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Abstract—Swing dancers often talk about using the laws of

physics in performing their physically rigorous jumps, lifts, and
spins. Do expert swing dancers physically optimize their pose

for a partnered spin? In a partnered spin, two dancers connect
hands and spin as a unit around a single vertical axis. We

describe the pose of a couple by the angles of their joints in a
two-dimensional plane and compare expert and novice dancers’

actual poses to the approximately ideal poses generated from
a biomechanical optimization model.

The optimization objective is to maximize rotational ac-
celeration, by minimizing the resistance to spin, but still

producing torque. The model considers only external forces
and neglects internal forces. It consists of equations derived

from physical principles such as Newton’s laws and moment of
inertia calculations. Using numerical non-linear optimization we

find the pose for each couple that maximizes their rotational
acceleration. Different dancers are differently sized, so every

couple has a unique optimal pose. Each couple’s optimal pose

is compared to the pose they actually assumed for the spin.

We used motion capture to determine the angles of the joints
in the couple’s actual pose. The couple’s actual pose is used

to calculate a predicted rotational acceleration. This predicted
acceleration is then compared to the optimal acceleration to

determine a fraction of optimal for each couple. We hypothe-
sized that expert swing dancers would achieve a higher fraction

of their optimal acceleration than beginners. Our results did

not achieve statistical significance with a simplified model and
a small sample of 10 couples.

I. WHY SWING DANCE AND PHYSICS?

Lindy Hop is an athletic style of dancing that originated

in the 1920s and is now danced recreationally and compet-

itively. It is an American folk partner dance that originated

in Harlem during the 1920’s and 1930’s. Today Lindy Hop

is danced to very fast music and can involve aerial tricks

in addition to fancy footwork. Advanced dancers often train

intensely for five to ten years before reaching the top levels of

competition. While other authors have examined how ballet

dancers exploit physics [1] [2], and suggested dogs chase

balls with near-optimal paths [4], no one has studied swing

dancers.

A rhythm circle is a movement in which a couple spins

as a unit around a single vertical axis. A good rhythm

circle would look smooth, but also involve the dancers

rotating rapidly. When discussing this movement, dancers

often talk about minimizing moment of inertia or the need

to create torque to spin. To our knowledge we are the first

to investigate these descriptions quantitatively [6].

We developed a few candidate mathematical objectives

that might represent the dancers’ choices in controlling their

spin. An optimal control model that captures the dynamics of

the dancers’ pose and motion over time would be appropriate.

However, in this paper, we discuss only a static optimization

problem to determine a fixed optimal pose. We consid-

ered minimizing moment of inertia, maximizing rotational

acceleration, or maximizing rotational velocity as possible

dancer objectives. The chosen objective, estimated rotational

acceleration, takes into account the need to produce torque

from the feet, along with the need to minimize moment of

inertia. The optimization problem we solve varies for each

couple because it is determined by their individual sizes.

We create a model to estimate the torques the dancers

create to propel themselves in a circle, and their moments

of inertia. Rather than directly calculate torque, we use a

surrogate method to estimate the external forces acting on

the dancer.

We use a numerical optimization scheme to find a pose

that maximizes estimated rotational acceleration for each

couple. The problem is non-convex because of the presence

of trigonometric functions relating the joint angles, which

determine the pose, to the objective function. Mathemat-

ica’s NMaximize function implements a global non-linear

optimization scheme with no performance guarantees. The

optimization problem is particularly challenging because it

is non-convex and has 14 decision variables, the 14 angles

that define the couple’s pose.

II. THE MODEL

A. Body Segment Masses and Lengths

We measured the lengths of each represented body seg-

ment for each subject couple. Each dancer self-reported his

or her weight (mass). To estimate the body segment masses,

we use a system developed by Nickolova and Toshev to

divide the total mass of the body into fractions of the total

mass in each body segment [3].

