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Abstract— Finite-horizon, LQ cost density-shaping has been
achieved through several different control paradigms that are
based on the Multiple-Cumulant Cost Density-Shaping (MC-
CDS) theory. With these cost density-shaping control methods,
the shape of a target cost density can be transformed into a
linear control law. However, the existing MCCDS theory does
not permit control design that accounts for competing objectives
among multiple noncooperative agents. The aim of this work is
to derive the Nash equilibrium solution to an N -Player MCCDS
game posed for the LQG framework. Simulation results are
provided to support the new theory.

Index Terms— cost density-shaping games, stochastic optimal
control, cost cumulant control, structural control

I. INTRODUCTION

The “k Cost Cumulant” (kCC) control theory [1] provides

the linear control input to a system that minimizes an

arbitrarily-weighted linear combination of k cumulants for

an integral-quadratic, random cost. As the first cost cumulant

is the expectation of the cost, kCC control can naturally

be thought of as a true generalization to the classical LQG

theory that permits additional terms. The flexibility of choos-

ing weights in the kCC performance index has motivated

the development of the Multiple-Cumulant Cost Density-

Shaping (MCCDS) paradigm [2]. In particular, the weights

do not correspond directly to the general “shape” of the

cost density achieved under kCC control. Since the shape

of the cost density is intimately related to the performance

and stability properties of the control input underlying the

cost cumulants [3], it has been beneficial to develop MC-

CDS controls, which are capable of minimizing probability

distance functions between multi-cumulant approximations

to the cost density and to the target density. In essence, the

MCCDS translates a shape of a target density into a linear

control law.

In this way, MCCDS control can obtain certain target

statistical characterizations for the cost functional. However,

MCCDS currently cannot accommodate competing objec-

tives in the control design. Indeed, it would be ideal for

MCCDS if competing agents could formulate a strategy to

deliberately shape the density function of that agent’s random

cost with respect to how other agents influence the process

evolution. Given this limitation, an N -Player MCCDS Nash

game is formulated and solved in this paper.
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Cost cumulant control theory has been successfully

adapted to noncooperative stochastic games in recent years.

For the case of linear controls and integral-quadratic cost

functionals, kCC control theory is the foundation for the

study of kCC zero-sum and Nash games [1]. For the more

general case of nonlinear controls and integral non-quadratic

cost functionals, the cost cumulant games theory has been

developed, again in the non-cooperative setting [4]. This

work has in fact generalized the classical H2/H∞ theory and

strengthened the connection between cost cumulant control

and robust control theories.

This paper is organized in four main sections. In the

first, the problem class, basic definitions, and notation are

given. The second section goes into the problem formulation,

and then the third section contains the solution of the N -

Player MCCDS Nash game. This development is followed

by simulation results in the fourth section that illustrate the

derived control solution. Proofs have been omitted due to

space limitations.

II. PRELIMINARIES

A. Problem Class

Let (t0, x0) ∈ [t0, tf ] × Rn be fixed, and let ξ(t) =
Ξ(t, ω) be a p-dimensional stationary Wiener process on

[t0, tf ] where ξ : [t0, tf ] × Ω → R
p on the complete

probability space (Ω,F ,P) and the following correlation of

increments property is satisfied for W ≻ 0p×p,

E[(ξ(τ1)− ξ(τ2))(ξ(τ1)− ξ(τ2))
T ] = W |τ1 − τ2|.

Let Ui ∈ L2
Ft
(Ω; C([t0, tf ];Rmi)), 1 ≤ i ≤ N be Hilbert

spaces of Rmi-valued, square-integrable processes ui ∈ Ui,

where by their construction

E

{∫ tf

t0

uT
i (τ)ui(τ)dτ

}

< ∞.

Further, let the processes in Ui be adapted to the σ-field

generated by ξ(t), Ft. Consider the problem of Player

i choosing strategies ui ∈ Ui so to influence the states

x(t) = X(t, ω) of the following linear stochastic differential

equation, which belongs to L2
Ft
(Ω; C([t0, tf ];Rn)) and is

adapted to the σ-field generated by ξ(t),

dx(t) = A(t)x(t)dt +

N∑

i=1

Bi(t)ui(t) +G(t)dξ(t)

x0 = E{x(t0)}, x0 ∈ R
n, t ∈ [t0, tf ]

(1)
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where

A ∈ C([t0, tf ];Rn×n), G ∈ C([t0, tf ];Rn×p)

Bi ∈ C([t0, tf ];Rn×mi) 1 ≤ i ≤ N.

