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Abstract— Under stressful environments, organisms take ac-
tions that help them protect their DNA. An example of such ac-
tions is the stochastic switching that Bacillus subtilis undergoes,
in which it goes from the vegetative state to a competent state.
When in competence, the cell has an increased ability to bind to
and internalize exogenous DNA. This increases the chances of
survival of a cell. Competence is nonetheless an expensive state
for the cell to be in, so the decision to switch undergoes a very
delicate regulation. A major player in controlling the switching
of the cell is the ComK protein. ComK protein is a key regulator
which activates hundreds of genes, including the genes encoding
the DNA-uptake and recombination systems. In Bacillus subtilis,
stress in the environment activates a sequence of chemical
reactions that, driven by cellular noise, stochastically increases
the level of ComK in some bacterial cells driving them from
their original vegetative state into a competent state. In this
work, we use the Finite State Projection (FSP) method to
analyze stochastic biochemical events and to study the excitable
dynamics responsible for competence in Bacillus Subtilis. We
compute the probability with which Bacillus subtilis enters in
competence. We also present a method to analyze the sensitivity
of these stochastic events to various system parameters such as
binding affinities, transcription rates, degradation rates, etc.

I. INTRODUCTION

Competence is a state that a bacterium can switch to in

order to preserve its DNA under stressful conditions.It allows

the cell, to bind and internalize transforming exogenous

DNA. Under the same stressful environment, such as nutrient

limitations, some cells enter competence while other cells

commit irreversibly to sporulation. Entry in competence is

a transient probabilistic event that facilitates copying of the

exogenous DNA [1], [2]. It has been shown that among a

group of cells only a randomly chosen fraction enters in

competence [3], [4]. It is crucial to correctly account for the

noise driving this stochastic event, in order to understand the

underlying biological explanation. When in competence, the

cells express a high concentration of the key regulator ComK,

which activates hundreds of genes, including the genes

encoding the DNA-uptake and recombination systems [5],

[6], [7]. Competence is understood as a bistability pattern [8],

[4] and the nonlinear system describing the competence

regulatory circuit is an excitable dynamical system.

ComK is the main player responsible for the bistable

response in competence development. In specific, Auto-

activation of ComK is essential and can be sufficient to

generate a bistable expression pattern [9], [10], [11], [12].
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Although the gene regulatory circuit consists of many pro-

teins, there are two main proteins that play a major role.

A deterministic model driven by an additive noise to de-

scribe the dynamics of competence regulation was presented

in [13]. We use the reduced order Stochastic Differential

Equation model (SDE) presented in [13] to develop a discrete

stochastic model for competence. When utilizing the CME

to account for noise in analyzing gene regulatory circuits that

involve two species or more, researchers usually use Monte-

Carlo simulations to calculate the distribution of the first

passage time (e.g. see [14] and references therein). We pro-

pose an alternative approach in this work that aggregates two

different regions of the state space into absorbing states: one

region represents the state of competence, the other region

accounts for states that happen with a low probability. This

technique is useful in analytically computing the distribution

of the first passage time, by providing a way to deal with the

infinite dimension of the state space over which the system

evolves.

The contributions of this paper are two folds. First, it uses

the Finite State Projection (FSP) method to obtain analytical

expressions for the probabilities of biological phenomena

where transient behaviors such as competence, which is the

topic we chose to study here, occur. Second, it shows how

to calculate sensitivities of the probabilities of passing to the

transient state with respect to the system’s parameters.

This paper is organized as follows: In Section II we

describe the chemical reactions and the deterministic model.

In Section III we generate the Chemical Master Equation

(CME) of our proposed discrete stochastic model. The CME

characterizes the evolution of the probability density of the

different discrete states. We simulate it using the Stochastic

Simulation Algorithm (SSA), and show how the solution can

be approximated using the Finite State Projection method

(FSP)[15]. In Section IV we use the analytical solution to the

problem obtained using FSP to conduct a sensitivity analysis

of entrance in competence with respect to the reaction rate

parameters. In Section V we give concluding remarks.

II. CHEMICAL REACTIONS DESCRIBING THE GENE

REGULATORY CIRCUIT

Competence is a physiological state that enables cells

to bind and internalize transforming DNA. This state is

accompanied by blockage of the essential cell’s functions,

and since this state is driven by the transcriptional factor

ComK, it is no surprise that ComK synthesis is subject

to a number of finely tuned regulatory circuits [16]. The

gene regulatory model for competence has been presented

and described in [13]. Entrance of a cell in competence
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is controlled by a set of molecular interactions. The tran-

scriptional factor ComK activates its own expression through

positive feedback. Bound to MecA, ComK becomes inactive.