B. Defining Angles

The angles between various joints and the horizon are

the only decision variables in our optimization problem. The

joint angles, together with body segment lengths, define the

dancer’s pose. The body parts are labeled with subscript e

for elbow, s for shoulder, h for hip, kg and kp for knee grind
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Fig. 1. Each dancer’s pose is defined by seven joint angles as shown.

TABLE I

ANGLE NOTATION WITH UPPER AND LOWER BOUNDS

Angles Minimum Maximum

θmf Angle of Forearms −π/4 π/2

θmb Angle of Biceps 0 π/2

θmh Angle of Hip π/4 3π/4

θmkg Angle of Knee Grind 0 θmfg

θmkp Angle of Knee Push 0 θmfp

θmfg Angle of Foot Grind 0 π
θmfp Angle of Foot Push 0 π
θff Angle of Forearms −π/4 π/2

θfb Angle of Biceps 0 π/2

θfh Angle of Hip π/4 3π/4

θfkg Angle of Knee Grind 0 θffg

θfkp Angle of Knee Push 0 θffp

θffg Angle of Foot Grind 0 π
θffp Angle of Foot Push 0 π

and knee push, and finally fg and fp for foot grind and foot

push. The lengths and masses of each segment are labeled

with similar subscripts. Table I explains the label for each

angle and gives starting values for the optimization process.

Note in Table I the labeling “push” and “grind”. These

words distinguish between the two legs. In reviewing videos

of dancers we determined that one of the feet stayed closer to

the axis of rotation and is mainly used for balance. The closer

”grind” foot did not contribute to the spin, but countered it

by grinding on the floor. The other leg is further from the

axis of rotation and is used to “push” the dancer around the

circle and thus we labeled the left foot the push foot and the

right foot the grind foot.

C. Calculating Distances to Axis of Rotation

We calculated the distance from each point on the body to

the axis of rotation, starting at the hands which were assumed

to be the locus of the axis of rotation.

The distance from the axis of rotation to each body’s joints

was labeled R, while the length of each body segment was

labeled L, both with a subscript denoting male or female

followed by a body segment, with lettering the same as used

for angles. For example, the distance from the male leader’s

elbow to the axis of rotation is defined as Rme = Lmf ∗

Cos[θmf ]. The distance to the leader’s shoulder is based on

the length of the upper arm and the distance to the elbow,

Rms = Lmb ∗Cos[θmb]+Rme. Other distances are similarly

calculated based on the distances to the body joints calculated

before it. Therefore the distances between each of the feet

and the axis of rotation is determined by the body segment

lengths for each person and the angles of his pose.

III. CONSTRAINING THE MODEL

We developed a set of constraints to ensure physically

reasonable poses in our optimization model.

The hips are prevented from thrusting inward. Even though

people can place their hips inward, we know from observing

dancers that it is not a pose from which one can easily

start spinning. The hip constraints are represented by the

following inequalities:

θmh + θmkg ≤ π

θmh + θmkp ≤ π

θfh + θfkg ≤ π

θfh + θfkp ≤ π

Also, human knees cannot bend backwards. Thus, we require

the angle at each foot(θffg, θmfg) be greater than the angle

of the knee (θfkg , θmkg). These constraints are:

θmkp ≤ θmfp

θmkg ≤ θmfg

θfkp ≤ θffp

θfkg ≤ θffg

The elbow also has a limited range of motion. We limit

the movement of the shoulder to the 2-dimensional yz-plane

by treating the shoulder as a hinge joint rather than a ball

and socket. We also rule out any pose with the elbow bent

backward. The elbow constraints are:

θmb ≥ θmf

θfb ≥ θff

Finally, we constrain the hip angle. Early in our optimization

attempts we would occasionally get a hip angle that was

negative or near zero. An angle at or below zero creates a

pose where the dancer is entirely bent forward with her torso

nearly level with the floor. While this pose creates a small

moment of inertia, it is biomechanically unreasonable. This

hip constraint is:

θmh ≥
π

4

θfh ≥
π

4

The above constraints ensure that the poses chosen via

optimization are biologically reasonable. We tried not to

overly constrain our solution so as to pre-judge which pose

was best.