In particular, Player i chooses ui to optimize the statisti-

cal characterization of the integral-quadratic cost functional

Ji[x, u; t0, x0] given below,

Ji =

∫ tf

t0



x(τ)TQi(τ)x(τ) +

N∑

j=1

uj(τ)
TRij(τ)uj(τ)



 dτ

+ x(tf )
TQifx(tf ).

(2)

It is understood that Qi ∈ C([t0, tf ]; Sn+), Rij ∈
C([t0, tf ]; Smj

++), and Qif ∈ Sn+ for well-posedness of the

problem. Suppose further that players choose their opti-

mal control actions within the class of memoryless, full-

observation strategies, or more precisely

ηi : [t0, tf ]× L2
Ft
(Ω;C([t0, tf ];Rn))

→L2
Ft
(Ω; C([t0, tf ];Rmi))

and

ui(t) = ηi(t, x(t)) = Ki(t)x(t). (3)

When the process (1) is subjected to the controls of each

player, where Ki ∈ C([t0, tf ];Rmi×n) are the admissible

control gains with respective compact, allowable sets of gains

K̄i ⊂ Rmi×n, it becomes

dx(t) =

(

A(t) +

N∑

i=1

Bi(t)Ki(t)

)

x(t)dt +G(t)dξ(t)

x0 = E{x(t0)}, x0 ∈ R
n, t ∈ [t0, tf ]

(4)

and the costs (2) can be written as

Ji =

∫ tf

t0

(
x(τ)TNi(τ)x(τ)

)
dτ + x(tf )

TQifx(tf ) (5)

where

Ni(τ) =

N∑

j=1

Kj(τ)
TRij(τ)Kj(τ) +Qi(τ).

Traditionally, the mathematical expectation of the cost (2)

are optimized in the game, whereas cost cumulant control

considers the optimization of higher-order statistics, the

cumulants. These quantities are defined via the recursive

relationship below,

κi
1(t0) = E{Ji}

κi
r(t0) = E{Jr

i } −
r−1∑

j=1

(
r − 1
j − 1

)

κi
j(t0)E{Jr−j

i }, r ≥ 2.

B. Cost Cumulants

The cumulants of (5) associated with the process (4) have

a special form, which is given in the following theorem.

Theorem 2.1: (Cost Cumulants, N -Player Case)

For the process (4), the r cost cumulants of (5) for Player i

take the following form,

κi
k(α) = xT

0 H
i
k(α)x0 +Di

k(α), 1 ≤ k ≤ r (6)

where the Hi
k(α) and Di

k(α) functions satisfy the system of

differential equations,

dHi
1(α)

dα
=−



A(α) +

N∑

j=1

Bj(α)Kj(α)





T

Hi
1(α)

−Hi
1(α)



A(α) +

N∑

j=1

Bj(α)Kj(α)





−Ni(α) , F1(H
i(α),Ki(α),KN−i(α))

dHi
k(α)

dα
=−



A(α) +

N∑

j=1

Bj(α)Kj(α)





T

Hi
k(α)

−Hi
k(α)



A(α) +
N∑

j=1

Bj(α)Kj(α)





− 2
k−1∑

j=1

(
k
j

)

Hi
j(α)G(α)WGT (α)Hi

k−j(α),

, Fk(H
i(α),Ki(α),KN−i(α)), 2 ≤ k ≤ r

dDi
k(α)

dα
= −Tr(Hi

k(α)G(α)WGT (α))

, Gk(H
i(α)), α ∈ [t0, tf ] 1 ≤ k ≤ r.

(7)

These functions satisfy the terminal conditions

Hi
1(tf ) = Qif , Hi

i (tf ) = 0n×n, i ≥ 2

Di
1(tf ) = 0, Di

2(tf ) = 1, Di
j(tf ) = 0, j ≥ 3.

(8)

Proof: See [5]

C. Notation

It is helpful in the following to introduce some notation

to make restatements of the above equations easier in the

development. This notation is heavily inspired by that used

by Pham in [1]. Define variables Hi(α) and Di(α) as below.

Hi(α) , (Hi
1(α), . . . , H

i
r(α))

Di(α) , (Di
1(α), . . . , Di

r(α)), 1 ≤ i ≤ N.