In stressful environments, the level of ComS is high and that

favors entrance into competence, since ComS competes with

ComK to bind to MecA. Inhibition of the binding of ComK

to MecA by competitive binding with MecA-ComS allows a

higher number of free ComK molecules to be present, which

finally triggers the positive feedback that further raises the

number of ComK molecules driving the cell in competence.

This rise in the number of ComK is specific to competence.

Once the number of ComK molecules reaches a certain level,

it acts as an inhibitor for ComS through negative feedback.

ComS now will be released from MecA-ComS freeing more

MecA molecules, which in turn inhibits ComK activity which

now can bind to free MecA. The level of ComK decreases

until the cell eventually exits the state of competence. The

above mentioned molecular interactions are described by the

following chemical reactions [13].

MecA + ComK
γ±a

−−−−−⇀↽−−−−− MecA − ComK
γ1

−−−−→ MecA

MecA + ComS
γ±b

−−−−−⇀↽−−−−− MecA − ComS
γ2

−−−−→ MecA.

The rate equations describing the dynamics of the molecular

reactions between the 5 species model are the following:

dK

dt
= αk +

βkKn

kn
k + Kn

− γaMfK + γ
−aMK (1)

dS

dt
=

βs

1 + ( K
ks

)p
− γbMfS + γ

−bMS (2)

dMK

dt
= −(γ

−a + γ1)MK + γaMfK (3)

dMS

dt
= −(γ

−b + γ2)MS + γbMfS, (4)

where K, S, Mf , MK and MS are the concentrations of

ComK,ComS, MecA, MecA-ComK and MecA-ComS re-

spectively. We give in table II the values and the description

of each of the parameters in (1)-(4). If one further assumes

that the reactions of degradation of MK and MS are much

faster than the other reactions, MK and MS can then be

eliminated through time scale separation and the conserva-

tion law [13][17]:

Mf + MK + MS = Constant,

giving the following reduced model for the dynamics of

competence:

dK

dt
= αk +

βkKn

kn
k + Kn

−
δkK

1 + K
Γk

+ S
Γs

, (5)

dS

dt
=

βs

1 + ( K
ks

)p
−

δsS

1 + K
Γs

+ S
Γs

, (6)

where

Γk =
γ
−a + γ1

γa

, Γs =
γ
−b + γ2

γb

,

and

δk =
γ1Mtotal

Γk

, δs =
γ2Mtotal

Γs

.

Cells have shown to stochastically enter in competence. In

order to properly model this stochastic cell behavior, we need

to properly account for the effect of noise on the dynamics

of competence. A lot of the times, stochasticity is accounted

for by an additive noise. In their analysis, Süel et al. [13]

add white gaussian noise terms in equation (6). This drives

the excitable dynamical system (5)-(6) into long excursions

when the noise magnitude is large enough. Long excursions

imply high levels of ComK, a characteristic of competence.

The problem with this approach is that reaching a competent

state is highly dependent on the magnitude of the additive

noise. Süel et al. [13] studied the deterministic dynamical

system in (5)-(6) and showed that it has three fixed points:

only one fixed point is locally stable; it corresponds to the

vegetative state of the cell. The remaining two fixed points

are unstable. One is an unstable spiral and corresponds to

an intermediate value of the number of ComK molecules.

The other is an unstable spiral and corresponds to a high

value of ComK, in other words to the competent state. If the

cell has an initial number of molecules of ComK and ComS

close to the number of molecules of the stable fixed point

(vegetative state), the number of molecules remain in the

vicinity of that point and the cell stays in a vegetative state. If

on the other hand, the number of molecules is driven beyond

a threshold (intermediate value of ComK), the dynamical

system in (5)-(6) gets excited and the system goes in a long

excursion where the number of molecules of ComK reaches

a high level leading the cell to a state of competence. In this

work we study the probability with which a cell takes these

long excursions. We analyze the stochastic behavior of the

dynamics of the competence regulatory circuit taking into

account the internal noise in the environment of the cell. To

do so, we model the stochasticity in the chemical reactions

using the CME. We look at the problem at the molecular level

and propose 4 reactions to model (5)-(6). The four reactions

are:

φ
k1−−−−⇀↽−−−−
k2

K, φ
k3−−−−⇀↽−−−−
k4

S, (7)

with the following reaction rates:

k1 = αk +
βkKn

kn
k + Kn

, k2 =
δk

1 + K
Γk

+ S
Γs

,

k3 =
βs

1 + ( K
ks

)p
, k4 =

δs

1 + K
Γs

+ S
Γs

.

These reactions will serve as the starting point for developing

and simulating a discrete stochastic model for competence

in the next section.

