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Abstract— This paper establishes the equivalence of three
stabilizability-related properties for a class of linear impulsive
systems. The first involves a gramian-based condition inspired
by results for time-varying, discrete-time linear systems in-
troduced decades ago. The second is the ability to achieve
closed-loop exponential stability via state feedback. Finally,
the third property is exponential stability of an ‘unreachable’
subsystem identified from a decomposition of the original
system derived from an invariant subspace that characterizes
the set of reachable states. A consequence of this analysis is
that full state reachability of a linear impulsive system is not
necessary for state feedback stabilization, a well-known fact for
linear time-invariant systems. The main ideas of the paper are
applied to the problem of synchronizing two Lorenz oscillators
using underactuated impulsive control.

I. INTRODUCTION

Stabilizability and its dual, detectability, are linear sys-

tem properties of longstanding interest in connection with

various feedback stabilization problems. In the linear time-

invariant (LTI) case, the well-known link between con-

trollability/reachability and eigenvalue placement by state

feedback together with the ability to decompose an LTI state

equation into ‘controllable’ and ‘uncontrollable’ subsystems

lead to the conclusion that stabilizability by state feedback

is equivalent to exponential stability of the uncontrollable

subsystem. A generalization of this result to time-varying

linear systems, for which the aforementioned decomposition

is usually unavailable, is presented in [1] for the discrete-time

case. In this work, uniform stabilizability, loosely defined

as uniform positive definiteness of the reachability gramian

along unstable trajectories, is shown to be necessary and

sufficient for state feedback stabilization. The recent analysis

in [3] sharpens the feedback gain construction so as to reduce

its dependence on the system data, i.e., the sequence of state

equation coefficient matrices.

Stabilizability has been recently addressed for switched

linear systems, in both continuous-time [11] and discrete-

time [12] cases. The characterization of the set of reachable

states in terms of a fixed invariant subspace permits a decom-

position of a switched linear system comparable to that for

LTI systems. An open-loop characterization of stabilizability

is shown to hold if and only if the ‘unreachable’ subsystem

is asymptotically stable. The concepts of uniform and causal

finite-path stabilizability (and detectability) arise in the study

of feedback stabilization for discrete-time switched linear

systems in [4].

Here we present a stabilizability analysis for a class of im-

pulsive linear systems that builds upon recent investigations
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into reachability properties [7], [9] and feedback stabilization

[8]. As with the development in [11], [12], a linear impulsive

state system can be decomposed into, loosely speaking,

reachable and unreachable subsystems defined in terms of

an invariant subspace associated with the set of reachable

states. Following the geometric approach to LTI systems

[10], these subsystems are referred to as the restriction of

the linear impulsive system to the invariant subspace and

the subsystem induced by the linear impulsive system on

the quotient space associated with the invariant, respectively.

Within this framework, a gramian-based characterization of

stabilizability in the style of [1] and stabilizability by state

feedback are each shown to be equivalent to exponential

stability of the ‘unreachable’ subsystem under an additional

technical assumption. Consequently, state feedback stabiliza-

tion for linear impulsive systems does not require full state

reachability, thereby generalizing a longstanding result for

the LTI case.

The remainder of the paper is organized as follows. The

class of linear impulsive systems under consideration is

presented in Section II. Concepts related to the reachability

and feedback stabilization of linear impulsive systems are

reviewed in Section III. Three system properties related to

stabilizability are presented in Section IV and shown to be

equivalent under certain mild assumptions. The main ideas

of the paper are applied to the problem of synchronizing

two Lorenz oscillators using impulsive control in Section

V. Concluding remarks are presented in Section VI. Some

of the details involving the construction of stabilizing state

feedback laws are collected in an Appendix.

II. LINEAR IMPULSIVE SYSTEMS

We consider linear impulsive systems described by state

equations of the form

ẋ(t) = ACx(t) + BCu(t) t ∈ R \ T

x(τk) = AIx(τ−
k ) + BIw[k] τk ∈ T (1)

where T is a countably infinite set of strictly increasing

impulse times, x(t) is the continuous-time state that under-

goes instantaneous changes at the impulse times, u(t) is a

continuous-time input assumed to be piecewise continuous,

and w[k] is a discrete-time input. For τk ∈ T , we denote

x(τ−
k ) = limǫ→0+ x(τk−ǫ) and x(τ+

k ) = limǫ→0+ x(τk+ǫ).
In our set-up, the impulsive state equation (1) produces right-

continuous state trajectories, i.e., x(τk) = x(τ+
k ), τk ∈ T .