In the following, the denotation KN−i will be made on

occasion and this refers to the set of control gains excluding

the ith or more precisely,

KN−i = ×j 6=iKj

= K1 ×K2 × · · · ×Ki−1 ×Ki+1 × · · · ×KN
︸ ︷︷ ︸

N−1 times

.

With this apparatus in place, the Cartesian product of all N
control gains can be abbreviated by Ki ×KN−i. It is to be
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understood that K∗
N−i refers to the situation when all players

except the ith play their Nash strategy

Using these state variables, define the functions

F(Hi(α),Ki(α),KN−i(α))

, ×r
j=1Fj(H

i(α),Ki(α),KN−i(α))

G(Hi(α)) , ×r
j=1Gj(H

i(α)), 1 ≤ i ≤ N.

Let {Fj(·)}rj=1, and {Gi(·)}rj=1 in the above definitions

be defined as beforehand in (7). Also a condensed form for

the terminal conditions is introduced as below.

Hi
f , (Qif ,0

n×n, . . . ,0n×n), Di
f , (0, 1, 0, . . . , 0)

Finally, denote the cost cumulant vectors κ
i(α) as

κ
i(α) , (κi

1(α), . . . , κ
i
r(α)), 1 ≤ i ≤ N.

Using this notation, the equations (7) and their associated

terminal condition systems can be written concisely as

dHi(α)

dα
= F(Hi(α),Ki(α),KN−i(α))

dDi(α)

dα
= G(Hi(α))

Hi(tf ) = Hi
f , Di(tf ) = Di

f , α ∈ [t0, tf ].

D. Target Cost Cumulants

Also, the target statistics for Player i can be written as

follows,

dH̃i(α)

dα
= F(H̃i(α), K̃i(α), K̃N−i(α)),

dD̃i(α)

dα
= G(H̃i(α))

H̃i(tf ) = H̃i
f ;E∗

i
, D̃i(tf ) = D̃f ;ǫ∗

i
, α ∈ [t0, tf ].

(9)

where

H̃i
1(tf ) = Qif + E∗

i , H̃i
j(tf ) = 0n×n, j ≥ 2

D̃i
1(tf ) = ǫ∗i , D̃i

2(tf ) = 1, D̃i
j(tf ) = 0, j ≥ 3

(10)

and the short-hand notation is used,

Hi
f ;E∗

i
, (Qif + E∗

i ,0
n×n, . . . ,0n×n)

Df ;ǫ∗
i
, (ǫ∗i , 1, 0, . . . , 0), 1 ≤ i ≤ N.

Here ǫ∗i > 0 are small perturbation constants, and E∗
i ≻

0n×n are positive-definite perturbation matrices. As with the

cost cumulants, compose vectors of target cost cumulants

κ̃
i(α) ∈ Rr defined below,

κ̃
i(α) , (κ̃i

1(α), . . . , κ̃
i
r(α)), 1 ≤ i ≤ N

where

κ̃i
k(α) = xT

0 H̃
i
k(α)x0 + D̃i

k(α), 1 ≤ k ≤ r. (11)

III. PROBLEM FORMULATION

The target set and admissible space of control gains char-

acterizing linear controls for which the evolution equations

are solvable are now presented.

Definition 3.1: (Target Sets)

Let (t0,H
i(t0),D

i(t0), H̃
i(t0), D̃

i(t0)) ∈ Mi, where Mi

denotes the target set for the Player i which is a closed subset

of

[t0, tf ]× (Rn×n × · · · × R
n×n

︸ ︷︷ ︸

r times

)× R
r

× (Rn×n × · · · × R
n×n

︸ ︷︷ ︸

r times

)× R
r.

The combined target space is closed, ∪N
i=1Mi.

For given terminal conditions, the sets of admissible

feedback gains are denoted as

Ki
tf ,Hi(tf ),D(tf ),H̃i(tf ),D̃i(tf )

, 1 ≤ i ≤ N.

and contain matrices Ki ∈ C([t0, tf ];Rmi×n) such that

(t0,H
i(t0),D

i(t0), H̃
i(t0), D̃

i(t0)) ∈ Mi.

is obtained at the end of the trajectories for the state

equations (7) and (9). This is formally stated in the following

definition.