We also lower bound the distances from the feet and each

of the joints to the axis of rotation. An optimization scheme
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might place a dancer’s feet on the opposite side of the axis of

rotation crossed over his partner’s feet. This pose is a difficult

position from which to begin rotating and is not particularly

safe, since dancers might trip.

To eliminate this pose and any other poses where the

dancers might be so close that their lower body ends up

invading their partner’s body space, we require that the

distances to each dancer’s joints defined in the model are

positive. For example the distance to the leader’s grind foot

is Rmfg . The m notes that it is the leader, while the fg

indicates that it is the distance to the grind foot. The R notes

that the variable is distance. The constraints on distances are

listed:

Rmfg ≥ 0 Rffg ≥ 0

Rmfp ≥ 0 Rffp ≥ 0

Rmkg ≥ 0 Rfkg ≥ 0

Rkp ≥ 0 Rfkp ≥ 0

Rmh ≥ 0 Rfh ≥ 0

Rms ≥ 0 Rfs ≥ 0

RmE ≥ 0 RfE ≥ 0

The dancers are connected at the hands, but the height of

each dancer’s hands depends on his or her pose. Therefore,

we require that the height of the dancers’ hands be equal, so

they can hold hands:

HfHand = HmHand

The height of the hip is determined by the pose of the grind

leg. However, the height of the hip might also be separately

determined by the pose of the push leg. These two values

must be equal:

Hfh = HfHip

The Hfh variable represents the location of the hip as defined

by the grind foot and HfHip represents the height of the hip

as defined from the push foot.

We assume the dancers pull on their partner’s hands. We

do not believe that the dancers pose in such a way that they

are pushing on one another. Thus, in order to maintain their

balance and not push on their partner the dancers grind feet

must be in front of their respective center of mass:

CoMfx ≥ Rffg

−CoMmx ≥ Rffg

These constraints do not allow the dancers to lean into one

another.

IV. CALCULATING AND MAXIMIZING ROTATIONAL

ACCELERATION

In modeling the spinning motion of dancers, we use their

size parameters to determine the best pose for a couple by

maximizing their rotational acceleration. This model yields

somewhat realistic poses for the Lindy Hop rhythm circle.

The ideal pose is deemed to be a pose that maximizes

the rotational acceleration of the dancers. Let Θ =

[θff , θfb, θfh, θfkg, θfkp, θffg , θffp, θmf , θmb, θmh, θmkg,

θmkp, θmfg , θmfp]. Theta, Θ, is a vector of angles that

define both dancers’ poses. The rotational acceleration,

α[Θ], is calculated as:

α[Θ] =
τ [Θ]

I[Θ]

where tau,τ [Θ], is the scalar torque produced by the dancer

in the direction perpendicular to the floor as a function of

Θ. The moment of inertia, I[Θ], is the dancers’ resistance to

initiating a spin.

The first step in determining α[Θ] is to determine the

moment of inertia. To find the moment of inertia I[Θ] of

the dancers, we find the moment of inertia of each part of

the body and then sum the individual moments of inertia. We

treat the body segments as non-right cylinders consisting of

stacked thin disks. We calculate the moment of inertia of

each body segment in a given pose by twice applying the

parallel axis theorem.

For example, the above calculations result in this moment

of inertia for the follower’s torso:

InertiaTorsof =
1

2
mft ∗ r2

ft + mft ∗ (Rfs +
1

2
∗ Rfh)2 +

1

12
∗ L2

ft ∗ mft ∗ Cos[θfh]2 ∗ Sin[θfh ]

where 1

2
mft ∗ r2

ft is the inertia for a single thin disk around

its center of mass. The 1

12
∗L2

ft∗mft∗Cos[θfh]2∗Sin∗[θfh]
is the result of the integral that sums all of the disks over the

length of the cylinder. Finally the mft∗(Rfs+ 1

2
∗Rfh)2 term

shifts the entire moment of inertia from rotating around its

own center to rotating around the axis some distance away.

