that

PAm +A⊤
mP = −Q . (21)

Let H(s) = (sI−Am)−1. In equation (20), σ̂ : R+
0 → R is

updated according to the adaptive law

˙̂σ(t) = ΓProjΩ(σ̂(t),−g(t, x(t))⊤P x̃(t)) (22)

where Γ ∈ R
+ is the adaptation gain, σ̂(0) ∈ Ω, Ω = {σ ∈

R | |σ| ≤ Bhρ }, and Bhρ is in (10). The projection-based

operator ensures |σ̂(t)| ≤ Bhρ for ∀t ≥ 0 and given σ̂ ∈ R

and σ ∈ Ω, (σ̂ − σ)⊤(ProjΩ(σ̂, σ)− σ) ≤ 0 holds [3].

The adaptive feedback u2(s) is defined as follows

u2(s) = −C(s)σ̂(s). (23)

The L1 controller is defined by (19) – (23), subject to

conditions (12) – (14).

IV. PERFORMANCE ANALYSIS

Consider the following reference system:

ẋref(t) = fm(t, xref) + g(t, xref)(−ηref(t) + h(t, xref))

ηref(s) = C(s)L[h(t, xref)] (24)

uref(t) = k(t, xref)− ηref(t), xref(0) = x0.
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Similar to other architectures of L1 adaptive control theory,

this reference system assumes only partial cancellation of

uncertainties within the bandwidth of C(s). The next lemma

proves its stability.

Lemma 1: Let Assumptions 1, 2, 4, 5 hold. If the inequal-

ity in (12) holds, then ‖xref‖L∞
≤ ρref , and the system is

uniformly ultimately bounded, i.e. ‖xref(t)‖ ≤ ǫ, ∀ t ≥ T ,

where ǫ is defined in (15), and T satisfies (13) – (14).

The next lemma establishes the bound on the derivative

of the system state.

Lemma 2: Consider the system in (1) with L1 adaptive

controller, given by (19) – (23). Suppose that Assumptions

1 – 2 hold. If there exists ρ ∈ R
+, such that ‖x(t)‖ ≤ ρ

holds for all t ∈ [0, τ ], then

‖ẋ(t)‖ ≤ Bẋρ and ‖ḣ(t, x(t))‖ ≤ Bḣρ (25)

hold for all t ∈ [0, τ ], where Bẋρ is defined in (11) and

Bḣρ = B
∂h
∂t
ρ +B

∂h
∂x
ρ Bẋρ .

Next we derive the bound for the prediction error. Let x̃(t) =
x̂(t) − x(t). By equations (1) and (20), the error dynamics

between the system and the predictor are given as follows:

˙̃x(t) = Amx̃(t) + g(t, x(t))σ̃(t), x̃(0) = 0,

where σ̃(t) = σ̂(t) − h(t, x(t)). With the bounds obtained

in Lemma 2, we are able to derive the bound on ‖x̃‖L[0,τ]
∞

.

More importantly, with this bound, we can obtain the bound

on ‖η̃‖L[0,τ]
∞

, where η̃(t) is the inverse Laplace transform of

C(s)σ̃(s).
Lemma 3: Consider the system (1) with the L1 adaptive

controller in (19) – (23). Suppose that Assumptions 1 – 2

hold. If there exists ρ ∈ R
+, such that ‖x(t)‖ ≤ ρ holds

for all t ∈ [0, τ ], then ‖x̃‖L[0,τ]
∞

≤ α√
Γ

and ‖η̃‖L[0,τ]
∞

≤ β√
Γ

,

where

α =

√

4Bhρ
2

λmin(P ) +
4λmax(P )BhρB

ḣ
ρ

λmin(Q)λmin(P ) ,

β =
(

‖C(s)s‖L1B
ψ
ρ + ‖C(s)‖L1B

ψ
ρ ‖Am‖

)

α

+ (B
∂ψ
∂t
ρ +B

∂ψ
∂x
ρ Bẋρ )α.

(26)

Let e(t) = x(t)−xref(t). Consider the error dynamics be-

tween the real system and the reference system. By equations

(1) and (24), we have

ė = fm(t, e) + ∆(t, e) + Φ(t, x), (27)

where ∆(t, e) = fm(t, xref + e) − fm(t, xref) −
fm(t, e) and Φ(t, x) = g(t, x) (h(t, x)− η̂(t)) −
g(t, xref) (h(t, xref)− ηref(t)).