Definition 3.2: (Admissible Feedback Gains)

Denote allowable sets of control gain values by K̄i ⊂
Rmi×n and let these sets be compact. For fixed r ∈ N let

Ki
tf ,Hi(tf ),Di(tf ),H̃i(tf ),D̃i(tf )

, Ki(tf ) characterize a class

of C([t0, tf ];Rmi×n) such that for Ki ∈ Ki(tf ), 1 ≤ i ≤ N
the solutions to

dHi(α)

dα
= F(Hi(α),Ki(α),KN−i(α)),

dDi(α)

dα
= G(Hi(α))

Hi(tf ) = Hi
f , Di(tf ) = Di

f , 1 ≤ i ≤ N

exist on α ∈ [t0, tf ] and the initial values of the state

trajectories satisfy

(t0,H
i(t0),D

i(t0), H̃
i(t0), D̃

i(t0)) ∈ Mi, 1 ≤ i ≤ N.
For general performance indices, consider scalar functions

gi : Rr×Rr → R with vector arguments, which are denoted

by gi(κ, κ̃). For fixed κ̃, the function becomes gi
κ̃
: Rr → R.

Analogously for fixed κ, the function becomes gi
κ
: Rr → R.

Impose the following restrictions on gi
κ̃
(κ) and gi

κ
(κ̃) to

ensure that the ensuing optimization problem is well-posed:

• The function gi
κ̃

is analytic on dom gi
κ̃

and gi
κ

is

analytic on dom gi
κ

• The function gi
κ̃

is convex in κ and its domain dom gi
κ̃

is a convex set

• The function gi
κ̃

is non-negative in κ on some neigh-

borhood of κ̃

Definition 3.3: (Performance Indices)

For 1 ≤ i ≤ N let Player i’s performance index be

φi(Hi(t0),D
i(t0), H̃

i(t0), D̃
i(t0)) = gi(κi(t0), κ̃

i(t0)).

1496



The Mayer-from MCCDS game is now formulated.

Definition 3.4: (Mayer MCCDS Game)

For every κ̃
i(t0), let gi(κi(t0), κ̃

i(t0)) be an analytic func-

tion, convex in κ
i(t0), defined for positive values of its

vector-valued arguments such that it is non-negative on some

neighborhood of κ̃
i(t0). Let r ∈ N be a fixed positive

integer, where κ
i(t0), κ̃

i(t0) ∈ Rr are the vectors of initial

cost cumulants and target initial cost cumulants, respectively,

for Player i. Then the N -Player MCCDS game can be

formulated as,

min
Ki∈Ki(tf )

φi(Hi(t0),D
i(t0), H̃

i(t0), D̃
i(t0))

subject to:

dHi(α)

dα
= F(Hi(α),Ki(α),KN−i(α))

dDi(α)

dα
= G(Hi(α))

dH̃i(α)

dα
= F(H̃i(α), K̃i(α), K̃N−i(α))

dD̃i(α)

dα
= G(H̃i(α))

Hi(tf ) = Hi
f , Di(tf ) = Di

f

H̃i(tf ) = H̃i
f ;E∗

i
, D̃i(tf ) = D̃f ;ǫ∗

i

(12)

where the initial values of the state trajectories satisfy

(t0,H
i(t0),D

i(t0), H̃
i(t0), D̃

i(t0)) ∈ Mi, 1 ≤ i ≤ N.

IV. PROBLEM SOLUTION

The following variables will be used in the derivation.

Notice that since N pairs of differential equations (e.g.

one per player) are specified, distinct dynamic programming

variables are maintained for the associated set of terminal

conditions. Define the block matrices Y
j(ǫ), Ỹ

j
(ǫ) ∈

Rrn×n and the vectors Z
j(ǫ), Z̃

j
(ǫ) ∈ Rr as below,

Y
j(ǫ) = (Yj

1 (ǫ), . . . ,Yj
r (ǫ)), Ỹ

j
(ǫ) = (Ỹj

1 (ǫ), . . . , Ỹj
r (ǫ))

Z
j(ǫ) = (Zj

1(ǫ), . . . ,Zj
r (ǫ)), Z̃

j
(ǫ) = (Z̃j

1(ǫ), . . . , Z̃j
r (ǫ))

where

Yi
j(ǫ) = Hi

j(ǫ), Zi
j(ǫ) = Di

j(ǫ)

Ỹi
j(ǫ) = H̃i

j(ǫ), Z̃i
j(ǫ) = D̃i

j(ǫ), 1 ≤ j ≤ r, 1 ≤ i ≤ N.

The value functions are defined below. These functions

give Player i’s value of the MCCDS game from whatever

“displaced” terminal condition is considered.

