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Abstract— This paper presents a nonlinear observer design
methodology for a class of Lipschitz nonlinear systems via
convex optimization. A sufficient condition for the existence
of an observer gain matrix to stabilize the estimation error
dynamics is given in term of a quadratic stability margin. In
addition, the observer gain matrix is optimally designed by
minimizing the magnitude of elements of the observer gain
matrix to reduce the amplification of sensor measurement
noise. Furthermore, when disturbances considered as unknown
deterministic inputs are imposed on the error dynamics in
an additive form, the observer gain matrix is redesigned to
minimize an induced L2 gain between the disturbance to the
estimation error as well as the effect of measurement noise.
Finally a systematic design algorithm is applied to a flexible
joint robot system.

I. INTRODUCTION

Consider the class of Lipschitz nonlinear systems for

observer design as follows:

ẋ = Ax + Buu + f(x)

y = Cx
(1)

where the state x ∈ R
n, the control input u ∈ R

m, the

measurement y ∈ R
p where p < n, f is Lipschitz with a

Lipschitz constant γ, i.e.,

‖f(x) − f(x̂)‖ ≤ γ‖x − x̂‖, ∀(x, x̂) ∈ D, (2)

and the pair (A, C) is observable. If D = R
n, f is globally

Lipschitz. Otherwise, it is locally Lipschitz.

A “Luenberger-like” nonlinear observer for (1) was pro-

posed originally in [1] as follows:

˙̂x = Ax̂ + Buu + f(x̂) + L(y − Cx̂) (3)

After defining the estimation error by e := x − x̂ and using

the inequality constraint (2), the estimation error dynamics

are written as follows:

ė = (A − LC)e + {f(x) − f(x̂)} := Aobe + φ

‖φ‖ ≤ γ‖e‖
(4)

where Aob = A − LC and φ = f(x) − f(x̂).
There have been a series of results for the observer

design in the literature [1]-[8] and their contributions are

summarized in sequential order as follows:

• Stability analysis for the estimation error dynamics

given in (4) (refer to [1], [2])
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• Sufficient conditions for existence of the observer gain

matrix L to gurantee asymptotic stability of the error

dynamics (refer to [3]-[6])

• Optimal design of the observer gain matrix with con-

sideration of disturbances (refer to [7], [8])

Since all results of the stability analysis can be used to

check the stability of the estimation error dynamics only after

the gain matrix L is assigned, this motivates a problem for the

existence of the observer gain matrix to guarantee stability.

Then, under the sufficient condition for the existence of the

gain matrix, the optimal design problem is considered from

an input-output stability point of view via a linear matrix

inequality (LMI) approach.

The contribution of this paper is to show equivalences or

analogies among the previous results of nonlinear observer

design in the literature and formulate them in the form of

LMI. Then, it will be shown that the existence of the observer

gain matrix to stabilize the estimation error dynamics can

be guaranteed by checking whether the quadratic stability

margin of the error dynamics is greater than the Lipschitz

constant. Finally, the observer gain matrix can be designed

optimally in the sense that amplification of sensor measure-

ment noise is reduced and an induced L2 gain between the

disturbance to the estimation error is minimized.

II. QUADRATIC STABILITY

The error dynamics in (4) can be considered as a linear

system subject to a vanishing perturbation in the sense that

φ(t, x, x̂) → 0 as e(t) → 0. The corresponding result for

stability analysis was addressed originally by Thau [1] and

may be modified by use of the result of [9] as follows: If

there is a gain matrix L such that

γ <
1

2λmax(P )
(5)

where P is a symmetric positive definite matrix satisfying

AT
obP + PAob = −I,

the origin in (4) is exponentially stable.

If the estimation error dynamics in (4) are regarded as a

norm-bound linear differential inclusion (NLDI) [10]. Using

the result in [10], the stability analysis problem can be

addressed in the form of LMI and the same result is also

found in [7].