The state space for (1) is denoted by X and n := dim(X ).
With δk := τk+1 − τk, we further assume:
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Assumption 2.1: The impulse time set T satisfies

δ := inf
k

δk > 0 and δ := sup
k

δk < ∞ �

The lower bound ensures that τk → ∞ as k → ∞ and that

any finite time interval contains a finite number of impulse

times. Both bounds are used in several technical arguments

in the sequel.

A. Notation and Preliminaries

The notation ‖ · ‖ will be used to denote the Euclidean

norm for vectors and the corresponding induced (spectral)

norm for matrices. This allows us to write ‖AT ‖ = ‖A‖
for any matrix A. To facilitate subsequent bookkeeping, we

introduce two functions. First, κ : R −→ T is defined by

κ(t) = sup{k ∈ Z | τk ∈ T and τk ≤ t}

For a given impulse time set T and integer m, we define the

map σm : R −→ R via

σm(t) = τκ(t)+m +
δκ(t)+m

δκ(t)
(t − τκ(t))

That is, σm(t) defines a time instant separated from t by

|m| impulse times that represents the same proportion of

elapsed time with respect to the interval [τκ(t)+m, τκ(t)+m+1)
that t does with respect to [τκ(t), τκ(t)+1). We observe that

σ0(t) = t and σi(σj(t)) = σi(σj(t)) = σi+j(t).

The state transition matrix for (1), denoted Φ(·, ·), is

characterized by Φ(t, t) = I and for t > s

∂Φ

∂t
(t, s) = ACΦ(t, s) t ∈ R \ T

Φ(τk, s) = AIΦ(τ−
k , s) τk ∈ T (2)

The linear impulsive system (1) is reversbible, i.e., Φ(t, s)
is invertible for all t and s, if and only if AI is invertible in

which case Φ−1(t, s) = Φ(s, t).

III. REACHABILITY

The set of reachable states for fixed initial time, final time,

and impulse times is defined as

Rfixed(t0, tf , T ) = {xf ∈ X | ∃ p.c. u(·) and w[·] s.t.

x(t0) = 0 and x(tf ) = xf} (3)

Rfixed(t0, tf , T ) is also a subspace of X given by

Rfixed(t0, tf , T ) =

κ(tf )
∑

j=κ(t0)+1

Φ(tf , τj)
(

AI RC +BI

)

+ RC

(4)

in which RC is the reachable subspace of the continuous-time

pair (AC , BC) that coincides with the smallest AC−invariant

subspace containing BC := Im BC , denoted 〈AC | BC〉, and

BI := Im BI .

For the impulsive system (1), the reachability gramian

W (t0, tf ) is defined as [8]

W (t0, tf ) =

∫ tf

t0

Φ(tf , τ) BCBT
C ΦT (tf , τ) dτ

+

κ(tf )
∑

j=κ(t0)+1

Φ(tf , τj) BIBT
I ΦT (tf , τj) (5)

A. Subsystems

We let 〈AC , AI | BC+BI〉 denote the smallest subspace of

X that is invariant with respect to both maps AC and AI and

contains BC +BI . For the impulsive system (1), we define a

pair of subsystems associated with 〈AC , AI | BC+BI〉. First,

we regard 〈AC , AI | BC +BI〉 itself as a linear vector space

of dimension less than or equal to n = dim(X ), which, to

avoid confusion, we denote by R. We let R : R → X denote

the insertion map that uniquely associates each element of

the vector space R with an element of the vector space X
that lies 〈AC , AI | BC + BI〉 [10]. In other words, RR =
〈AC , AI | BC + BI〉 or Im R = 〈AC , AI | BC + BI〉.

