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Abstract—Intelligent management of power generation and 
dispatching is important when renewable energy sources and 
electrified vehicles (EV/PHEV) are introduced to the grid. 
Intermittency of renewable power and vehicle charging loads 
disturbs power supply and demand and could cause instability. 
Fortunately, EV/PHEV can be connected as controllable load 
or even used as energy storage, which makes it possible to 
reduce their negative impact and can even be explored to 
improve grid resilience.  By coordinating power generation and 
charging, it is possible to reduce power generation cost and 
carbon emission. To improve practicality, a decentralized 
charging algorithm is formulated by emulating the charging 
pattern identified through linear programming (LP) 
optimization solutions. The resulting decentralized control 
algorithm is a function of forecasted total power demand on the 
grid, estimated number of vehicles, estimated EV/PHEV plug 
off time, and state of charge of the vehicle battery.  Simulation 
results are presented to demonstrate the performance of the 
proposed decentralized algorithm. 

I. INTRODUCTION 

NCREASING electric power demand in the past were 
mostly met by building extra centralized power plants.  

The electric infrastructure is designed to meet the peak 
demand which only occurs a few hundred hours a year in the 
US [2]. The recent push for electrified vehicles, including 
both plug-in hybrid vehicles (PHEV) and pure electric 
vehicle (EV) may further increase peak electrical load if left 
unmitigated, resulting in more demand for generation and 
transmission capacities.   

Fortunately, EVs can be treated as controllable loads or 
even power sources under extraneous situations [3]. Most 
EVs, due to their short range, are likely to be used for 
commute and are plugged-in for long hours during the night. 
Therefore, we have flexibility to manage the charging 
pattern of EVs by reducing or delaying their power demand. 
V2G (vehicle-to-grid) [4] has been studied to explore their 
potentials [4, 5]. A number of studies [6-9]  focused on 
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regulation capability of EV batteries and many results show 
that V2G may be beneficial to the grid operators at the 
expense of reduced battery charging completion. 
Furthermore, most of those approaches are based on short 
time horizon and did not fully explore long-term behavior 
such as valley-filling. Ma [10] and Callaway [11] showed 
that a demand dependent pricing scheme drives a unique 
Nash equilibrium that results in a valley-filling effect. The 
valley-filling algorithm works in a decentralized way but 
requires that each vehicle have access to all information of 
every vehicle and power generation.  So the developed 
algorithm is not really distributed.  Furthermore it does not 
provide a closed form charging algorithm. In theory, a 
centralized controller can collect full information of all EVs 
and all power plants, utilizing future power demand and 
control all vehicles/plants simultaneously for optimal 
performance. Such an approach, however, requires extensive 
bi-directional communication and heavy computation and 
thus is not as desirable as a decentralized approach. A 
decentralized charging controller requires small amount 
information from the grid and from other vehicles. 

In our vision, a practical decentralized charging controller 
receives simple command from the grid and only has access 
to information from the local vehicle (e.g., battery state of 
charge, SOC). A decentralized charging controller that 
achieves near-optimal performance (compared with a 
centralized controller) is the goal of this paper.  This paper 
presents a sub-optimal control algorithm based on the one-
way (G2V) power flow—and no V2G power flow is 
envisioned.  The charging control balance among multiple 
objectives: minimization of the negative impacts of 
increased electric loads, reduction of carbon dioxide 
emission; and reduction of the power generation cost. The 
near-optimal decentralized control algorithm is formulated 
by emulating the optimal charging pattern obtained from a 
Linear Programming (LP) technique that solves a centralized 
optimization problem. The optimal decentralized control 
algorithm is formulated as a function of few pieces of 
information from the grid operator and forecasted total 
power demand of the grid, estimated plug off time, and the 
battery SOC of the local vehicle. The performance of the 
decentralized controller is then verified using simulations. 
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II. PROBLEM DESCRIPTION 