Theorem 1: If there exist P > 0 and σ ≥ 0 such that
[

AT
obP + PAob + σγ2I P

P −σI

]

< 0 (6)

the origin in (4) is exponentially stable for the given L.
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Instead of (5) and (6), other sufficient conditions for

stability have been proposed by Rajamani and Cho [4] and

Aboky et al [6] as follows:

Theorem 2: The estimation error dynamics in (4) are

exponentially stable if one of the following equivalent state-

ments is satisfied for the given gain matrix L:

1. there exists a positive definite matrix P such that

(A−LC)T P +P (A−LC)+ γ2PP + I < 0 (7)

2. there exists a positive definite matrix P such that
[

AT
obP + PAob + γ2I P

P −I

]

< 0 (8)

3. there exist a positive definite matrix P and σ > 0
satisfying LMI (6)

Proof: 1. Consider the Lyapunov function candidate

V = eT Pe where P > 0. Its derivative of V along the

trajectory of (4) is

V̇ = eT [AT
obP + PAob]e + 2eT P [f(x) − f(x̂)] (9)

Using the inequality constraint (2),

2eT P [f(x) − f(x̂)] ≤ 2γ‖Pe‖‖e‖
≤ γ2eT PT Pe + eT e

(10)

If the inequality (10) is used, (9) is bounded as

V̇ ≤ eT [(A − LC)T P + P (A − LC) + γ2PP + I]e

Therefore, if the matrix inequality condition (7) is satisfied,

V̇ < 0, thus the error dynamics (4) becomes asymptotically

stable.

1 ↔ 2: The inequality condition (10) can be also written

as

2eT P [f(x) − f(x̂)] ≤ eT PT Pe + γ2eT e. (11)

Similarly, if the inequality (11) is used, the LMI condition

for V̇ < 0 for all nonzero e is

(A − LC)T P + P (A − LC) + PP + γ2I < 0. (12)

The Schur complement of the above condition is LMI (8).

2 ↔ 3: After defining P = P̃ /σ where σ > 0, LMI (12)

becomes

(A − LC)T P̃ + P̃ (A − LC) +
1

σ
P̃ P̃ + σγ2I < 0

Using the Schur complement of the above linear matrix

inequality, this is equivalent to LMI (6).

As pointed out in [3], [4], all results in (5) and Theorem 2

can be used to check the stability of the estimation error

dynamics only after the gain matrix L is assigned and the

Lipschitz constant γ is known. However, if the stability is

discussed in the form of LMI as suggested in Theorem 2, a

region of attraction of the estimation error dynamics (4) for

locally Lipschitz nonlinear systems can be estimated. In other

words, instead of checking the feasibility of P in Theorem 2,

we can calculate the maximum value of γ which is computed

in the framework of convex optimization. The quadratic

stability margin which is the largest nonnegative α for which

the origin in (4) satisfying φT φ ≤ α2eT e is exponentially

stable is considered [10]. That is, we can maximize γ in (7)

and (8) and the corresponding quadratic stability margin can

be computed as follows:

Corollary 1: The estimation error dynamics in (4) are

exponentially stable if there exists a solution to the following

convex optimization problem:

maximize α2

subject to P > 0, (13)
[

AT
obP + PAob + α2I P

P −I

]

< 0

for the given L and the computed quadratic stability margin

α is greater than or equal to γ.

Remark 1: It is remarked that the Schur complement of

(7) is
[

AT
obP + PAob + I P

P − 1

γ2 I

]

< 0. (14)

After defining β = 1/γ2, the quadratic stability margin can

also be computed as follows:

minimize β

subject to P > 0, β ≥ 0,
[

AT
obP + PAob + I P

P −βI

]

< 0

(15)

Then, the stability margin α can be calculated by 1/
√

β.

III. EXISTENCE OF OBSERVER GAIN MATRIX

All results in the previous section provide a method to

check the stability and to compute the stability margin for

the given gain matrix L. However, they do not tell us how

to design L to satisfy the stability condition. This observer

design problem has been considered by several researchers

in the literature. Algebraic Riccati equations (ARE) or linear

matrix inequalities (LMI) for guaranteeing the quadratic

stability have been proposed by Raghavan and Hedrick [2],

Rajamani and Cho [4], and Aboky et al [6]. The results can

be summarized as:

Theorem 3: The following statements are equivalent:

1. [2] For some small ǫ, if there exists a positive definite

P such that

AP +PAT +P (γ2I− 1

ǫ
CT C)P +I+ǫI = 0 (16)

then the error dynamics (4) can be stabilized by

L = PCT /2ǫ.

