
 
 

 

 

 

Abstract—A battery model that is suitable for real-time 
State-of-Charge (SOC) estimation of a Lithium-Ion battery is 
presented in this paper. The battery open circuit voltage (OCV) 
as a function of SOC is described by an adaptation of the Nernst 
equation. The analytical representation can facilitate Kalman 
filtering or observer-based SOC estimation methods. A 
zero-state hysteresis correction term is used to depict the 
hysteresis effect of the battery. A parallel resistance-capacitance 
(RC) network is used to depict the relaxation effect of the 
battery. A linear discrete-time formulation of the battery model 
is derived. A recursive least squares algorithm with forgetting is 
applied to implement the online parameter calibration. 
Validation results show that the calibrated model can accurately 
simulate the dynamic voltage behavior of the Lithium-Ion 
battery for two different experimental data sets. 

I. INTRODUCTION 

ybrid electric vehicles (HEVs) and battery electric 
vehicles (BEVs) are being actively developed by 

automotive companies to reduce the carbon footprint of 
ground personal transportation. Plug-in Hybrids (PHEVs) 
potentially can take advantage of renewable electricity 
sources and reduce reliance on fossil fuels and are widely 
viewed as an important transitional technology toward 
sustainable transportation. Traction battery packs, critical 
sub-systems of PHEVs, are currently the performance and 
cost bottlenecks of PHEVs. Due to the transient and 
demanding vehicle operations in daily driving, a battery 
management system (BMS) is required to ensure safe and 
reliable battery operations. The BMS needs to provide 
accurate knowledge of the states of the traction battery pack 
to operate the battery reliably and efficiently. A critical 
variable that must be estimated (because no direct 
measurement is available) is the battery SOC. In the literature, 
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techniques such as Kalman filters [1-4, 8, 13, 14], sliding 
mode observers [5,6] and others have been used. The 
performance of these estimation methods relies heavily on the 
accuracy of the battery model. Therefore, developing a good 
battery model is of vital significance for the development of 
PHEVs and BEVs.  

For real-time battery management and control applications, 
a good battery model should accurately relate the output 
voltage of a battery yet maintain moderate complexity. Many 
equivalent circuit-based models [5-12] and simplified 
electrochemistry-based models [1,3,4,13,14] were developed 
in the literature. However, open circuit voltages (OCV) of 
most of the above mentioned models have to be beforehand 
measured or estimated at several specified SOC values in a 
special experiment in order to make the remaining 
resistance-capacitance (RC) parameters identifiable. This 
method to determine OCV as a function of SOC is 
time-consuming, laborious and error-prone, especially for 
batteries with a flat voltage-SOC characteristic. The error in 
OCV can reduce the accuracy of estimates of the RC 
parameters. Additionally, the form of representing OCV is 
not convenient and straightforward for Kalman filtering or 
observer-based SOC estimation techniques to which an 
explicit OCV-SOC relation is desirable. The simplified 
electrochemical battery models use an empirical function to 
describe the relationship between OCV and SOC so that the 
model parameters can be identified in any battery loading 
conditions without specific OCV-determination experiments. 
Their ability to describe the battery relaxation effect, however, 
is not as good as equivalent circuit-based models with RC 
networks. Although a low-pass filter integrated into the 
simplified electrochemical battery model is helpful for 
simulating the relaxation effect, the structure of the so called 
“enhanced self-correcting” (ESC) model is complicated [1,2]. 
On the other hand, the parameters of most of the models were 
identified using batch approaches, sometimes leading to a 
poor robustness. Finally, to be suitable for real-time 
implementation, the model parameters must be estimated 
recursively for better computation efficiency.  

In this paper, a battery model suitable for real-time 
implementation is proposed. The model consists of three parts. 
The first part is an adaptation of the Nernst equation [1] 
which describes the relationship between OCV and SOC. The 
second part is a zero-state hysteresis correction term [1]. The 
third part is a first-order RC network which is used to 
simulate the battery transient response, such as the relaxation 
effect. Based on a linear discrete-time model form, a
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recursive least squares algorithm with a forgetting factor is 
used to estimate the parameters of the model. The 
performance of the algorithm will be demonstrated using two 
experimental datasets. 