Definition 4.1: (Value Function, MCCDS Game)

Let the dynamic programming variables be defined

(ǫ,Y i(ǫ),Z i(ǫ), Ỹ
i
(ǫ), Z̃

i
(ǫ))

∈ [t0, tf ]× (Sn)r × R
r × (Sn)r × R

r

and let

V i(ǫ,Y i(ǫ),Z i(ǫ), Ỹ
i
(ǫ), Z̃

i
(ǫ)) be scalar functions

V i : [t0, tf ]× (Sn)r × R
r × (Sn)r × R

r → R

such that for Ki(ǫ) 6= ∅
V i(ǫ,Y i(ǫ),Zi(ǫ), Ỹ

i
(ǫ), Z̃

i
(ǫ))

= min
Ki∈Ki(ǫ)

φi(Hi(t0),D
i(t0), H̃

i(t0), D̃
i(t0))

where Ki(ǫ) , Ki

ǫ,Yi(ǫ),Zi(ǫ),Ỹ
i
(ǫ),Z̃

i
(ǫ)

.

The playable set of each value function is the set of all

feasible displaced terminal conditions, such that the MCCDS

game is solvable on a reduced time-horizon [t0, ǫ], where

ǫ ∈ (t0, tf ]. .

Definition 4.2: (Playable Set, MCCDS Game)

Define the playable sets as the sets of terminal values from

which there exists a control that can take the system to the

target set. More formally, this is for each 1 ≤ i ≤ N ,

Qi = {(ǫ,Yi(ǫ),Z i(ǫ), Ỹ
i
(ǫ), Z̃

i
(ǫ)) | Ki(ǫ) 6= ∅}.

The solution concept follows the Nash equilibrium idea,

which is now presented.

Definition 4.3: (Nash Equilibrium, MCCDS Game)

Consider a set of gains {K∗
j }Nj=1 such that K∗

j ∈ Kj(tf ), 1 ≤
j ≤ N . The control gains {K∗

j }Nj=1 constitute a Nash

equillibrium solution to the N -Player CDS game, if for

Kj = K∗
j , j 6= i and 1 ≤ i ≤ N it is true that

φi(Hi(t0;K
∗
i ,K

∗
N−i),D

i(t0;K
∗
i ,K

∗
N−i), H̃

i(t0), D̃
i(t0))

≤ φi(Hi(t0;Ki,K
∗
N−i),D

i(t0;Ki,K
∗
N−i), H̃

i(t0), D̃
i(t0))

The following MCCDS Game verification lemma can be

established analogously as the lemma presented in [2]. Es-

sentially, this lemma provides sufficient conditions whereby

a set of linear control inputs to (1) characterized by gains

{Ki}Ni=1 can be verified to be the Nash solution to the

MCCDS game.

Lemma 4.4: (HJB Verification, MCCDS Game)

Suppose (ǫ,Y i(ǫ),Z i(ǫ), Ỹ
i
(ǫ), Z̃

i
(ǫ)) are points in the

playable sets Qi for 1 ≤ i ≤ N where the non-increasing,

scalar functions

W i(ǫ,Y i(ǫ),Z i(ǫ), Ỹ
i
(ǫ), Z̃

i
(ǫ))

are differentiable. Suppose that for a nominal pair

(K∗
i ,K

∗
N−i), the function W i(ǫ,Y i(ǫ),Zi(ǫ), Ỹ

i
(ǫ), Z̃

i
(ǫ))

satisfies, for 1 ≤ i ≤ N ,

− ∂W i(ǫ,Y i(ǫ),Z i(ǫ), Ỹ
i
(ǫ), Z̃

i
(ǫ))

∂ǫ

= min
Ki∈K̄i

{
∂W i(ǫ,Yi(ǫ),Z i(ǫ), Ỹ

i
(ǫ), Z̃

i
(ǫ))

∂Z̃
i
(ǫ)

G(Ỹ i
(ǫ))

+
∂W i(ǫ,Y i(ǫ),Z i(ǫ), Ỹ

i
(ǫ), Z̃

i
(ǫ))

∂Z(ǫ)
G(Y i(ǫ))

+
∂W i(ǫ,Y i(ǫ),Z i(ǫ), Ỹ

i
(ǫ), Z̃

i
(ǫ))

∂vec(Ỹ
i
(ǫ))

· vec(F(Ỹ
i
(ǫ), K̃i(ǫ), K̃N−i(ǫ)))