The angle variables are defined in Table I.

A. Calculating Torque

Calculating the correct tau, τ [Θ], is the most challenging

part of building the model. Torque, τ , the rotational analog

of force causes an object to spin and produces rotational

acceleration. Though torque is a vector, we consider only

the torque component relating to the dancers’ partnered spin

around each other on the floor and thus treated it as a

scalar. Torque can not be arbitrarily large because the force is

generated by the dancer pushing against the floor, and there is

an upper limit determined by friction, and above this limit the

dancer’s foot will slip. Figure 2 illustrates the external forces

acting on the dancers. There are four external forces at work

as each dancer spins: the force of gravity acting through the

center of mass, the force acting at her hands from her partner

pulling on her, and the force from the floor acting on each

of her two feet. We neglect entirely the dynamic aspect of

alternating weight between the two feet as the dancer takes

steps.

Figure 2 shows the non-zero components of the external

forces. Gravity acts through the calculated center of mass of

each dancer. fxFhands is the force in the x-direction on

the follower from her partner pulling on her hands while
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Fig. 2. All of the forces acting on the system to cause it to rotate.

mxFhands is the force on the leader from the follower

pulling on his hands. fFgrindHort is the force in the

x-direction on the follower’s grind foot that is a result

of friction and represents her tendency to slide toward or

away from her partner. fFpushHort is the force in the

x-direction on the follower’s push foot. fFgrindV ert and

fFpushV ert are the normal forces acting on each of the

follower’s feet.

Finally, fFpushSpin is the force on the follower’s push

foot in the y-direction that induces motion and initiates the

spin. This and mFpushSpin are crucial forces because

they are the forces that induce the spin. Our goal is to

estimate these two forces from motion capture and size

parameters. These forces are countered by fFgrindSpin

and mFgrindSpin.

While there are only 8 scalar quantities to estimate,

estimating these from the dancers’ pose is a challenging

problem. First, we calculate the location of the center of

mass for a dancer in a given pose [7], using our segmented

body model.

We attempted to solve the physical equations of motion

(this system of equations is not shown) to estimate the

forces in Figure 2. Unfortunately we were unable to solve

these equations, even after trying several numerical solvers

and various formulations of the system. Instead, we use a

surrogate method for estimating the external forces on the

dancers.

V. SURROGATE FORCE MODEL

Ultimately to model the dancers we use a simpler model

that neglects the forces at the hands and on the grind foot,

and uses a surrogate, NormalPush for FpushSpin. We

assume the reaction forces from the floor are equal to the

weight of the person over their push foot, which we estimate

using the location of their center of mass. We calculate the

distance from the axis of rotation to each of the feet. For the

follower, these distances are:

fDistPush =
√

(fxCoM − fRfp)2 + frt2 (1)

fDistGrind =
√

(fxCoM − fRfg)2 + frt2 (2)

Fig. 3. This figure illustrates the calculations for the surrogate model.

The variables above represent the location of the center of

mass minus the distance to the axis of rotation, plus the

radius of the body segment, which takes into account the

physical size of the body segment. From these distances, we

estimate what fraction of each dancer’s weight is supported

by his push foot:

fWeightPush =
fDistGrind

fDistGrind + fDistPush
(3)

If the dancer is standing mostly over her push foot, then

the distance between her center of mass and grind foot is

large, so a larger fraction of her weight is on her push

foot. Conversely, if fDistGrind is small, then most of

the dancer’s weight is over her grind foot, so a small

value for fDistGrind corresponds to a smaller value for

fWeightPush. Taking the product of the fraction of weight

over the push foot and the dancer’s weight, we determine the

normal force acting on the dancer’s foot:

fNormalPush = fWeightPush ∗ fMass ∗ g (4)

Using these normal forces and an estimated µs (coefficient

of static friction), we claim that the normal force on the push

foot is proportional to fFpushSpin:

fForcePush = fRfp ∗ fNormalPush ∗ µs (5)

Since both the leader and follower contribute to the force that

causes the couple to spin, we sum these forces and divide

by InertiaTotal to estimate the rotational acceleration:

α =
fForcePush + mForcePush

InertiaTotal
(6)

This surrogate model performs relatively well, yielding plau-

sible optimal poses. Section VII includes images of the actual

and optimal poses, and values for α.