2. [4] If there exists a positive definite P such that

AT P + PA + γ2PP + I − 1

γ2
CT C < 0 (17)

then the error dynamics (4) can be stabilized by

L = P−1CT /2γ2.

3. [6] If there exists a positive definite P such that

AT P + PA + γ2I − CT C + PP < 0 (18)
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then the error dynamics (4) can be stabilized by

L = P−1CT /2.

4. If there exist P > 0 and ǫ > 0 such that
[

AT P + PA + γ2I − 1

ǫ
CT C P

P −I

]

< 0 (19)

then the error dynamics (4) can be stabilized by

L =
P−1CT

2ǫ
. (20)

Proof: Since the proof of the statement 1 is in [2], we

will only show its equivalence to the statement 2 , 3, and 4.

1 ↔ 2: ARE (16) can be written as the following matrix

inequality without loss of generality

AP + PAT + P (γ2I − 1

ǫ
CT C)P + I < 0 (21)

Let P = P−1

1
/γ2 where P1 > 0. Then

A
P−1

1

γ2
+

P−1

1

γ2
AT +

P−1

1

γ2
(γ2I − 1

ǫ
CT C)

P−1

1

γ2
+ I < 0

Multiplying the above inequality on the left and right by

(γP1)
T and γP1 respectively, we get

AT P1 + P1A + I − 1

ǫγ2
CT C + γ2P1P1 < 0 (22)

Since the gain matrix L is

L =
PCT

2ǫ
=

P−1

1
CT

2ǫγ2
,

substituting L in (22) gives that

(A − LC)T P1 + P1(A − LC) + γ2P1P1 + I < 0

which is equivalent to (7). Using the result of Theorem 2,

the error dynamics (4) are quadratically stabilized by the

observer (1). Finally, when P1 = P and ǫ = 1, the matrix

inequality (22) is the same as (17).

2 ↔ 3: Let P2 = γ2P1. After substituting P1 with P2 in

(22),

AT P2 + PT
2 A + γ2I − 1

ǫ
CT C + P2P2 < 0 (23)

Since the gain matrix L is

L =
P−1

1
CT

2γ2ǫ
=

P−1

2
CT

2ǫ
,

substituting L in (23) gives that

(A − LC)T P2 + P2(A − LC) + P2P2 + γ2I < 0

which is equivalent to (8) in Theorem 2. When P2 = P and

ǫ = 1, the inequality condition (23) is equal to (18).

3 ↔ 4: The Schur complement of (23) is LMI (19).

For the design of the gain matrix L, the next question is

under what conditions the positive definite matrix P and/or

positive constant ǫ exist to satisfy one of (16) - (19) in

Theorem 3. To address the problem, the idea of the distance

to unobservability was originally proposed in [4] and was

modified with an additional constraint by Aboky et al [6].

While a bisection algorithm is used for computing δ numeri-

cally to guarantee the existence of a quadratically stabilizing

observer gain matrix [6], [11], the existence condition of a

gain matrix L can be formulated in the framework of convex

optimization as follows:

Theorem 4: If there exists a solution of the following

convex optimization problem (COP): For a fixed ǫ∗ > 0,

maximize α2

subject to P > 0, (24)
[

AT P + PA + α2I − 1

ǫ∗
CT C P

P −I

]

< 0

and the computed quadratic stability margin α ≥ γ, it

guarantees the existence of P for all ǫ ∈ (0, ǫ∗] in LMI (19).

Proof: The Schur complement of the above LMI in

COP (24) is

AT P1 + P1A + α2

1I − 1

ǫ∗
CT C + P1P1 < 0.

where P1 and α1 are a solution of COP (24). This LMI can

be written as

AT P1 + P1A + γ2I − 1

ǫ∗
CT C + P1P1 < −(α2

1
− γ2)I.

Since α1 ≥ γ, a pair (P1, ǫ
∗) is also a solution of LMI (19).