I. MODEL STRUCTURE 

The battery model structure is shown in Fig.1. V  
represents the output voltage and I  is the current; the RC 
network ( 1R , 1C ) is used to simulate the relaxation effect; 2R  
is the ohmic resistance; OCV is depicted by an adaptation of 
the Nernst equation with three parameters 0K , 1K  and 2K . 
sM  is used for the hysteresis effect. M  is a correction term 
that needs to be identified. And s  is a function of the sign of 
the current described as follows [1]:  
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where   is a small positive number and k  is the time index.  
The discrete-time state equations of the battery model can 

be described as follows: 
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where   is the Coulombic efficiency which is assumed to be 
1 for discharge and 98% for charging. nC  is the nominal 
capacity of the battery, 1U  represents the voltage across the 
capacitor 1C  and t  is the sampling interval. The battery 
output voltage is then: 
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Fig. 1. The proposed battery model structure 

II. PARAMETER IDENTIFICATION ALGORITHM 

A. Linear identifiable formulation of the battery model 

Substituting (3) into (4) leads to the following linear 
identifiable formulation for recursive algorithms:  
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Given the output voltage, current and SOC of the battery 
and (8) and (9), the parameters  0K k ,  1K k ,  2K k , 

 M k ,  2R k ,  A k  and  k  in (5) can be calibrated 
recursively. 
B. Recursive least squares algorithm with forgetting for the 
battery model 

 Based on the standard recursive least squares method, 
forgetting can be used to give less weight to older data and 
more weight to more recent data, which is frequently 
appropriate for online parameter identifications [15]. The 
recursive least squares algorithm with forgetting for (5) can 
be illustrated as follows: 

     
     

1
,

1T

k k
k

k k k



 
P

G
P


 

 (10) 

           1 1 ,Tk k k V k k k      G     (11) 

         1 1
,

Tk k k k
k


  


P G P

P


 (12) 

where

               11,ln SOC ,ln 1-SOC , , , 1 1
T

k k k s k I k U k k      

 (13) 

               0 1 2 2, , , , ,
T

k K k K k K k M k R k A k k   

 (14) 
and    0 1   is the forgetting factor. According to (6) 
and (7),  1R k  and  1C k  can be calculated using  k .   

The schematic diagram for the online parameter 
identification of the battery is shown in Fig. 2. The initial 
values of the parameter estimate  0  and its error 
covariance matrix  0P  are firstly provided. Then, the 
parameter vector  k  can be updated based on the online 
collected regressor. 

III. EXPERIMENTAL RESULTS 

A. Battery test bench 

The experimental setup is shown in Fig. 3, which consists 
of a Digatron Battery Testing System (BTS-600), a battery 
management module, a controller area network (CAN) 
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communication unit and a Labview-based virtual 
measurement unit. The Digatron Battery Testing System is 
responsible for loading the battery based on the designed 
program with maximum voltage of 500 V and maximum 
charging/discharging current of 500 A. The recorded signals 
include load current, terminal voltage, temperature, 
accumulative Amp-hour (Ah) and Watt-hour (Wh). The 
battery management module also collects the voltage and 
temperature of each cell in the battery. The errors of the Hall 
current and voltage sensors are less than 0.2% and 0.5%, 
respectively. The measured load current is transmitted to the 
battery management module through CAN bus driven by the 
Labview program and CAN communication unit. Both the 
Labview-based measurement unit and the management 
module have a low-pass filtering function incorporated. The 
current is integrated to obtain “true” battery SOC based on the 
nominal battery capacity. The measured voltage, temperature 
and computed SOC are then transmitted through CAN bus to 
the Labview for real-time display. A Lithium-Ion battery 
module composed of sixteen cells in series was tested. Each 
healthy cell has a nominal output voltage of 3.6 V and a 
nominal capacity of 105 Ah. The actual capacity of the 
module was around 100 Ah, due to deviant behaviors of cells 
in the module. 
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Fig. 2. Schematic of the recursive least square method for battery model 
update 

 