The next lemma states the lower bound on the adaptation

gain for obtaining a bound on the error e(t).

Lemma 4: Consider the system (1) with the L1 adaptive

controller in (19) – (23). Suppose that Assumptions 1 – 6

hold, and ‖x(t)‖ ≤ ρ for t ∈ [0, τ ], where ρ is defined in

(8). Then, assuming that inequalities (12)–(14) hold, and the

adaptation gain is selected large enough to verify

̺Bgρβ(ωc4+L
h
ρB

g
ρc5)

ωα̂γ(c1−δ1(ω)−δ2(ω)) <
√
Γ, (28)

where ̺, β, α̂, δ1, δ2 are defined in (26), (18), (16), (17),

respectively, we have ‖xref − x‖L[0,τ]
∞

< γ.

The next theorem summarizes the performance bounds.

Theorem 1: Consider the system (1) with the L1 adaptive

controller in (19) – (23). Suppose that Assumptions 1 – 6

hold. Then, provided that inequalities (12)–(14) and (28)

hold, the inequality ‖xref − x‖L∞
< γ holds. Moreover, if

k(t, x) is locally Lipschitz in x, uniformly in t, then ‖uref −
u‖L∞

≤ γu, where γu =
(

Lkρ + ‖C(s)‖L1L
h
ρ

)

γ + β√
Γ
, β is

defined in (26), and Lkρ is the Lipschitz constant of k(t, x)
over the compact set {x ∈ R

n | ‖x‖ ≤ ρ}.

Remark 3: The filter’s bandwidth ω satisfies three condi-

tions (12)-(14). Condition (12) is sufficient to establish the

stability of the reference system. For the given performance

bound γ the condition in (13) restricts the size of the

ultimate bound ǫ on the reference system. This condition

is used, together with the condition in (14), to establish

the boundedness on the difference between the closed-loop

system and the reference system.

Remark 4: We note that the conditions in (12) – (14) do

not involve the L1 norm bound, similar to the ones used

in [4]. Instead, the right hand side in (12) represents an

upper bound for the L1 norm-like constraint that cannot

be explicitly expressed due to the nonlinear nature of the

desired ideal system behavior. For linear reference systems,

the L1 norm conditions can be recovered by applying the

analysis from this paper.

Remark 5: Note that γ and γu can be rendered arbitrarily

small by increasing the adaptation gain Γ. If C(s) = 1, β in

(26) will be unbounded because the term ‖C(s)s‖L1 is then

equal to ‖s‖L1 , which is unbounded. Consequently, the lower

bound on the adaptation gain in (28) will be unbounded, thus

eliminating the uniform bound for the control signal.

V. DESIGN ANALYSIS

Note that the closed-loop reference system in (24) depends

upon the unknown nonlinearity h, which prevents prediction

of its performance. Next, we consider the ideal system in

(2). According to Assumption 5, it is asymptotically stable.

The following theorem establishes the relation between the

reference system and the ideal system.

Theorem 2: Consider the reference system in (24) and the

ideal system in (2). Suppose that Assumptions 1 – 6 hold.

If inequalities (12)–(14) hold, then there exist decreasing

functions χ1, χ2, χ3 : R
+
0 → R

+
0 and a positive constant

a, independent of t, such that

‖xref − xideal‖L∞
≤ χ1(ω)

‖uref(t)− uideal(t)‖ ≤ χ2(ω) + aχ3(ωt), ∀ t ≥ 0 ,

where limω→∞ χi(ω) = 0 for i = 1, 2, 3 and χ3(0) = 1.

Proof: The proof is similar to the proof of Theorem 1

and is omitted.

Remark 6: The introduction of the reference system de-

couples adaptation from robustness. Fast adaptation ensures

that the real system can be arbitrarily close to the reference

system, while the selection of C(s) provides the trade-off
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between performance and robustness [5]. Further, we notice

that minimization of ‖xref − xideal‖L∞
must be done with

the consideration of the robustness requirements.

VI. AN ILLUSTRATIVE EXAMPLE

This section uses an example to illustrate how L1 adaptive

controller works. We consider the Lorenz attractor:

ẋ1 = σ(x2 − x1)

ẋ2 = rx1 − x2 − x1x3 + (x21 + x22 + 0.1) (u+ h(t, x))

ẋ3 = x1x2 − bx3 ,

where σ = 1, r = 0.5, b = 1. The ideal system corresponds

to u = −h(t, x). We choose the initial condition satisfying

‖x(0)‖ ≤ 2. The adaptation gain is Γ = 107. The matrix

Am in the state predictor is Am = −I.