As 〈AC , AI | BC + BI〉 is invariant with respect to both

AC and AI , each map has a well-defined restriction to R,

denoted ÂC and ÂI , respectively. These maps satisfy the

commutative relationships

ACR = RÂC and AIR = RÂI (6)

In addition, since both BC and BI are contained in 〈AC , AI |
BC+BI〉, there are well-defined maps B̂C and B̂I that satisfy

BC = RB̂C and BI = RB̂I (7)

In terms of this, we define the linear impulsive system (1)

restricted to R as

ξ̇(t) = ÂCξ(t) + B̂Cu(t) t ∈ R \ T

ξ(τk) = ÂIξ(τ−
k ) + B̂Iw[k] τk ∈ T (8)

It is not difficult to show that for initial states related via

x(t0) = Rξ(t0), the state responses of (1) and (8) driven by

the same input signals are related via x(t) = Rξ(t), t ≥ t0.

Next, we define the quotient space X̃ = X/〈AC , AI |
BC +BI〉 together with the canonical projection P : X → X̃
that satisfies KerP = 〈AC , AI | BC + BI〉. Again because

〈AC , AI | BC +BI〉 is invariant with respect to both AC and

AI , the following commutative relationships hold

PAC = ÃCP and PAI = ÃIP (9)

for well-defined ÃC and ÃI referred to as the maps induced

in X̃ by the associated map on X . In addition, since KerP
contains both BC and BI ,

P BC = 0 and P BI = 0 (10)

This leads to the unforced system induced in the quotient

space X̃ by the linear impulsive system (1), given as

ζ̇(t) = ÃCζ(t) t ∈ R \ T

ζ(τk) = ÃIζ(τ−
k ) τk ∈ T (11)
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with state transition matrix Φ̃(t, s). It can be shown that

for initial states related via ζ(t0) = Px(t0) and any input

signals, the state responses of (1) and (11) are related via

ζ(t) = Px(t), t ≥ t0.

The overall impulsive state equation (1) in the

(ξ, ζ)−coordinates is related to the subsystems (8) and (11)

as follows. As R is an injective map, the Moore-Penrose

pseudoinverse R† = (RT R)−1RT gives a left inverse satis-

fying R†R = I . As P is a surjective map, the Moore-Penrose

pseudoinverse P † = PT (PPT )−1 gives a right inverse

satisfying PP † = I . By construction, KerP = Im R, so

that PR = 0 and R†P † = (RT R)−1(PR)T (PPT )−1 = 0.

From the orthogonal decomposition

X = Im R ⊕
[

Im R
]⊥

= Im R ⊕ Im P †

any x ∈ X can be uniquely expressed x = Rξ + P †ζ. This

relationship can be inverted according to ξ = R†x and ζ =
Px.

The relationships (6), (7), (9), (10) along with the defini-

tions ĀC = R†ACP †, ĀI = R†AIP † combine to yield
[

ξ̇(t)

ζ̇(t)

]

=

[

ÂC ĀC

0 ÃC

] [

ξ(t)
ζ(t)

]

+

[

B̂C

0

]

u(t)

t ∈ R \ T (12)
[

ξ̇(τk)

ζ̇(τk)

]

=

[

ÂI ĀI

0 ÃI

] [

ξ(τ−
k )

ζ(τ−
k )

]

+

[

B̂I

0

]

w[k]

τk ∈ T

Following tradition for LTI systems, we loosely refer

to the ξ−subsystem as the reachable subsystem and the

ζ−subsystem, being completely disconnected from the input

signals, as the unreachable subsystem.

B. Strong Reachability and Feedback Stabilization

In general, the reachable set (3) and the invariant subspace

〈AC , AI | BC + BI〉 satisfy

Rfixed(t0, tf , T ) ⊂ 〈AC , AI | BC + BI〉 ⊂ X

with possibly strict subspace containments. The following

definition characterizes the situation in which the reachable

set is the entire state space uniformly with respect to the

impulse time set and any time interval containing a requisite

number of impulse times.

Definition 3.1: (Strong Reachability) The impulsive sys-

tem (1) is strongly reachable if there exists a positive

integer ℓ such that for all T satisfying Assumption 2.1,

Rfixed(t0, tf , T ) = X for any finite interval (t0, tf ) con-

taining at least ℓ impulse times in T .

As a consequence of [8, Lemma 2.7], strong reachability

is equivalent to boundedness and positive definiteness of

W (t, σℓ+2(t)) uniformly in t and T satisfying Assumption

2.1 and is further shown in [8] to be sufficient to achieve

exponential stabilization via state feedback. The development

therein does not require the impulsive system to be reversible,

i.e., AI invertible, at the expense of added complexity in the

analysis. On the other hand, the systems under consideration

in [8] did not include the discrete-time input signal.