Furthermore, it is shown in [2] that all ǫ ∈ (0, ǫ∗) solve

ARE (16) if there exists a solution of ARE (16) for a certain

ǫ∗. By use of the equivalence of Theorem 2, there exists a

solution of LMI (19) for all ǫ ∈ (0, ǫ∗).
The coordinate transformation has been proposed to re-

duce the Lipschitz constant and increase the distance to

unobservability in the new coordinates [2], [4]. Similarly,

this can be used to increase the quadratic stability margin

α in Theorem 4. Suppose z = Tx and ẑ = T x̂ where T is

invertible and called a transformation matrix. Then, the errors

in the new coordinates are defined as ẽ = Te. Equation (4)

in the new coordinates is given by

˙̃e = T (A − LC)T−1ẽ + T {f(T−1z) − f(T−1ẑ)}
= Ãobẽ + φ̃ (25)

where
Ãob = T (A − LC)T−1,

φ̃ = T {f(T−1z) − f(T−1ẑ)}.

Since Aob and Ãob are similar, they have the same eigen-

values, but result in different values of λmax(P ) in (5) or α
in COP (24). However, there is no clear relation between T
and either λmax(P ) or the stability margin α.

IV. OPTIMAL DESIGN

Either the solutions of AREs proposed in [2], [4], [6] or

the results of Theorem 2 and 4 do not provide a specific

level of performance for the observer [12]. Therefore, the

last question in this paper is how to optimize the observer’s

performance as well as guarantee the existence of a quadrat-

ically stabilizing observer gain matrix.

To optimize the performance of an observer, we need to

specify a desirable property for the observer. Among many
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desirable properties such as the magnitude of the elements

of the gain matrix, decay rate, and L2 gain [10], [12], the

magnitude of the elements of the gain matrix is considered

to reduce the amplification of sensor measurement noise.

Since the observer gain matrix depends upon the inverse

of P in Theorem 3, the minimum eigenvalue of P should

be maximized to reduce the maximum singular value of

the observer gain matrix elements. Therefore, it can be

formulated as follows: For the given γ,

maximize λmin(P )

subject to P > 0, LMI (19)
(26)

where ǫ ∈ (0, ǫ∗) is given and ǫ∗ is a solution of COP (24).

Then, the resulting observer gain matrix is given in (20).

Alternatively, since the magnitude of elements of L =
P−1CT /2ǫ is dependent on 1/ǫ as well as the inverse of

P , we can minimize both of them and this is called a

multi-objective optimization problem. The following multi-

objective optimization problem can be considered by using

scalarization for finding Pareto optimal points [12], [13]: For

the given δ ∈ [0, 1],

maximize δλmin(P ) − (1 − δ)σ

subject to P > 0, σ − σ∗ ≥ 0, LMI (19)
(27)

where σ = 1/ǫ, σ∗ = 1/ǫ∗, and δ represents a relative weight

between two objective functions. The resulting observer gain

matrix is

L = σ
P−1CT

2
.

If an unknown exogenous input d is considered, a class of

nonlinear systems considered are written as

ẋ = Ax + Buu + f(x) + Bdd. (28)

The corresponding estimation error dynamics are

ė = (A − LC)e + f(x) − f(x̂) + Bdd

= Aobe + φ + Bdd
(29)

Then, a desirable property of an observer is to make the

state estimates insensitive to d representing disturbances and

uncertainties. To consider this property, the induced L2 gain

between the exogenous input d and the estimation error e,

signified as ‖Hd→e‖∞, are minimized by redesigning the

observer gain matrix L.

Theorem 5: For the given nonlinear system in (28) and

nonlinear observer in (3), the observer error dynamics in (29)

has ‖Hd→e‖∞ ≤ κ if there exist P > 0, ǫ > 0, and κ ≥ 0
such that









(

AT P + PT A+
(1 + γ2)I − 1

ǫ
CT C

)

P PBd

P −I 0
BT

d P 0 −κ2I









< 0 (30)

and the resulting observer gain matrix is L = P−1CT

2ǫ
.

Proof: Suppose there exist V (e) = eT Pe, P > 0, and

κ ≥ 0 such that

V̇ + eT e − κ2dT d ≤ 0. (31)

After integrating the left side of (31) from 0 to T with the

assumption that e(0) = 0,

V (T ) +

∫ T

0

(eT e − κ2dT d)dt ≤ 0

Since V (T ) ≥ 0, this implies that ‖Hd→e‖∞ ≤ κ by the

definition [10]

κ2 = ‖Hd→e‖2

∞ = sup
‖d‖2 6=0

‖e‖2

‖d‖2
.