0 1 2 3 4 5 6
0

0.01
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0.03

0.04

Time

||
x
(t

)−
x

id
e

a
l(t

)|
|

 

 

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

Time

||
u

(t
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u
id

e
a

l(t
)|

|

 

 

h
1
(t,x)

h
2
(t,x)

h
1
(t,x)

h
2
(t,x)

Fig. 1. Time history of the errors in the states and inputs with different
uncertainties using the same L1 controller

We examine different uncertainties using the same L1 con-

troller. Two different uncertainties are considered: h1(t, x) =
0.5 sin(3t)(x21 + x22 + x23) + sin(2t) and h2(t, x) =

3 sin(2t)
x3
1+x3√
x2
2+1

. The controller remains the same with ω =

60. The time histories of the errors in the states and the

inputs of the real and the ideal systems are plotted in Figure

1. The control signal changes accordingly to ensure uniform

transient response. We observe that the L1 adaptive controller

guarantees smooth and uniform transient response without

any retuning of the controller in the presence of different

types of uncertainties and disturbances.

VII. CONCLUSION

This paper presents the L1 adaptive controller for sta-

bilization of uncertain nonlinear systems. The performance

specifications are defined via a different nonlinear system of

similar structure. The L1 adaptive controller achieves guaran-

teed transient behavior and quantifiable performance bounds

w.r.t the ideal system. Uniform bounds on the difference in

the states and the inputs of the real, the reference system

and the ideal systems are derived. Future papers will address

unmodeled dynamics and output feedback.

REFERENCES

[1] F. Lewis, “Neural network control of robot manipulators,” IEEE Expert,
vol. 11, no. 3, pp. 64–75, 1996.

[2] A. Calise, N. Hovakimyan, and M. Idan, “Adaptive output feedback
control of nonlinear systems using neural networks* 1,” Automatica,
vol. 37, no. 8, pp. 1201–1211, 2001.

[3] J. Pomet and L. Praly, “Adaptive nonlinear regulation: estimation
from the Lyapunovequation,” IEEE Transactions on Automatic Control,
vol. 37, no. 6, pp. 729–740, 1992.

[4] N. Hovakimyan and C. Cao, L1 Adaptive Control Theory. SIAM,
2010.

[5] C. Cao and N. Hovakimyan, “Stability margin of L1 adaptive control
architecture,” IEEE Transactions on Automatic Control, vol. 55, no. 2,
pp. 480–487, 2010.

[6] W. Rugh, Linear system theory. Prentice Hall Upper Saddle River,
NJ, 1996.

APPENDIX

Lemma 5: Consider a system

ż(t) = a(t)z(t) + b(t)υ(t)

υ(s) = (1− C(s))σ(s), z(0) = 0, (29)

where z, υ : R+
0 → R are the state and the input, a : R+

0 →
R is continuous and b : R+

0 → R is differentiable, C(s) =
ω
s+ω is a low-pass filter, and σ : R

+
0 → R is a bounded

input signal. Assume that there exist positive constants p1,

p2, p3, such that |a(t)| ≤ p1, |b(t)| ≤ p2, |ḃ(t)| ≤ p3 for all

t ∈ [0, τ ]. Then the following inequality holds:

‖z‖L[0,τ]
∞

≤ ‖σ‖L[0,τ]
∞

· (30)
∫ τ

0

(

p2e
−ωt + (p1p2 + p3)

∫ t

0

e−ωλϕ(t, λ)dλ

)

dt,

where ϕ(t, τ) ≥ 0 is the transition function of the system

ż(t) = a(t)z(t) + b(t)υ(t). Moreover, if ‖σ̇‖L[0,τ]
∞

is also

bounded, then

‖z‖L[0,τ]
∞

≤ ‖σ(0)‖p2·
∫ τ

0
e−ωtϕ(τ, t)dt + ‖σ̇‖L[0,τ]

∞

p2
∫ τ

0

∫ t

0
e−ωλϕ(t, λ)dλdt.

(31)

Proof: Note that the system in (29) is a linear time-

varying system. Therefore,

‖z‖L[0,τ]
∞

≤ ‖H‖L[0,τ]
1

‖σ‖L[0,τ]
∞

, (32)

where H is the map from the input σ to z.