A. Target Grid 

In this paper, the area supported by DTE Energy in 
Michigan is used to size the power generation and load. The 
electric power demand in the DTE area varies from around 
5000MW to 8000MW and the electric load in summer is 
usually higher than the winter load due to air-conditioning. 
Peak electric demand occurs around 2pm in the summer and 
7 pm in the winter. Lowest demand occurs around 4 am. The 
hourly power demand for typical summer and winter days is 
shown in Fig. 1, where the load below about 5500 MW is 
defined as base load, the load between 5500~7200 MW is 
defined as intermediate load, and above 7200 MW is defined 
as peak load. The summer demand profile will be used for 
the design of controller as a base power demand.  The same 
design process of course can be used for the winter load.  

B. Electric Vehicles and Commuting Patterns 

The target electrified vehicle is assumed to be designed 
for commuting. The number of electrified vehicles is 
assumed to be two million, which is about 25% of the 
number of registered passenger vehicles in Michigan. The 
commuting pattern is assumed as follows: the owners leave 
home for work on average at 7:20 am with 2 hours of 
standard deviation; the owners return home 4:30 pm with a 
standard deviation of 4.3 hours; the battery state of charge 
(SOC) when plugged-in is also assumed to be described by a 
normal distribution with a mean of 0.5 and a standard 
deviation of 0.1; the vehicles are charged only during the 
night (not at work). The mean and standard deviation of the 
commute patterns are based on observed traffic flow data 
acquired from Interstate Highway 5 [12]. The battery 
capacity is assumed to be 16kWh [13], the charger capacity 
is assumed to be 120V/15A (Level I) [14] which represents 
a more challenging scenario for controls, and the allowed 
SOC range is assumed to be 0.3~0.85 [14]. 

If we simulate a scenario where every EV starts charging 
unmitigated at the moment they are plugged in, the electric 
power demand is as shown in Fig. 2. The vehicle charging 
demand increases the peak electricity demand and it will 
require the peak load power plants to operate, which have 
significantly higher electricity generation cost because they 
are usually use fuels that have higher cost. 

C. Objective and Constraints 

The objective is to develop a decentralized charging 
control algorithm that minimizes generating cost and/or 
carbon dioxide emission of power plants, and in the 
meantime the batteries should be fully charged for those 
vehicles that are plugged-in to the grid long enough.  To 
accomplish the objective, the EV loads should be shifted to 
the valley (valley-filling) to minimize the operation of the 
peak load plants, and in the meantime the charging power 
should be distributed in such a way that those vehicles with 
lower SOC or earlier plug-off time will receive higher 
charging power.  

III. CONTROL ALGORITHM DESIGN 

The design process begins by solving an optimal control 
problem where all information is available and a central 
controller determines the charging power of each EV. The 
solution of this control problem is centralized and is not very 
practical.  However, it serves as a benchmark, and its control 
pattern serves as a role model for a decentralized control 
algorithm. A decentralized charging control algorithm can 
be derived by emulating the optimal control behavior using 
only the information broadcasted by the plant operator and 
the local information from the EV. The remaining contents 
of this chapter include: formulation of an optimal control 
problem and the solution; analysis of the optimal control 
patterns; and, derivation of a decentralized control 
algorithm. 

A. Formulation of the Optimal Control Problem 

The cost function to be minimized is the electricity 
generation cost and total carbon dioxide emissions. The 
generation cost curves are based on economic dispatch rules 
of the service providers. A service provider typically 
manages many types of plants and the plants can be 
categorized into base load plants, intermediate load plants, 
and peak load plants. Nuclear and coal power plants are 
designated for the base load; combined cycle power plants 
for the intermediate load; and gas turbines for the peak load. 

An instantaneous cost curve for the target grid is derived 
using the method reported in [15], as shown in Fig. 3 (a). 
The carbon dioxide emission curve is achieved using the 
tables of carbon dioxide emission by fuel types [16] and by 
plant types [17, 18], as shown in Fig. 3 (b). To achieve the  

Fig. 1.  Average base power demand of DTE service area [1] 

 
Fig. 2.  Power demand profile when 2M EVs are charged with no 
control (start charging at the maximum power the moment they plug 
in)
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minimization of production cost and carbon dioxide 
emission, we combined these two curves using a carbon tax 
concept [19].  The combined cost curve for a carbon tax of 
$12/tCO2 is shown in Fig. 4.   