The inequality (31) is equivalent to

eT (AT
obP +PAob+I)e+2eTP (φ+Bdd)−κ2dT d ≤ 0 (32)

for all (e, φ, d) satisfying ‖φ‖ ≤ γ‖e‖. Using the inequality

condition in (11), the inequality condition in (32) holds if

eT {AT
obP + PAob + PP + (1 + γ2)I}e + 2eT PBdd

−κ2dT d < 0

If L = P−1CT

2ǫ
is used, the above inequality becomes

eT

{

AT P + PA + PP + (1 + γ2)I − 1

ǫ
CT C

}

e

+2eT PBdd − κ2dT d < 0

This is written in the matrix form as follows:
[

AT P + PA + PP + (1 + γ2)I − 1

ǫ
CT C PBd

BT
d P −κ2I

]

< 0

Finally, using the Schur complement, the above inequality

condition is equivalent to LMI (30).

Finally, the design procedure for the observer gain matrix

is summarized as:

Algorithm 1: Observer design procedure

Step 1. Solve COP (24) iteratively with logarithmic spac-

ing of ǫk ∈ [10−n, 10n]. If there exists an integer

k∗ such that αk∗ ≥ γ , go to Step 3 with T = I .

Otherwise, go to Step 2 .

Step 2. Use a coordinate transformation as suggested in

(25) to reduce the Lipschitz constant. Go to Step

1 with Ã = TAT−1, C̃ = CT−1, and a new

Lipschitz constant γ̃.

Step 3. Solve COP (26) for the given ǫ ∈ [10−n, ǫk∗ ]. With

the solution, the observer gain matrix L is

L = T−1
P−1CT

2ǫ
. (33)

Step 4. If exogenous unknown inputs are considered, P
in (33) is computed by solving the following convex

optimization problem: for a fixed δ ∈ [0 1] and

ǫ ∈ [10−n, ǫk∗ ],

minimize δκ2 − (1 − δ)λmin(P )

subject to P > 0, LMI (30)
(34)

If the induced L2 gain κ in LMI (30) is minimized, the

magnitude of elements of the observer gain matrix in general

becomes large. On the other hand, it can be minimized if the

objective function is defined as in COP (26). Therefore, the

gain matrix can be chosen by performing a trade-off between

two objectives as stated in COP (34).
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V. ILLUSTRATIVE EXAMPLE

A fourth-order nonlinear model which represents a flexible

joint robotic arm is considered to illustrate the proposed

observer design technique [2], [4]. The system model can

be described by the following equation:

ẋ = Ax + Buu + f(x) + Bdd

y = Cx
(35)

where x = [θm ωm θl ωl]
T ∈ R

4, and the matrices are

A =









0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −19.5 0









, CT =









1 0
0 1
0 0
0 0









,

Bu = [0 21.6 0 0]
T

, f(x) = [0 0 0 − 3.33 sin(θl)]
T

,

and Bd and d are the additional terms considered as an

exogenous known input and will be defined in Step 4.

Furthermore, the pair (A, C) is controllable and there exists

a positive constant γ such that

‖f(x) − f(x̂)‖ ≤ γ‖e‖.
That is, we can let γ = 3.33 in this example.

a) Step 1. Calculation of stability margin: After solving

COP (24) iteratively with logarithmic spacing of ǫk ∈
[10−1 10] for the given γ, the quadratic stability margin αk

with respect to ǫk for k = 1, . . . , 20 is shown in Fig. 1. It

is noted that the results are shown up to k = 17 where the

solution of COP (24) is calculated numerically via cvx [14].

Since αk < γ for all k, we need to go to Step 2 to reduce

the Lipschitz constant via coordinate transformation.

10
−1

10
0

10
1

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

α

Fig. 1. Quadratic stability margin with respect to ǫk for the given γ = 3.33

b) Step 2. Coordinate transformation: Suppose T =
diag(1, 1, 1, 0.1) which is a 4 × 4 diagonal matrix with the

vector [1 1 1 0.1] forming the diagonal and used in [4].