It was subsequently established in [9] that the following

geometric conditions

〈AC , AI | BC+BI〉 = X , AI+BI+〈AC | BC〉 = X (13)

(where AI := Im AI) are necessary and almost sufficient

for strong reachability. The possible existence of pathological

impulse time sets for which Rfixed(t0, tf , T ) 6= X for some

time intervals containing the requisite number of impulse

times thwarts the true sufficiency of (13). It is also shown in

[9] that the second condition in (13) is equivalent to feedback

reversibility of (1), that is, the ability to achieve reversibility

via the application of a suitable state feedback law. As such,

strong reachability implies feedback reversibility. Moreover,

the application of state feedback that achieves reversibility

does not alter the reachable set, and so it is possible without

any real loss of generality to consider exponential stabiliza-

tion via state feedback for strongly reachable systems in the

reversible case.

Here we provide alternate formulae for stabilizing feed-

back gains that incorporate the discrete-time input signal

and for which the resulting closed-loop system is susceptible

to a more direct stability analysis than that conducted in

[8]. A straightforward adaptation of [8, Lemmas 2.7 and

2.9] indicates that a strongly reachable reversible impulsive

state equation (1) (with associated integer ℓ) has a weighted

controllability gramian

Wα(t0, tf ) =

∫ tf

t0

e2α(t0−τ)Φ(t0, τ) BCBT
C ΦT (t0, τ) dτ

+

κ(tf )
∑

j=κ(t0)+1

e2α(t0−τj)Φ(t0, τj) BIBT
I ΦT (t0, τj) (14)

with α a finite, positive parameter, for which Wα(t, σℓ+2(t))
is bounded and positive definite uniformly in t and T satisfy-

ing Assumption 2.1, implying the same for W−1
α (t, σℓ+2(t)).

In terms of this, the state feedback law

u(t) = KC(t)x(t) w[k] = KI [k]x(τ−
k ) (15)

for bounded feedback gains

KC(t) = −BT
C W−1

α (t, σℓ+2(t))

KI [k] = −BT
I A−1

I W−1
α (τ−

k , τ−
k+ℓ+2) (16)

with KC(t) piecewise continuous, yields an exponentially

stable closed-loop state equation

ẋ(t) =
(

AC + BCKC(t)
)

x(t) t ∈ R \ T

x(τk) =
(

AI + BIKI [k]
)

x(τ−
k ) τk ∈ T (17)

The feedback gain construction (16) is motivated by results

for time-varying linear systems in both continuous-time and

discrete-time cases [2].

IV. STABILIZABILITY

In this section we present three stabilizability properties

that turn out to be equivalent under the following assumption:

Assumption 4.1: The linear impulsive system (1) re-

stricted to R given by (8) is strongly reachable.
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A useful consequence of Assumption 4.1 is the existence

of a nonnegative integer ℓ and a finite, positive real λ̂min

for which (Rξ)T W (σ−ℓ−2(t), t)(Rξ) ≥ λ̂min‖Rξ‖2 for all

ξ ∈ R and all t and T satisfying Assumption 2.1.

The first stabilizability property is inspired by the defi-

nition of uniform stabilizability introduced in [1] for time-

varying discrete-time linear systems and later invoked in [3].

Property 4.2: For the impulsive system (1) there exist

finite, nonnegative integers p, m, nonnegative real d < 1,

and finite, positive real b such that whenever

‖ΦT (t, σ−m(t))x‖ ≥ d‖x‖

for some x ∈ X and t ∈ R, then

xT W (σ−p(t), t)x ≥ b‖x‖2

The second property is frequently adopted as the defining

characterization of stabilizability, namely the existence of an

exponentially stabilizing state feedback law.

Property 4.3: For the impulsive system (1) there exists a

state feedback law (15) with bounded feedback gain matrices

KC(t) and KI [k], with the former piecewise continuous, for

which the closed-loop state equation (17) is exponentially

stable.

And finally, the following property generalizes the familiar

notion for LTI systems that the ‘uncontrollable’ subsystem

is exponentially stable.

Property 4.4: The unforced system (11) induced in the

quotient space X̃ by the linear impulsive system (1) is

exponentially stable.

The main results of the paper now establish, under As-

sumption 4.1, the equivalence of these three properties. First

the equivalence of Properties 4.2 and 4.4 is shown, followed

by the equivalence of Properties 4.3 and 4.4.