Given the cost curve, C(P(t)), shown in Figure 4, the 
optimal control problem is defined as follows: 
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Pbase(t) is base grid load (the non-EV electric load) and 
PEV(t, n) is the control variable for t=0,1,2,,T, 
n=1,2,3,,N. The constraints are      
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where B(n) is the total energy to fully charge the battery # n, 
for n=1,2,3,,N, and PEVlim(t) is the charging power limit of 
the battery determined as follows: 
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If the combined cost curve is linear, then the optimization 
problem is trivial and can be solved by using Linear 
Programming (LP). However, the cost curve is not linear 
and a nonlinear optimization problem with a large number of 
control variables requires tremendous computation load. 
Fortunately, the cost curve is piece-wise linear and has 
increasing convexity.  Therefore, we can use a LP technique 
by adding more control variables and constraints. Details are 
shown in the following section. 

B. Solution through Linear Programming 

The optimization problem with a piece-wise linear 
function that has increasing convexity can be solved by 
modifying the cost function, as follows: 
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where 0<c1<c2<c3 are defined in Fig. 4. The constraints 
consist of linear constraints and conditional constraints. The 
linear constraints are 
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where q1(t), q2(t), and q3(t) vary only in the linear ranges of 
the piece-wise linear cost curve. The new control variables 
transform the nonlinear cost function to a linear cost 
function but they impose the conditional constraints. 
However, these conditional constraints are not active (the 
optimal solution does not exist in the hyper-plane defined by 
the conditional constraints) because the expensive resources 
would not be used unless the cheaper resources are used up 
completely. Therefore, we can ignore the conditional 
constraints and the problem can be solved using a LP 
technique. 

C. Optimal Results and Analysis 

The parameters in the optimization problem are as 
follows: T = 48 (48 hour time horizon with 1 hour step size), 
N=100 (100 vehicle fleet each representing 20,000 EVs with 
similar level of SOC). The plug-in times, plug-off times, and 
the initial SOCs are randomly generated based on the 

 
Fig. 3.  Power generation cost curve (a) and CO2 emission curve (b) 

 
Fig. 4.  Combined cost curve, C(P(t)), (Generation cost + CO2 
emission), The carbon tax of $12/tCO2 is used. 
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Fig. 5.  Optimal results obtained from LP: the charging pattern of EVs 
(a) and resulted electric power demand (b). 
 

 
Fig. 6.  Example charging patterns from the optimal solution. 

 

commute pattern but are known to the centralized controller. 
The problem is solved using the LP solver in MATLAB 
(linprog) and the results are shown in Fig. 5. In the optimal 
solution, the additional load due to EV charging fills the 
valley of demand profile during the night so that no 
additional peak power plant needs to operate. If we compare 
the power demand profile in Fig. 5 (b) with Fig. 2, we see 
the demand at evening moves to early time in the morning.  
Fig. 6 shows some cases of charging patterns. The EVs 
begin to charge their batteries as soon as the valley period 
begins, which is defined as the time that the base demand 
curve decreases below the peak load line, where we do not 
need turn on peak load plants. The EVs also finish their 
charging when the valley period ends, which is defined as 
the time that the base demand curve increases above the 
peak load line. The charging power depends on the energy 
to charge the battery. The EV that has a lower initial SOC 
shows higher charging power. The charging power closely 
depends on the base load and the amount of “cheap power”, 
defined as power available from the “lower cost plants” 
minus the base loads.   