VI. NUMERICAL OPTIMIZATION

In addition to estimating the forces involved in the actual

recorded movements of the dancers, we solve an optimization

problem for each couple to estimate how large a rotational

acceleration they could have achieved. We use the NMaxi-

mize routine in Mathematica as our numerical optimization
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algorithm. Our system does not admit an analytic solution.

We use individual size length and mass parameters to deter-

mine each couple’s optimal and achieved accelerations.

We attempt to maximize α, the rotational acceleration

estimate for the couple, subject to biological feasibility

constraints on the pose. For a list of constraints, see Section

III. The decision variables are the fourteen pose angles in

Table I.

NMaximize is very sensitive to the starting pose used for

the optimization. The starting pose is specified as a range of

values for each decision variable, from which the algorithm

starts its search. The search for the global optimum may get

stuck in a local optimum near the starting solution. We start

each search near the pose the couple actually held. While the

pose generated by the algorithm is very different from the

initial pose, we observed that the value of the objective at

“optimal” varies with even slight changes in the initial pose.

We seek the global maximum for the estimated rota-

tional acceleration, subject to the above-detailed constraints.

Finding the global optimum is much more difficult than

finding a local optimum, which is just the nearest peak

or valley in the solution. Methods for global optimization

generally combine multiple random start points with local

optimization techniques to find the global optimum, but have

no performance guarantees. Mathematica did not reliably

reach a global optimum. The variation in the “optimal”

solution, as described in the previous paragraph, is evidence

of failure to consistently find the true global optimum.

VII. DATA ANALYSIS AND RESULTS

Our biomechanical model predicted the best pose and

highest achievable rotational acceleration for each pair of

dancers. The measured actual pose for each couple was

analyzed with the same model to compute an estimated accel-

eration in that pose. We calculated the ratio of each couple’s

estimated acceleration in the observed pose to that of the

best pose found. A larger ratio means that the pair achieved

a higher fraction of their potential acceleration. Table II lists

the achieved and optimal rotational accelerations for each

couple along with the fraction of optimal. In comparing

each couple’s performance to their individual optimum, we

hypothesized that the expert dance couples would achieve a

higher fraction of their optimum than less skilled dancers.

Couple H is excluded because we were not able to garner

reasonable data from the couple. Couple H’s recorded pose

was infeasible by the limitations on the rotation of the hip

joint. This could have been caused by inaccurate marker

placement.

With our motion capture system, we could have recorded

an observed rotational acceleration. Instead, we estimated

acceleration based on our surrogate model, because we

calculated the fraction of optimal performance based on

the optimal acceleration from that same model. Using the

estimated acceleration in the actual poses calculated from

the same model provided a metric for comparing the couples’

performances.

TABLE II

ACHIEVED AND OPTIMAL ROTATIONAL ACCELERATION FOR EACH

COUPLE, AND FRACTION OF OPTIMAL ACCELERATION ACHIEVED.

Couple Class Achieved Optimal Fraction of Optimal

A Expert 4.50093 45.9221 0.0980

B Beginner 3.22323 44.6527 0.0722
C Expert 6.44338 48.0171 0.1368
D Beginner 3.49177 48.6595 0.0718

E Expert 3.49527 49.8348 0.0701
F Expert 4.972 47.3274 0.1056
G Beginner 3.96729 49.8875 0.0795

I Beginner 3.95054 45.0883 0.0876
J Beginner 4.28396 42.431 0.1010

To test our hypothesis, we used a one-tailed Mann-

Whitney statistical test to compare these numbers across

couples. We categorized the couples as beginners or experts.