+
∂W i(ǫ,Y i(ǫ),Z i(ǫ), Ỹ

i
(ǫ), Z̃

i
(ǫ))

∂vec(Y i(ǫ))

· vec(F(Y i(ǫ),Ki(ǫ),K
∗
N−i(ǫ)))

}

, Ki(ǫ) = K∗
i (ǫ)
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with the boundary condition,

W i(ǫ,Y i(ǫ),Z i(ǫ), Ỹ
i
(ǫ), Z̃

i
(ǫ))

=φi(Hi(t0),D
i(t0), H̃

i(t0), D̃
i(t0))

(ǫ,Y i(ǫ),Z i(ǫ), Ỹ
i
(ǫ), Z̃(ǫ)) ∈ Mi.

(13)

Under these conditions, it must be true that 1 ≤ i ≤ N

W i(ǫ,Y i(ǫ),Zi(ǫ), Ỹ
i
(ǫ), Z̃

i
(ǫ))

= V i(ǫ,Yi(ǫ),Z i(ǫ), Ỹ
i
(ǫ), Z̃

i
(ǫ))

and that (K∗
i ,K

∗
N−i) is a Nash equilibrium.

Lemma 4.4 is now used to establish the form of the Nash

solution to the MCCDS game.

Theorem 4.5: (N -Player MCCDS Nash Solution)

Consider the LQG stochastic optimal control problem involv-

ing the process (1) and the costs (2). Then Player i’s Nash

equilibrium solution is characterized by the optimal gain

K∗
i (α) = −R−1

ii (α)BT
i



Hi∗
1 (α) +

r∑

j=2

γi
j(α)H

i∗
j (α)





(14)

with

γi
j(α) =








∂gi(κi∗(α), κ̃i(α))

∂κi
j(α)

∂gi(κi∗(α), κ̃i(α))

∂κi
1(α)








, 1 ≤ i ≤ N, 2 ≤ j ≤ r

and where the jth optimal cost cumulant for Player i is

defined by

κi∗
j (α) = xT

0 H
i∗
j (α)x0 +Di∗

j (α)

and the jth target cost cumulant for Players i is,

κ̃i
j(α) = xT

0 H̃
i
j(α)x0 + D̃i

j(α)

where 1 ≤ j ≤ r and 1 ≤ i ≤ N . The optimal state variables

Hi∗(α) and Di∗(α) follow the equations of motion

dHi∗(α)

dα
= F(Hi∗(α),Ki(α),KN−i(α))

dDi∗(α)

dα
= G(Hi∗(α))

Hi∗(tf ) = Hi
f , Di∗(tf ) = Di

f

and the target variables are

dH̃i(α)

dα
= F(H̃i(α), K̃i(α), K̃N−i(α))

dD̃i(α)

dα
= G(H̃(α))

H̃i(tf ) = H̃i
f ;E∗

i
, D̃i(tf ) = D̃f ;ǫ∗

i
.

Proof: See [5]

V. SIMULATION RESULTS

In [4], a four-story structure is considered. A cost density-

shaping game will be posed using this system, which has two

disturbances - the ground excitation, and also uncertainties

in the system. These system uncertainties pertain to the

stiffness and damping matrices, and also those dealing with

the control input itself.

First consider the parameters k = 350 × 106 N/m, m =
1.05×106 kg, and c = 1.575×106 Ns/m. Using these values,

the stiffness, damping, and mass matrices (denoted as K , C,

M respectively) can be defined as

K =







4k −2k 0 0
−2k 3k −k 0
0 −k 2k −k
0 0 −k k






,

C =







2c −c 0 0
−c 2c −c 0
0 −c 2c −c
0 0 −c c






, M = 2m · I4×4.

In terms of these matrices, the system matrices are

A =

[
04×4

I
4×4

−M−1K −M−1C

]

,

B =

[
04×4

−M−1Bch

]

, G =

[
04×1

Fw

]

with Bch and Fw given as

Bch = I
4×4 +

[
03×1 −I

3×3

0 01×3

]

, Fw =
1

m







1
1
1
1






.