D. Derivation of Decentralized Control Algorithm 

To analyze the charging pattern, the EVs are grouped by 
the plug-off time. As shown in Fig. 7, the charging power of 
EVs with the same plug-off time shows linear dependency in 
SOC and the sensitivity changes over time. As a result, the 
charging power can be expressed as follows: 

 max( , ) ( , ) ( , )EVP t n K t n SOC SOC t n                 (12) 

The gradient, K(t, n),  is computed and plotted over time 
and plug-off time, and shown in Fig. 8. The gradient 
increases as the time to plug-off decreases, or the time to 
valley-end decreases. Also it was found that grid congestion 
also affects K(t, n). To extract the function of K(t, n) from 

the optimal solution, more various demand profiles are  
required. 

Another approach to derive PEV(t, n) is based on the 
observation that charging power is highly related to 
available power reserve, which is defined as the difference 
between the peak load and the base demand profile, L1+L2–
Pconv(t). From the observation that the charging power is 
proportional to the available power, another candidate 
charging power pattern can be expressed as  
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where R(t, n) is a charging gain. PRgrid(t) is the available 
charging power for each EV and is computed from: 
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where NEV(t) is the number of EVs that are plugged in. 
Because the EV’s battery should be fully charged the 
following equation must hold: 
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where Tend = min(tplug-off, tvalley-end) and C is the battery 
capacity. Because we do not know future R(τ, n), it is 
assumed to be constant and calculated from: 
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This calculated R(t, n) is assumed to be constant over t, but 
it is only constant until PRgrid(t) is updated, at which point 
R(t, n) is recalculated using new SOC and new PRgrid(t). 

 
Fig. 7.  Optimal charging power from the LP solutions was found to 
be proportional to “SOC deficit”. 
 

 
Fig. 8.  Charging gain function extracted from the optimal solutions. 
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Plug (16) into (13), we have 
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which is the equation for decentralized charging algorithm. 
It is interesting to point out that K(t, n) in (12) can be 
identified by comparing (12) and (17): 
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The control algorithm in (17) can be implemented in a 
decentralized fashion, and it consists of two parts: gain and 
SOC deficiency. The gain becomes larger when the time to 
plug-off is shorter, and when the power reserve is high. The 
dependency on SOC deficiency ensures that vehicles with 
lower SOC receive higher charging power.  And it is 
interesting to note all these dependency show simple 
proportional relations. 

To implement the proposed controller in (17), predicted 
future power reserve from current time to the end of the 
valley hours, and the plug-off time of the vehicle are 
required. Accurate forecast of base grid load is already 
available and used in the power transmission industry, thus, 
the end of the problem horizon (end of valley hours) can be 
calculated from the forecasted demand data. The plug-off 
time of individual EV needs to be estimated, perhaps from 
user input or learned from past behaviors. Also, we assume 
that the number of EVs connected to the grid can be 
estimated from historical data, or from collection of binary 
on-off data from their “smart meters” or “interruptible 
meters”. Therefore, the controller is implementable in a 
decentralized way. The control algorithm has a simple form 
and the computation can be done locally.  Information from 
vehicle to grid is not required—except the binary plug-in 
data which again can be estimated and this is optional. The 
only information that needs to be broadcast from the grid to 
the vehicles is the predicted power reserve trajectory.  

IV. SIMULATIONS 

The decentralized controller is verified through 
simulations of four scenarios. Scenario 1 uses the electric 
demand profile of the Detroit area and Scenario 2 uses a 
modified electric demand profile. Scenario 3 uses the same 
demand profile as Scenario 1, but the estimation of NEV(t) is 
inaccurate: the estimated NEV(t) is assumed to be 1-hour 
delayed from the true value. Scenario 4 also uses the same 
demand profile as Scenario 1 but the total number of EVs is 
25% higher than the expected. The plug-in, plug-off and 
initial SOC distributions are the same for all simulations. 