Theorem 4.5: For the linear impulsive state equation (1)

satisfying Assumption 2.1, Property 4.2 implies Property

4.4. In addition, under Assumption 4.1, Property 4.4 implies

Property 4.2.

Proof. We first show that Property 4.2 implies Property 4.4.

First,

Im PT = 〈AC , AI | BC + BI〉
⊥

⊂ R⊥
fixed(σ−p(t), t, T ) = KerW (σ−p(t), t)

and so for any 0 6= ζ ∈ X̃ and any t ∈ R,

(PT ζ)T W (σp(t), t)(P
T ζ) = 0. As a consequence, for any

0 6= ζ ∈ X̃ and any t ∈ R there must hold

‖ΦT (t, σ−m(t))PT ζ‖ < d‖PT ζ‖ (18)

We next claim that for any 0 6= ζ ∈ X̃ , t ∈ R, and

positive integer r, there must hold ‖ΦT (t, σ−rm(t))PT ζ‖ <
dr‖PT ζ‖ The inequality clearly holds for r = 1. We now

assume that the inequality holds for any 0 6= ζ ∈ X̃ , any t ∈
R, and some r > 1. From the commutative relationships (9)

it follows that PΦ(·, ·) = Φ̃(·, ·)P . Upon taking transposes

through this identity

ΦT (t, σ−rm(t))PT ζ = PT Φ̃T (t, σ−rm(t))ζ

∈ KerW (σ−p(t), t)

and so (18) applies to ΦT (t, σ−rm(t))PT ζ and σ−rm(t) ∈ R

yielding

‖ΦT (t, σ−(r+1)m(t))PT ζ‖ = ‖ΦT (σ−rm(t), σ−(r+1)m(t))

× ΦT (t, σ−rm(t))PT ζ‖

< d‖ΦT (t, σ−rm(t))PT ζ‖

< ddr‖PT ζ‖ = dr+1‖PT ζ‖

thereby establishing the claim.

Thus, for any 0 6= ζ ∈ X̃ and any t ∈ R

‖PT Φ̃T (t, σ−rm(t))ζ‖ < dr‖PT ζ‖

Using (PP †)T = I , standard inequalities involving the

spectral matrix norm give

‖Φ̃(t, σ−rm(t))‖ = ‖Φ̃T (t, σ−rm(t))‖ ≤ ‖P‖ ‖P †‖ dr

for any t ∈ R.

We proceed to show that the unforced system (11) is

exponentially stable. First, because

rm δ ≤ t − σ−rm(t) ≤ rm δ

choosing λ̃ so that e−λ̃mδ = d yields

‖Φ̃(t, σ−rm(t))‖ ≤ ‖P‖ ‖P †‖e−rm δλ̂

≤ ‖P‖ ‖P †‖e−λ̂(t−σ−rm(t))

for any r ≥ 1 and t ≥ t0.

For any t and s < t, let r denote the least nonneg-

ative integer for which σ−(r+1)m(t) ≤ s < σ−rm(t)

and Φ̃(t, s) = Φ̃(t, σ−rm(t))Φ̃(σ−rm(t), s). The right

factor is norm bounded by the finite constant M̃m :=
exp[‖ÃC‖mδ] ‖ÃI‖

m uniformly in s and t. Thus, by taking

k̃ = M̃m‖P‖ ‖P †‖eλ̃mδ we obtain

‖Φ̃(t, s)‖ ≤ ‖Φ̃(t, σ−rm(t))‖ ‖Φ(σ−rm(t), s)‖

≤ M̃m‖P‖ ‖P †‖e−λ̃(t−σ−rm(t))

= M̃m‖P‖ ‖P †‖eλ̃(σ−rm(t)−s)e−λ̃(t−s)

≤ M̃m‖P‖ ‖P †‖eλ̃mδe−λ̃(t−s)

= k̃e−λ̃(t−s)

from which it follows that (11) is exponentially stable.

We next show that, under Assumption 4.1, Property 4.4

implies Property 4.2. Suppose that Property 4.2 does not

hold. That is, corresponding to any finite, nonnegative inte-

gers p, m, nonnegative real d < 1, and finite, positive real b
there exist 0 6= x ∈ X and t ∈ R for which

‖ΦT (t, σ−m(t))x‖ ≥ d‖x‖ (19)

and

xT W (σ−p(t), t)x < b‖x‖2 (20)

We further assume that the unforced system (11) is ex-

ponentially stable and proceed to establish a contradiction.