With this coordinate transformation z = Tx, the system (35)

becomes

ż = TAT−1z + TBuu + Tf(T−1z) + TBdd

y = CT−1z
(36)

with the inequality constraint

‖Tf(T−1z) − Tf(T−1ẑ)‖ ≤ 0.1γ‖ẽ‖ = γ̃‖ẽ‖.
Then, we have Ã = TAT−1, C̃ = CT−1, and the new

Lipschitz constant γ̃ = 0.333. Fig. 2 shows the quadratic

stability margin (αk) with respect to ǫk for the given γ̃. It is

found that αk = 0.3630 is greater than γ̃ when ǫk = 4.8329
for k = 17 in Fig. 2. it is summarized that α > γ for

all ǫ satisfying ǫ ≤ 4.8329. Therefore, by Theorem 4, it

is guaranteed that there exist a positive definite matrix P
satisfying LMI (19) for all ǫ ∈ (0, 4.8329].

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

ε

α

Fig. 2. Quadratic stability margin with respect to ǫk for the given Ã and
C̃

c) Step 3. Design of observer gain matrix L: Suppose

d = 0 in (36). If COP (26) is solved numerically via cxv for

an ǫ ∈ (0, 4.8329], we can calculate the observer gain matrix

in (33). When ǫ = 0.1 and 1 respectively, the corresponding

gain matrices L1 and L2 are calculated as

L1 =









1.6477 0.1965
0.1965 11.5338
1.5185 3.1468
2.9224 10.8291









, L2 =









0.8155 0.4422
0.4422 6.1759
0.8080 1.2933
0.6979 2.5587









When a sinusoidal input with frequency of 1 Hz is used

to drive the system dynamics, the state estimates for the

given gain matrices L1 and L2 are compared in Fig. 3. The

state estimate with L1 approaches the true value faster than

one with L2 although the estimation errors with both gain

matrices converge zero asymptotically. It is noted that the

gain matrix L2 is quite similar with the value of an observer

gain matrix in [4] as expected from results of Theorem 2.

0 0.5 1 1.5 2 2.5 3
−1

0

1

2

time (sec)

θ
l (

ra
d
)

 

 

0 0.5 1 1.5 2 2.5 3
−5

0

5

time (sec)

ω
l (

ra
d
/s

e
c)

True

Estimated by L
1

Estimated by L
2

Fig. 3. Estimation of the link angle and angular velocity by different gain
matrices L1 and L2 respectively
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Alternatively, if COP (27) is solved iteratively for the

given δ ∈ [0, 1], i.e., for various relative weights given to

two objective functions, the corresponding values of two

objective functions for a fixed δ are shown in Fig. 4. It is

shown that 1/ǫ is proportional to λmin(P ) as δ varies from

0.1 to 0.99 and a set of solutions can produce the feasible

observer gain matrices. Therefore, a specific observer gain

matrix can be obtained for the given δ.

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

λ
min

(P)

ε

δ = 0.97 δ = 0.99

δ = 0.9

Fig. 4. Minimum eigenvalue of P and ǫ = 1/σ with respect to δ

d) Step 4. Consideration of exogenous unknown input:

Suppose d = sin(10ωm) and Bd = [0 2 0 0]
T

in (35) and

(36). When ǫ = 0.1 which is used for the calculation of L1

in Step 3, the gain matrix L3 is computed by minimizing

the induced L2 gain, κ in LMI (30) or solving COP (34)

for δ = 0. In addition, the gain matrix L4 is computed by

solving COP (34) for δ = 0.2 respectively as follows:

L3 =









44727 −27.15
−27.15 63.058
0.0496 17.314
11.092 39.441









, L4 =









4.5906 −1.312
−1.312 16.197
3.1660 3.8467
9.1013 9.6936









As discussed in Algorithm 1, the magnitude of elements of

L3 are large when the L2 gain is only minimized. However,

when the additive disturbance d is considered, the state

estimate with L3 goes to the true value closer and faster

than one with L1 (compare a dash line with a dash-dot line

in Fig. 5). When L4 is used, it is shown that the performance

of estimation is close to one with L3 (compare a dash-dot

line with a solid line in Fig. 5) and the magnitude of elements

of L4 is relative small.

VI. CONCLUSIONS

This paper presented a nonlinear observer design method

for Lipschitz nonlinear systems via convex optimization. By

checking whether the quadratic stability margin of the error

dynamics is greater than the Lipschitz constant, the existence

of the observer gain matrix to stabilize the estimation error

dynamics was guaranteed. Furthermore, the observer gain

matrix was designed optimally to minimize an induced L2

gain between the disturbance to the estimation error as well

as the effect of measurement noise.
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