We next examine the impulse response of H [6], denoted

by q(t). Let δ(t) be the impulse function. Then

q(t) = ϕ(t, t)b(t)e−ωt

−
∫ t

0
e−ωτ

(

∂
∂τ
ϕ(t, τ)b(τ) + ϕ(t, τ)ḃ(τ)

)

dτ.

Note that ϕ(t, t) = 1 and ∂
∂τ
ϕ(t, τ) = −a(τ)ϕ(t, τ).

Therefore, for any t ∈ [0, τ ]

|q(t)| = |b(t)e−ωt
−

∫ t

0
e−ωτ

(

−a(τ)ϕ(t, τ)b(τ) + ϕ(t, τ)ḃ(τ)
)

dτ
∣

∣

∣

≤ p2e
−ωt + supt∈[0,τ ]{|a(t)b(t)|+ p3}

∫ t

0
e−ωτϕ(t, τ)dτ

holds. With this inequality, we obtain (30), since ‖H‖L[0,τ]
1

=
∫ τ

0
|q(t)|dt. Notice that the system can be rewritten as

ż(t) = a(t)z(t) + b(t)υ(t)

υ(s) = 1−C(s)
s

sσ(s), z(0) = 0,
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which is equal to

ż(t) = a(t)z(t) + b(t)υ(t)

υ̇(t) = −ωυ(t) + σ̇(t), υ(0) = η(0), z(0) = 0 .

Next, consider the impulse response of the map Ĥ from

the input σ̇ to z: q̂(t) =
∫ t

0
ϕ(t, τ)b(τ)e−ωτ dτ . We can upper

bound like |q̂(t)| ≤ p2
∫ t

0
e−ωτϕ(t, τ)dτ , which leads to the

inequality in (31).

A. Proof of Lemma 1

Proof: We first show that ‖xref‖L[0,τ]
∞

is bounded by

ρref using a contradictive argument. Suppose the statement

is not true. Notice that ‖xref(0)‖ < ρref . Since xref(t) is

continuous, there must exist a time instant τ∗, such that

‖xref(τ∗)‖ = ρref an ‖xref(t)‖ < ρref for any t ∈ [0, τ∗).
Consider xref(t) over [0, τ∗]. By Assumption 5, there exist

a positive definite function W (t, xref) and constants d1, d2,

d3, such that

Ẇ ≤ −d3
d2
W + ∂W

∂xref
g(t, xref)(−ηref(t) + h(t, xref)),

where ηref(t) is defined in (24). Solving this inequality with

the initial condition W (0, x0), we have

W (t, xref(t)) ≤ e−
d3
d2
t
W (0, x0)

+
∫ t

0 e
−d3
d2

(t−τ) ∂W
∂xref

g(τ, xref)(−ηref(τ) + h(τ, xref))dτ.
(33)

Consider the following system:

ż(t) = −d3
d2
z(t) +

∂W

∂xref
g(t, xref)ζ(t).

ζ(s) = (1 − C(s))L[h(t, xref)], z(0) = 0.

It is easy to verify that for all t ∈ [0, τ∗], we have
∥

∥

∥

∂W
∂xref

g(t, xref)
∥

∥

∥
≤ B∂WBgρref and

∥

∥

∥
ḣ(t, xref)

∥

∥

∥
≤ Bḣref

ρref
.

By Lemma 5, we have the following bound for all t ∈ [0, τ∗]:

‖z(t)‖ ≤ B∂WBgρref ‖h(0, x0)‖
∫ t

0
e−ωτe−

d3
d2

(t−τ)
dτ

+B∂WBgρrefB
ḣref
ρref

∫ t

0

∫ τ

0
e−ωλe−

d3
d2

(τ−λ)
dλdτ

≤ B∂WBgρrefd2

(

‖h(0,x0)‖
|d3−d2ω| +

B
ḣref
ρref

d3ω

)

, r.

Applying this inequality to (33) yields W (t, xref(t)) ≤
e−

d3
d2
t
W (0, x0) + r, which means that for all t ∈ [0, τ∗],

‖xref(t)‖2 ≤ e
−

d3
d2
t
W (0,x0)
d1

+ r
d1

. Therefore ρ2ref =

‖xref(τ∗)‖2 < W (0,x0)
d1

+ r
d1
, which contradicts the inequality

(12). Thus, ‖xref‖L[0,τ]
∞

≤ ρref . Also note that it implies that

the reference system is uniformly ultimately bounded.