Under this assumption, there exist finite constants k̃ ≥ 1 and

λ̃ > 0 for which

‖Φ̃(t, σ−m(t))‖ = ‖Φ̃T (t, σ−m(t))‖ ≤ k̃e−λ̃(t−σ−m(t))
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for all t ∈ R, and nonnegative integers m. Given ǫ ∈ (0, 1),

we choose m large enough to ensure that ‖P‖ ‖P †‖k̃e−λ̃mδ

< 1 − ǫ and select d ∈ (ǫ + ‖P‖ ‖P †‖k̃e−λ̃mδ, 1).
Any x ∈ X can also be uniquely decomposed as x =

Rξ + PT ζ and, under Assumption 4.1 with p = ℓ + 2,

xT W (σ−p(t), t)x = (Rξ)T W (σ−p(t), t)(Rξ) ≥ λ̂min‖Rξ‖2

As a consequence of Assumption 2.1, we have the bound

‖ΦT (t, σ−m(t))‖ = ‖Φ(t, σ−m(t))‖ ≤ Mm for all t ∈ R

for a finite, positive number Mm depending on m. With p,

m, and d fixed as characterized above along with positive

b ≤ λ̂min(ǫ/Mm)2, let 0 6= x ∈ X and t ∈ R satisfy (19)

and (20). Then ‖Rξ‖ < (ǫ/Mm)‖x‖ and

‖ΦT (t, σ−m(t))x‖

≤ ‖ΦT (t, σ−m(t))Rξ‖ + ‖ΦT (t, σ−m(t))PT ζ‖

= ‖ΦT (t, σ−m(t))Rξ‖ + ‖PT Φ̃T (t, σ−m(t))ζ‖

≤ Mm‖Rξ‖ + ‖P‖k̃e−λ̃(t−σ−m(t))‖ζ‖

< ǫ‖x‖ + ‖P‖k̃e−λ̃mδ‖ζ‖

≤ ǫ‖x‖ + ‖P‖ ‖P †‖k̃e−λ̃mδ‖PT ζ‖

≤
(

ǫ + ‖P‖ ‖P †‖k̃e−λ̃mδ
)

‖x‖

which, because we have chosen d > ǫ + ‖P‖ ‖P †‖k̃e−λ̃mδ,

contradicts (19) and completes the proof. �

Theorem 4.6: For the linear impulsive state equation (1)

satisfying Assumption 2.1, Property 4.3 implies Property

4.4. In addition, under Assumption 4.1, Property 4.4 implies

Property 4.3.

Proof. We first show that Property 4.3 implies Property 4.4.

Suppose there exists a state feedback law (15) for which the

closed-loop impulsive state equation (17) is exponentially

stable. With ΦCL(·, ·) denoting the state transition matrix

for (17), there exist finite k ≥ 1 and λ > 0 satisfying

‖ΦCL(t, t0)‖ ≤ ke−λ(t−t0) for all t0 and t ≥ t0. From the

relationships (9), (10) we have for any feedback gains KC(t),
KI [k]

P
(

AC + BCKC(t)
)

= ÃCP , P
(

AI + BIKI [k]
)

= ÃIP

which yields PΦCL(·, ·) = Φ̃(·, ·)P and so Φ̃(·, ·) =
PΦCL(·, ·)P †. It follows immediately that

‖Φ̃(t, t0)‖ ≤ k‖P‖ ‖P †‖ e−λ(t−t0)

for all t0 and t ≥ t0 implying that the unforced system (11)

is exponentially stable.