We ranked each couples’ fraction of optimal estimated accel-

eration from largest to smallest. Using a table of test statistics

from Rice [5], we did not find a difference between the two

categories at an α = .05 level of statistical significance.

We cannot conclude from our small dataset that dancers

choose poses predicted by our optimization model. Anecdo-

tally, all of the couples’ predicted poses are similar and seem

intuitively logical. To spin fast, the couples should be close

together and with feet close to the center of the circle. The

push foot should be placed some distance away from the axis

of rotation to produce the torque that sustains the spin.

All the dancers’ actual poses differ in a systematic way

from the estimated optimal poses. In the observed poses, the

dancers’ feet are both at a greater distance from the axis

of rotation than in the predicted poses. The dancers’ feet

are also actually closer together and more underneath the

dancers, so there appears to be less force at the hands as

dancers lean away from each other than in the predicted

poses. See Figure 4 for an example of an optimal and actual

pose for an expert couple.

A. Model Shortcomings

We neglected many significant aspects of pose selection

for the partnered spin: the ease or difficulty with which

people are able to hold various poses (internal forces), the

need to see one’s partner, the social norms requiring a

certain amount of personal space for each dancer, the two

asymmetric arm connection points, the freedom of many

joints like the shoulder and hip to move in more than a hinge

fashion, the alternation of weight from one foot to another

as dancers take steps during the spin, and the possibility

that the dancers might prioritize aesthetic considerations

over physical efficiency in selecting a pose. Perhaps these

simplifications explain why none of the couples in our study

adopt a pose that is close to the pose predicted by our model.

1) Hand simplification: Treating the various points of

connection between the leader and follower as a single link

might be problematic. Recording the closed arm connection,

between the leader’s right arm and the follower’s back, would

have made our “actual” poses seem much closer together

than they appeared in our calculations. The arm around the
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(a) The actual pose the dancers held
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(b) The optimal pose as calculated by the model

Fig. 4. The actual and optimal poses for couple A.

back connection is a stronger connection in this spin than the

connection at the hands. By describing the dancers’ actual

performance in terms of the distance between their open

hand-to-hand connection, we may have chosen a very noisy

observation of the true distance between their torsos. Figure

5 illustrates the pose dancers spin in and shows how much

closer the dancers are on their closed shoulder side. Our

model recorded only the large distance between the dancers’

open hands.

Our model is superficially 3D but essentially planar. Future

work should incorporate a truly three-dimensional model.

The dancers do not actually face one another as in our model.

The dancers’ shoulders on the closed side, with the arm

around the back connection, are much closer together than

their shoulders on the open hand-to-hand connection side. A

planar model neglects this twist.

2) Changing feet: The distinction between the push foot

and the grind foot is probably overdrawn in our model. In

fact, as the dancers turn, they both take steps, shifting their

weight entirely from one foot to another. Both feet could

exert forces that encourage the couple to rotate at different

times during the spin, so the dancers’ choice to have both

feet at some distance from the axis of rotation makes sense.

Fig. 5. The pose dancers assume to spin. One arm is around their partners’

shoulder (closed arm) and one grasping their partners’ hand (open hand).

VIII. CONCLUSION

We hoped to understand the pose a swing dancer selects to

complete a rhythm circle. We built a simplified biomechan-

ical model to predict the optimal pose for a dance couple

based on the leader’s and follower’s sizes. We estimated

the external forces on the system, the moment of inertia of

the couple, and the rotational acceleration of the couple’s

actual dance. Using numerical optimization with sensible

pose constraints, we predicted the “best” pose and compared

it to that couple’s recorded pose.

Qualitatively the optimum poses that we found agree

with what expert dancers would teach students about this

partnered spin. Dance teachers usually advise that this spin

works better the closer one can get to one’s partner and that

the right (grind) foot should be at or close to the axis of

rotation while the left (push) foot should be farther away. We

did not find a difference between the fraction of optimality

achieved by beginners and expert dancers. The rotational

acceleration achieved by the dancers was roughly a factor

of ten less than the predicted optimal acceleration.
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