B. Proof of Lemma 2

Proof: We first consider ‖ẋ(t)‖. For the system in

(1) the controller in (19) – (23) leads to the following

dynamics: ẋ(t) = fm(t, x) + g(t, x)(u2(t) + h(t, x)), which

gives the following upper bound ‖ẋ(t)‖ ≤ ‖fm(t, x)‖ +
‖g(t, x)u2(t)‖+ ‖g(t, x)‖‖h(t, x))‖.

Since ‖x(t)‖ ≤ ρ for all t ∈ [0, τ ], the inequalities in (10)

hold. Therefore, for all t ∈ [0, τ ] the following bound

‖ẋ(t)‖ ≤ Bfmρ +BgρB
h
ρ + ‖g(t, x)u2(t)‖ (34)

holds. By the definition of u2(t) in (23), for t ∈ [0, τ ],
‖g(t, x)u2(t)‖ ≤ Bgρ‖C(s)‖L1B

h
ρ , where ‖σ̂(t)‖ ≤ Bhρ is

ensured by the projection operator. Applying this inequality

to (34) implies that we have

‖ẋ(t)‖ ≤ Bfmρ +BgρB
h
ρ + ‖C(s)‖L1B

g
ρB

h
ρ = Bẋρ (35)

for t ∈ [0, τ ]. Notice that ḣ(t, x(t)) = ∂h
∂t
(t, x(t)) +

∂h
∂x

(t, x(t))ẋ, which leads to (25) for all t ∈ [0, τ ].

C. Proof of Lemma 3

Proof: Let U(x̃, σ̃) = x̃⊤P x̃+ σ̃⊤Γ−1σ̃. Compute the

time derivative of U :

U̇ = −x̃⊤Qx̃+ 2x̃⊤Pg(x)σ̃ + 2σ̃⊤Γ−1 ˙̂σ − 2σ̃⊤Γ−1ḣ.

The adaptive law from (22) leads to U̇ ≤ −x̃⊤Qx̃ −
2σ̃⊤Γ−1ḣ(t, x). Using the upper bound in (25), along with

‖σ̃(t)‖ ≤ ‖σ̂(t)‖ + ‖h(t, x(t))‖ ≤ 2Bhρ , leads to U̇ ≤
−λmin(Q)‖x̃‖2 + 4BhρΓ

−1Bḣρ . It implies that for all t ≥
0, either U̇ ≤ 0 or ‖x̃(t)‖2 ≤ 4BhρB

ḣ
ρ

Γλmin(Q) holds. Since

U(0) ≤ ‖σ̂(0)−h(0, x0)‖2Γ−1 ≤ 4Bhρ
2

Γ , we have ‖x̃(t)‖2 ≤
4Bhρ

2

λmin(P )Γ +
4λmax(P )BhρB

ḣ
ρ

Γλmin(Q)λmin(P ) for ∀t ∈ [0, τ ].

We now consider ‖η̃‖L[0,τ]
∞

. Since Assumption 3 holds,

based on equation (26), we know that ψ(t, x) ˙̃x(t) =
ψ(t, x)Amx̃(t) + σ̃(t), which implies

d

dt
[ψ(t, x)x̃(t)] = ψ(t, x)Amx̃(t) + x̃(t)

d

dt
ψ(t, x) + σ̃(t).

Therefore, with the equation above,

‖η̃‖L[0,τ]
∞

= ‖C(s)σ̃(s)‖L[0,τ]
∞

≤ (‖C(s)s‖L1B
ψ
ρ + ‖C(s)‖L1B

ψ
ρ ‖Am‖+Bψ̇ρ )

α√
Γ
,

where Bψ̇ρ = B
∂ψ
∂t
ρ +B

∂ψ
∂x
ρ Bẋρ .