We next show that under Assumption 4.1, Property 4.4

implies Property 4.3. The stabilizing state feedback law

construction discussed Section III-B applied to the strongly

reachable restricted system (8) yields the existence of a state

feedback law

u(t) = K̂C(t)ξ(t) w[k] = K̂I [k]ξ(τ−
k )

for which

ξ̇(t) =
(

ÂC + B̂CK̂C(t)
)

ξ(t) t ∈ R \ T

ξ(τk) =
(

ÂI + B̂IK̂I [k]
)

ξ(τ−
k ) τk ∈ T

is exponentially stable. The overall closed-loop state equation

in the (ξ, ζ)−coordinates
[

ξ̇(t)

ζ̇(t)

]

=

[

ÂC + B̂CK̂C(t) ĀC

0 ÃC

] [

ξ(t)
ζ(t)

]

t ∈ R \ T

[

ξ̇(τk)

ζ̇(τk)

]

=

[

ÂI + B̂IK̂I [k] ĀI

0 ÃI

] [

ξ(τ−
k )

ζ(τ−
k )

]

τk ∈ T

consists of, by Property 4.4, the cascade interconnection of

two exponentially stable subsystems with bounded coupling

and is therefore exponentially stable. From this, the gains

KC(t) = K̂C(t)R† and KI [k] = K̂I [k]R† yield an expo-

nentially stabilizing state feedback law in the x−coordinates

(15), so that Property 4.3 holds. �

Thus, exponential stability of the ‘unreachable’ subsys-

tem (11) is necessary and sufficient to achieve closed-loop

exponential stability via state feedback and so, as with LTI

systems, full state reachability of a linear impulsive system

is not necessary for state feedback stabilization.

V. APPLICATION: SYNCHRONIZATION OF CHAOTIC

SYSTEMS

Here we apply the ideas of the preceding section to the

much-studied problem of synchronizing two Lorenz oscilla-

tors using impulsive control [5], [6]. A Lorenz oscillator is

modelled by the state equation

ẋ(t) = −σx(t) + σy(t)

ẏ(t) = ρx(t) − y(t) − x(t)z(t) (21)

ż(t) = x(t)y(t) − βz(t)

which exhibits a strange attractor for the parameter values

σ = 10, ρ = 28, and β = 8/3.

The synchronization problem involves regulating the error

between two Lorenz oscillators, one with state X(t) =
(x(t), y(t), z(t)) (the drive system) and another with state

X̃(t) = (x̃(t), ỹ(t), z̃(t)) (the driven system). Synchroniza-

tion is to be achieved at the driven system using measure-

ments of the drive system state at a set of discrete-time

instants T = {τk, k ≥ 1}. These time instants are assumed

to satisfy τ1 − t0 = δeven and

τ2j − τ2j−1 = δodd τ2j+1 − τ2j = δeven j ≥ 1 (22)

A control policy involving the error between the drive state

and the driven state at these time instants is then used to

effect an instantaneous jump in the driven state in order to

regulate the synchronization error. Specifically, a control law

of the form

X̃(τk) = X̃(τ−
k ) − U [k,X(τ−

k ) − X̃(τ−
k )]

yields the impulsive error dynamics with state e(t) = X(t)−
X̃(t) given by

ė(t) = Ae(t) + Φ(X(t), e(t)) t ∈ R \ T

e(τk) = e(τ−
k ) + U [k, e(τ−

k )] τk ∈ T (23)

in which

A =





−σ σ 0
ρ −1 0
0 0 −β




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and the nonlinear term is Φ(X, e) = ϕ(X) − ϕ(X + e)
with ϕ(X) = [ 0 −xz xy ]T . In what follows, we

simply treat the nonlinear term Φ(X(t), e) as a vanishing

perturbation that is locally Lipschitz in e and focus on the

underactuated linear error dynamics

ė(t) = Ae(t) t ∈ R \ T

e(τk) = e(τ−
k ) + Bw[k] τk ∈ T (24)

together with state feedback law w[k] = KI [k]e(τ−
k ) that

only influences the first component of the error state so that

B = [ 1 0 0 ]T . Thus, (24) has the form of the linear

impulsive state equation (1) with data AC = A, BC = 03×1,

AI = I3×3, and BI = B.

Proceeding with the stabilizability analysis, it is not hard

to show that

〈AC , AI | BC + BI〉 = Im
[

B AB
]

= Im





1 −σ
0 ρ
0 0





We observe that (24) is already in the form of the decompo-

sition (12) with the identifications ξ ↔ (ex, ey) and ζ ↔ ez .

Moreover, it is straightforward to verify that the system

restricted to R given by (8) characterized by

ÂC =

[

−σ σ
ρ −1

]

, B̂C = 02×1, ÂI = I2×2, B̂I =

[

1
0

]

is strongly reachable with ℓ = 1 for any impulse time set.