A. Simulations without Uncertainties 

Scenarios 1 and 2 are designed to verify the performance 
when there is no uncertainties in forecasted demand profiles 
and estimated NEV(t). In both scenarios, we assume that the 
base load is perfectly forecasted. The baseline controller 

allows un-mitigated charging behavior, and starts charging 
the battery with maximum power immediately at plug-in. 
The baseline controller achieves highest full-charging 
performance but because it uses the peak power sources, the 
power generation cost is much higher. The centralized 
optimal controller is the implementation of the LP 
optimization results, which achieves best valley-filling 
performance because of its non-causal control ability. Its 
performance was shown in Fig. 5 for the first scenario.  

Simulation results of the decentralized control algorithm 
for Scenario 1 are shown in Fig. 9. The charging load is 
shifted to the valley hours, reducing the cost function 
without deteriorating the battery charging performance. 
Simulation results of Scenario 2 are shown in Fig. 10. The 
decentralized controller designed using the optimization 
results of Scenario 1, works well, which shows that the 
proposed decentralized controller is robust under base load 
profile variances. The performances of the three controllers 
are compared in Table I. The cost of the decentralized 
controller is close to the cost of the optimal controller, i.e., 
the decentralized controller is near-optimal.  

B. Simulations with Uncertainties 

Scenario 3 is designed to test the robustness against error 
in estimated number of electrified vehicles NEV(t). In this 
scenario, we assume that the estimated vehicle number is a 
time delayed version of the actual number. Scenario 4 is 
designed to see the effect of many more EVs than expected. 
The total charging energy is larger than the energy available 
in the valley hours so it is necessary to turn on the peak 
power plant. However, battery charging still happens 
orderly. The results of these two scenarios demonstrate the 

 
Fig. 9.  Demand profile managed by the decentralized controller (a) 
and charging performance comparison to baseline controller (b), 
Simulated with the demand profile of DTE area. 
 

 
Fig. 10.  Demand profile managed by the decentralized controller (a) 
and charging performance comparison to baseline controller (b), 
Simulated with the modified demand profile of DTE area. 
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advantage of the optimal problem formulation: generation 
cost and CO2 emission are to be minimized but SOC 
charging is a hard constraint that must be satisfied.  

V. CONCLUSION 

This paper presents a design process for a decentralized 
charging algorithm for electrified vehicles.   The algorithm 
mimics the behavior from a global optimal solution obtained 
through the linear programming technique which minimizes 
overall generation cost and carbon dioxide emission. The 
developed algorithm requires four pieces of information: 
forecasted base load profile, the estimated number of 
plugged vehicles, the estimated plug-off time, and the 
battery SOC of the vehicle being charged (the last piece of 
information is used locally). The performance of the 
proposed algorithm is compared to the centralized optimal 
controller (from Linear Programing) and the baseline 
controller (unmitigated charge). The proposed algorithm 
achieves a cost function very close to the centralized optimal 
controller and SOC charging performance similar to the 
baseline controller. 

Uncertainties in renewable energy source and inaccuracy 
of base load forecasting were not studied in this study. The 
possibility of V2G, i.e., energy from the vehicle battery 
flows to the grid, was not considered. Development of the 
decentralized control algorithm considering these scenarios 
is left for future studies. 
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TABLE I 
PERFORMANCE OF THE DECENTRALIZED CONTROLLER COMPARED TO 

THE BASELINE AND THE CENTRALIZED OPTIMAL CONTROLLERS 

Scenario Controller 
Generation 

Cost 
CO2 

Emission 
SOC 

Charging 

 Baseline 1 1 100 % 

1 Centralized 0.907 0.969 100 % 

 Decentralized 0.923 0.976 99.99 % 

 Baseline 1 1 100 % 

2 Centralized 0.908 0.970 100 % 

 Decentralized 0.948 0.985 99.98 % 

3 
Baseline 1 1 100 % 

Decentralized 0.923 0.976 99.93 % 

4 
Baseline 1 1 100 % 

Decentralized 0.925 0.976 99.92% 

 

 
Fig. 11.  Simulation results with uncertainties: (a) when NEV(t) 
estimation is inaccurate; (b) number of total EVs are more than 
expected.  
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