D. Proof of Lemma 4

Proof: We prove the statement by contradiction. Sup-

pose that the statement is not true. Since e(t) is continuous

and ‖e(0)‖ = 0 < γ, there must exist a time constant τ∗ > 0,

such that

‖e(τ∗)‖ = γ (36)

‖e(t)‖ < γ, ∀t ∈ [0, τ∗). (37)

Then we consider the system in (27) over [0, τ∗). By the

mean value theorem, the ith entry of ∆ can be rewritten as

∆i(t, e) =

[

∂f im
∂x

(t, λ1e + xref)−
∂f im
∂x

(t, λ2e)

]

e, (38)

where 0 < λi < 1. Since ∂fm
∂x

is locally Lipschitz, we have

‖∆(t, e)‖ ≤ 2L
∂fm
∂x
ρ ‖e‖2 + L

∂fm
∂x
ρ ‖xref‖‖e‖. (39)
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Recall that η(s) = L[h(t, x)], η̂ = C(s)σ̂(s), and

ηref = L[h(t, xref)]. The term Φ(t, x) is equal to Φ(t, x) =
Φ1(t, x) + Φ2(t, x), where

Φ1(t, x) = g(t, x)(η(t) − η̂(t))
Φ2(t, x) = g(t, x) (h(t, x)− η(t)− h(t, xref) + ηref(t))

+ (g(t, x)− g(t, xref)) (h(t, xref)− ηref(t)) .
(40)

From Lemma 3 we have ‖Φ1(t, x)‖ ≤ Bgρβ√
Γ

. Since ‖e(t)‖ ≤
γ over [0, τ∗], by Assumption 4 and simple calculation, there

exist c1, c2, c3, c4, and a positive definite function V (t, e)
for the system in (27), such that for all t ∈ [0, τ∗], we have

V̇ (t, e) ≤ −
(

c3
c2

− c4
c1
κ(t)

)

V +
c4B

g
ρβγ√
Γ

+ ∂V
∂e

Φ2(t, x),

(41)

where

κ(t) = 2L
∂fm
∂x
ρ γ + L

∂fm
∂x
ρ ‖xref(t)‖. (42)

Since e(0) = 0, V (0) = 0, we can upper bound

V (t) ≤
∫ t

0 ϕ(t, τ)
(

c4B
g
ρβγ√
Γ

+ ∂V
∂e

(τ, e(τ))Φ2(τ, x(τ))
)

dτ ,

(43)

where t ∈ [0, τ∗], and

ϕ(t, τ) = e−
c3
c2

(t−τ)+ c4
c1

∫
t
τ
κ(λ)dλ

. (44)

Consider κ(t) in (42). From Lemma 1, there exists a

positive constant ǫ and a time instant T > 0, such that

‖xref(t)‖ ≤ ǫ, ∀ t ≥ T

2L
∂fm
∂x
ρ γ + L

∂fm
∂x
ρ ǫ <

c1c3

c2c4
‖xref(t)‖ ≤ ρref , ∀ t ≥ 0.

Therefore, for all t ≥ 0, the following upper bound
∫ t

0
‖xref(τ)‖dτ ≤ ǫt + ρrefT holds. Further, it implies that

for all t ∈ [0, τ∗], κ(t) satisfies

∫ t

0 κ(τ)dτ ≤ µt+ L
∂fm
∂x
ρ ρrefT , (45)

where µ is defined in (13).

From (44), (45) and (13), we know

ϕ(t, τ) ≤ e−α̂(t−τ)̺, (46)

where α̂ and ̺ are defined in (18). Using this inequality in

(43), we obtain

V (t, e(t)) ≤ ̺
α̂

c4B
g
ρβγ√
Γ

+
∫ t

0
ϕ(t, τ)∂V

∂e
(τ, e(τ))Φ2(τ, x)dτ.

(47)

Consider the last term in the preceding inequality. With

the definition of Φ2(t, x) in (40), this integral term is in fact

equivalent to the sum of the states of two scalar systems that

share the same transition function ϕ(t, τ), given by:

ż1(t) = ( c4κ(t)
c1

− c3
c2
)z1(t) +

∂V
∂e
g(t, x)ζ1(t)

ζ1(s) = (1− C(s))L[h(t, x) − h(t, xref)], z1(0) = 0
(48)

and

ż2(t) = ( c4κ(t)
c1

− c3
c2
)z2(t) +

∂V
∂e

(g(t, x)− g(t, xref))ζ2(t)

ζ2(s) = (1 − C(s))L[h(t, xref)], z2(0) = 0.
(49)

It is easy to verify, based on the previous analysis and

Assumption 4, that for all t ∈ [0, τ∗], we have
∥

∥

∥

c3
c2

− κ(t) c4
c1

∥

∥

∥
≤ Ba

∥

∥

∂V
∂e
g(t, x)