Finally, we note that with ÃC = −β < 0 and ÃI = 1, the

subsystem (11) is easily seen to be exponentially stable.

The construction of a stabilizing gain KI [k] proceeds as

follows. First, because ÂI = I2×2, the subsystem (8) is

trivially reversible and, further, Φ̂(t, s) = exp[ÂC(t − s)].
Thus, using ℓ = 1

Ŵα(τ−
k , τ−

k+ℓ+2) =

k+2
∑

j=k

e(αI+ÂC)(τk−τj)B̂IB̂T
I e(αI+ÂC)T (τk−τj)

for finite, positive α which leads to

KI [k] = −
[

[ 1 0 ]Ŵ−1
α (τ−

k , τ−
k+ℓ+2) 0

]

We observe that the z−component of the drive state need

not be transmitted to the driven system at the impulse times

due to the zero in the third component of this feedback gain.

For explicit numerical computations we adopt the impulse

time spacing (22) with δeven = 0.05s and δodd = 0.1s. This

along with α = 0.5 gives

KI [k] =

{

( −0.7847 −0.6187 0 ) k even

( −0.9498 −0.7499 0 ) k odd

The associated state feedback law yields global exponential

stability of the linear error dynamics and, via standard

perturbation arguments, local exponential stability of the

nonlinear error dynamics. Nonlinear error responses for

X(0) = [ 10 −10 10 ]T and X̃(0) = [ 0 0 0 ]T are

shown in Fig. 1.
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Fig. 1. Nonlinear error responses.

VI. CONCLUDING REMARKS

This paper has presented a stabilizability analysis for a

class of linear impulsive systems. Three system properties

resembling stabilizability conditions that have appeared in

the literature for time-varying and time-invariant linear sys-

tems have been shown to be equivalent under mild tech-

nical assumptions. Most notably, exponential stability of

an ‘unreachable’ subsystem is necessary and sufficient to

achieve closed-loop exponential stability via state feedback,

thus extending well-known facts for the LTI case to linear

impulsive systems. Developing a comparable analysis for the

dual property of detecability and exploring the combined

role of stabilizability and detectability in output feedback

stabilization and optimal control for linear impulsive systems

is the focus of ongoing investigation.

REFERENCES

[1] B. D. O. Anderson and J. B. Moore. Detectability and stabilizability
of time-varying discrete-time linear systems. SIAM Journal of Control

and Optimization, 19(1):20–32, 1981.
[2] V. H. L. Cheng. A direct way to stabilize continuous-time and discrete-

time linear time-varying systems. IEEE Transactions on Automatic

Control, AC-24(4):641–643, 1979.
[3] J.-W. Lee. Inequality-based properties of detectability and stabilizabil-

ity of linear time-varying systems in discrete time. IEEE Transactions

on Automatic Control, 54(3):634–641, 2009.
[4] J.-W. Lee and P. P. Khargonekar. Detectability and stabilizability

of discrete-time switched linear systems. IEEE Transactions on

Automatic Control, 54(3):424–437, 2009.
[5] Y Li. Some new less conservative criteria for impulsive synchroniza-

tion of a hyperchaotic Lorenz system based on small impulsive signals.
Nonlinear Analysis: Real World Applications, 11:713–719, 2010.

[6] Z. Li, Y. Soh, and C. Wen. Switched and Impulsive Linear Systems:

Analysis, Design, and Applications. Springer-Verlag, 2005.
[7] E. A. Medina and D. A. Lawrence. Reachability and observability of

linear impulsive systems. Automatica, 44:1304–1309, 2008.
[8] E. A. Medina and D. A. Lawrence. State feedback stabilization of

linear impulsive systems. Automatica, 45:1476–1480, 2009.
[9] E. A. Medina and D. A. Lawrence. Feedback-reversibility and

reachability of linear impulsive systems. Automatica, 46:1101–1106,
2010.

[10] W. M. Wonham. Linear Multivariable Control: A Geometric Ap-

proach. Springer-Verlag, New York, third edition edition, 1985.
[11] G. Xie and L. Wang. Controllability and stabilizability of switched

linear-systems. Systems & Control Letters, 48:135–155, 2003.
[12] G. Xie and L. Wang. Reachability realization and stabilizability

of switched linear discrete-time systems. Journal of Mathematical

Analysis and Applications, 280:209–220, 2003.

4333