To represent how uncertainties impact the dynamics of the

system, the following matrix is used,
[

04×4 04×4 04×4

−M −M −M−1Bch

]

The dynamics of the 4-story structure with the ground

acceleration ẍg(t) due to the earthquake, and accounting for

system uncertainties, are given by the following model, with

initial condition x0 = E{x(t0)},

dx(t) =

(

Ax(t) +Bu(t) +Dw(t)

)

dt+Gẍg(t),

z1(t) = H1x(t) +G1u(t)

z2(t) = H2x(t) +G2u(t), t ∈ [t0, tf ].

Above, the regulated outputs z1(t) and z2(t) are character-

ized by H1, H2 and G1, G2 given below as

H1 = 106
[

I
8×8

04×8

]

, G1 =

[
08×4

I
4×4

]

H2 =





0.1K 04×4

04×4 −0.1C
04×4 04×4



 , G2 =
1

8× 105

[
08×4

I
4×4

]

.

Now, form a 2-Player MCCDS game as follows. Let

Player 1 be the control designer, who is interested in
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choosing u(t) = K1(t)x(t) to optimize the statistical char-

acterization (the probability density) of the random payoff,

J1 =

∫ tf

t0

zT1 (τ)z1(τ)dτ

On the other hand, let Player 2 be the second disturbance

(e.g. the system uncertainties), who is interested in choosing

w(t) = K2(t)x(t) to optimize the statistical characterization

(the probability density) of the random payoff,

J2 =

∫ tf

t0

(

δ2wT (τ)w(τ) − zT2 (τ)z2(τ)

)

dτ , δ = 20

This formulation for costs is taken from the generalization

of H2/H∞ control with multi-objective, multi-cumulant

control attributed to Diersing [4]. Motivate the selections

for performance indices by introducing normalized cost and

target cost variates for j = 1, 2,

Zi =
Ji − κi

1(t0)

κi
2(t0)

1/2

Z̃i =
Ji − κ̃i

1(t0)

κ̃i
2(t0)

1/2

=

(
κi
2(t0)

κ̃i
2(t0)

)1/2

︸ ︷︷ ︸

ai

· J − κi
1(t0)

κi
2(t0)

1/2

︸ ︷︷ ︸

Zi

+
κi
1(t0)− κ̃i

1(t0)

κ̃i
2(t0)

1/2

︸ ︷︷ ︸

bi

= aiZi + bi.

with best Gaussian density approximations,

pZi
(z) ≈ 1√

2π
· exp

(−z2

2

)

, pZ̃i
(z̃) ≈ aipZi

(aiz + bi).

Consider the performance index for Player 1 first,

KLD(pZ1
(z), pZ̃1

(z))

=

∫ ∞

−∞

pZ1
(z)log

(

pZ1
(z)

pZ̃1
(z)

)

dz

=
1

2

(
κ1
2(t0)

κ̃1
2(t0)

− 1− log

(
κ1
2(t0)

κ̃1
2(t0)

)

+
(κ1

1(t0)− κ̃1
1(t0))

2

κ̃1
2(t0)

)

= g1(

[
κ1
1(t0)

κ1
2(t0)

]

,

[
κ̃1
1(t0)

κ̃1
2(t0)

]

).

Next, consider the performance index for Player 2,

HD2(pZ2
(z), pZ̃2

(z))

= 1−
∫ ∞

−∞

√

pZ2
(z)pZ̃2

(z)dz

= 1−
√
2 · (κ2

2(t0)κ̃
2
2(t0))

1

4

√

κ2
2(t0) + κ̃2

2(t0)
· exp

(

− (κ2
1(t0)− κ̃2

1(t0))
2

4(κ2
2(t0) + κ̃2

2(t0))

)

= g2(

[
κ2
1(t0)

κ2
2(t0)

]

,

[
κ̃2
1(t0)

κ̃2
2(t0)

]

).

In the above expressions, the cumulants of each player’s

cost are computed according to (6) and (7) under optimal

MCCDS controls of the form (14). The optimal gains involve

the target cumulants for each player, which have been

computed according to (11) and (9), with E∗ = 08×8 and

ǫ∗ = 1.0×10−9. For Player 1 and Player 2, these equations

are solved using the control gains below to drive the target

cost cumulants for each player, where µ1
2 = 1.0× 10−5 and

µ2
2 = 0.

K̃i(α) =−R−1
ii BT (H̃i

1(α) + µi
2H̃

i
2(α))

By numerical simulation, it can be verified that the 2-

Player MCCDS controls approximately realize the target

mean-variance approximations to the target densities for the

random costs J1 and J2.
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Fig. 1: Cumulant Trajectories, 2-Player MCCDS Game
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