∥

∥ ≤ c4B
g
ργ

∥

∥

d
dt

(

∂V
∂e
g(t, x)

)∥

∥ ≤ Mγ +
c5B

g
ρ
2β√

Γ

‖h(t, x)− h(t, xref)‖ ≤ Lhργ
∥

∥

∂V
∂e

(g(t, x) − g(t, xref))
∥

∥ ≤ c4L
g
ργ

2
∥

∥

∥
ḣ(t, xref)

∥

∥

∥
≤ Bḣref

ρref
,

where the parameters on the right hand sides of the inequal-

ities are defined in (11). Then we can apply Lemma 5 to the

system in (48) to obtain

|z1(t)| ≤ Lhργ
(

∫ t

0
c4B

g
ργe

−ωτdτ+
[

(

Bac4B
g
ρ +M

)

γ +
c5B

g
ρ
2β√

Γ

]

∫ t

0

∫ τ

0 e−ωλϕ(τ, λ)dλdτ
)

.

for all t ∈ [0, τ∗]. Using (46) in the preceding inequality

leads to the bound |z1(t)| ≤ γ2δ1(ω) + γ δ3√
Γ
, for all t ∈

[0, τ∗], where δ3 =
Lhρc5B

g
ρ
2β̺

α̂ω
. Similarly, applying Lemma

5 to the system in (49) yields ‖z2(t)‖L[0,τ]
∞

≤ γ2δ2(ω).
Combining the preceding two inequalities, we have

∣

∣

∣

∫ t

0 ϕ(t, τ)
∂V
∂e

(τ, e(τ))Φ2(τ, x(τ))dτ
∣

∣

∣

= |z1(t) + z2(t)| ≤ (δ1(ω) + δ2(ω))γ
2 + γ δ3√

Γ
.

Let δ4 =
̺c4B

g
ρβ

α̂
. Substituting it into (47), we obtain

the bound V (t) ≤ γ(δ3+δ4)√
Γ

+ (δ1(ω) + δ2(ω))γ
2 for all

t ∈ [0, τ∗], which, along with (2), implies that for all

t ∈ [0, τ∗], c1‖e(t)‖2 ≤ γ(δ3+δ4)√
Γ

+ (δ1(ω) + δ2(ω))γ
2.

Since supt∈[0,τ∗] ‖e(t)‖ = γ, we have c1γ
2 ≤ γ(δ3+δ4)√

Γ
+

(δ1(ω)+δ2(ω))γ
2. Since

δ1(ω)+δ2(ω)
c1

< 1, by inequality (14),

the inequality above implies
√
Γ ≤ δ3+δ4

γ(c1−δ1(ω)−δ2(ω)) . This

contradicts the assumption in (28). Hence, ‖e‖L[0,τ]
∞

< γ.

E. Proof of Theorem 1

Proof: We first show that ‖x‖L∞
< ρ using a

contradiction argument. Suppose that ‖x‖L∞
is not bounded

by ρ. Since ‖x(0)‖ < ρ and x(t) is continuous, there must

exist a time instant τ∗, such that

‖x(τ∗)‖ = ρ and ‖x(t)‖ < ρ, ∀ t ∈ [0, τ∗). (50)

According to Lemma 4, the inequality ‖xref(t)− x(t)‖ < γ

holds for all t ∈ [0, τ∗]. Since ‖xref‖L∞
≤ ρref , it implies

‖x(t)‖ < γ + ρref = ρ for all t ∈ [0, τ∗], which contradicts

(50). Therefore, ‖x‖L∞
< ρ. As a result, according to

Lemma 4, ‖xref − x‖L∞
< γ.

We next prove the bound for ‖uref(t)− u(t)‖. According

to the definitions of uref(t) in (24) and u(t) in (19) – (23),

we have ‖uref(t)−u(t)‖ ≤ Lkρ‖xref −x‖+ ‖ηref(t)− η̂(t)‖.

Consider the last term on the right hand side of this inequal-

ity. Recall that η̂(s) = C(s)σ̂(s), ηref(s) = L[h(t, xref)],
and η(s) = L[h(t, x)]. Then ‖ηref(t) − η̂(t)‖ ≤ ‖ηref(s) −
η(s)‖L∞

+ ‖η(t)− η̂(t)‖L∞
≤ ‖C(s)‖L1L

h
ργ + β√

Γ
, where

the last inequality is obtained by applying Lemma 3. The

proof is complete.
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