 
Fig. 3. Schematic diagram of the battery test bench  

B. Hybrid pulse test 

A hybrid pulse test which was comprised of a sequence of 
Hybrid Pulse Power Characterization (HPPC) profiles, 

constant-current discharge pulses and rests was conducted. 
Data points including current, voltage and SOC were 
collected once per second. The HPPC current profile is 
shown in Fig. 4. The voltage, current and SOC profiles for the 
hybrid pulse test are shown in Fig. 5. The forgetting factor   
for the parameter identification algorithm was set to 0.9996 in 
the hybrid pulse test to balance between parameter tracking 
and plant uncertainties. Due to the long duration of the hybrid 
pulse test, a relatively large value of   was needed to satisfy 
a precondition that the RC parameters are positive. A quite 
inaccurate  0  and a large error covariance matrix  0P  
were used. The estimated results are shown in Figures 6-9. It 
can be seen from the results that the initial parameter errors 
can be quickly compensated by the recursive least squares 
algorithm with forgetting. Apart from a few of abrupt 
changes caused by noise, these estimated parameters after 
correcting the initial errors seem to be slowly time-varying. 
The model response starting from the first second in the 
hybrid pulse test is shown in Fig. 10. It is obvious that the 
online identified model can accurately describe the dynamical 
voltage behavior of the Lithium-Ion battery in the hybrid 
pulse test. The relative error of the model response is shown 
in Fig. 11. The maximum and mean relative errors are 
1.664% and 0.043%, respectively. 
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Fig. 4. HPPC current profile  
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Fig. 5. Measured and calculated battery response in the hybrid pulse test 
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Fig. 6 Estimated 0K , 1K  and 2K  in the hybrid pulse test 
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Fig. 7. Estimated M  in the hybrid pulse test 
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Fig. 8. Estimated 1C  and 1R  in the hybrid pulse test 
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Fig. 9. Estimated 2R  in the hybrid pulse test 
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Fig. 10. Comparison of the measured and estimated battery voltage in the 
hybrid pulse test  
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Fig.11. Relative error of the model prediction in the hybrid pulse test 

C. Transient battery power test 

Another experimental data set collected to further evaluate 
the performance of the proposed battery model. The test was 
comprised of twelve cycles in series. The cycle was a variant 
of the standard Dynamic Stress Test (DST) cycle, which is 
used to simulate the actual driving cycles of electric vehicles 
[16]. The voltage, current and SOC profiles for the variable 
power test are shown in Fig. 12. It can be seen that the 
maximum discharging and charging current rates are 5C and 
2C, respectively, which is much higher than the HPPC test, 
and closer to what a battery might experience on a PHEV or 
BEV. Therefore, this transient test can better evaluate the 
performance of the battery model in real applications. The 
forgetting factor   for the parameter identification algorithm 
was set to 0.995. The same  0  and error covariance matrix 
 0P  as those in the hybrid pulse test were used. The 

estimation results of 0K , 1K  and 2K  are shown in Fig. 13.  
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Fig. 14 shows the estimation results of M , 1C , 1R  and 2R  
converge after a long initial transient, perhaps due to the fact 
the initial parameter values are very different from their true 
values. The parameter trajectories in the transient power test 
are quite different from those in the hybrid pulse test. The 
model response throughout the transient power test is shown 
in Fig. 15. The model prediction error is shown in Fig. 16. 
The maximum and mean relative errors are 2.121% and 
0.115%, respectively.  
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Fig. 12. Measured and calculated battery response in the transient power test 
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Fig. 13. Trajectories of 0K , 1K  and 2K  in the transient power test 
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Fig. 14. Results of M , 1C , 1R  and 2R in the transient power test  
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Fig. 15. Comparison of the measured and estimated battery voltage in the 
transient power test 
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Fig. 16. Relative error of the model response in the transient power test 
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IV. CONCLUSION 

In this paper, a battery model was established to simulate 
the dynamical voltage behavior of a Lithium-Ion battery. The 
relationship between battery open-circuit voltage (OCV) and 
the battery State-of-Charge (SOC) can be represented by an 
adaptation of the Nernst equation. A zero-state hysteresis 
correction term is used to depict the hysteresis effect of the 
battery. A parallel RC network is used to describe the 
relaxation effect of the battery. A recursive least squares 
algorithm with forgetting was used to estimate the model 
parameters. Two different experimental data sets were used to 
validate the battery model. Results show that the model 
predicts the voltage of the battery with small error (mean 
error ~ 0.1%) in both data sets. We are currently working on 
the SOC estimation algorithm using the developed model. 
The model update and SOC estimation are interactive. The 
SOC estimates are used to update the battery model; the 
updated model is relied upon to estimate SOC. As the 
recursion times increase, good estimates of the battery SOC 
can be expected. 
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