III. CHEMICAL MASTER EQUATION: DESCRIPTION AND

ANALYSIS TOOLS

The CME describes the evolution of the probability density

vector describing the number of molecules of ComK and
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ComS. Obtaining a solution for the CME allows calculating

the probability of entering into competence. Starting from

a number of molecules (x0, y0), the probability of being at

(x, y) molecules at time t has the following dynamics:

ṗ(x; t) = −p(x; t)
4

∑

µ=1

aµ(x) +
4

∑

µ=1

p(x − νµ; t)aµ(x − νµ), (8)

where νµ is the stoichiometry vector and it represents the

change that reaction µ will have on the number of molecules

of each of the species. Reaction 1 increases ComK by one

molecule and leaves the number of molecules of ComS

unchanged so the propensity vector µ1 is (1, 0)T . Written

in vector form, the CME becomes

ṗ(x; t) =

[

−
4

∑

µ=1

aµ(x) a1(x − ν1) a2(x − ν2) · · ·

a3(x − ν2) a4(x − ν4)

]













p(x; t)
p(x − ν1; t)
p(x − ν2; t)
p(x − ν3; t)
p(x − ν4; t)













, (9)

where 4 corresponds to the number of reactions that the

species would go through. Let X = (x1,x2, . . .)
T be a

vector of the possible states of the system. Let P (X, t) be

the corresponding vector of probabilities of the states in

X computed at time t. P (X, t) evolves according to the

equation

Ṗ (X; t) = A · P (X; t). (10)

In general, X may be infinite, resulting in an infinite dimen-

sional system.

A. Stochastic Simulation Algorithm

Getting exact values for the solution to the CME is not

generally an easy task. In this part subsection we use the SSA

to simulate (9). The SSA is a Monte-Carlo based algorithm

that generates sample paths for the underlying stochastic pro-

cess [18]. We applied SSA to both the full model presented in

(1)-(4), as well as the reduced model presented in (7). When

running numerical simulations, we set the initial number

of molecules to be (ComK, ComS) = (25, 225). All runs

simulate 40 hours of molecular reactions. The initial starting

point roughly corresponds to the mean steady state values

of the reduced model. The cell is considered competent,

when the number of ComK molecules crosses the threshold

ComK = 80. We study the probability with which the

number of molecules cross this threshold.

Figure 1 shows one SSA run where both ComK and

ComS concentrations were plotted. Competence is clear in

this case, and is detected by both the high level of ComK

and the negative correlation between ComK and ComS. The

negative correlation corresponds to the negative feedback

between ComK and ComS. In 10000 SSA runs, we found

that the cell entered in competence 341 times, corresponding

to an approximate probability 0.341. Using SSA to get an

estimate of the probability of entering into competence is
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Fig. 1: This figure shows a single SSA run. The high level of

ComK (shown in blue), as well as the negative correlations

between ComK and ComS (shown in red) is a characteristic

of competence.

easy to implement. However, a large number of simulations

is required to get a reasonable estimate of the probability.

An alternative method is introduced in the next section.

B. Finite State Projection

In the CME presented in (9), the probability density

vector evolves on an infinite lattice and results therefore

in an infinite dimensional system (see Figure 2). In [15],

Munsky et al. introduces a method to compute an analytical

approximate for the probability vector to take values in a

given region of the subspace. For our purposes, instead of

dealing with the infinite lattice, one can think of aggregating

a suitable portion of the state space into one state. This

state corresponds to levels of the ComK and ComS proteins

and describes a state that the cell is in. We retain all the

chemical reactions in the original system and allow the

system to change states reversibly inside the original system.

The transition to the aggregated region are kept, while the

transitions allowing return from the aggregated region are

deleted. This makes the new state an absorbing state and

we are interested in calculating the probability with which a

cell visits the absorbing state within a determined reaction

time (see Figure 2 for illustration). The finite state projection

method gives the probability of being at any of the states

inside the specified region at any point in time. In this

problem we are interested in finding the probability with

which ComK crosses a certain threshold (ComK = 80).
This corresponds to the probability with which a cell enters

in competence. The sum of the probabilities of being at any

of the states has to equal one at all times. Moreover the

sum of the probabilities of being at any state inside the

projected region without ever leaving the region, and that

of the probability of leaving the region once within a time T

should also sum to one. These properties, make FSP a very

well suited numerical method to solve our problem.

The probability vector at time T is given as in (10) by

P (X, T ) = exp(AinfT )P (X, 0), (11)

where Ainf is an infinite matrix and P (X, 0) is the ini-

tial distribution of the probabilities. We aggregate into one

absorbing state, Xexit, all the states outside the projection
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Fig. 2: Each region of the subspace describes the number of

molecules of ComK and ComS. Based on the description of

the state of interest a region is chosen and aggregated into

one absorbing state. The remaining part of the state space is

left intact.

region. We can then project the infinite system in (11) into

the following finite system:

P (XJ , T ) = exp(AT )P (XJ , 0).

Here, A is a finite matrix, and XJ is a finite vector of

projected states. The A matrix is built as follows

Aji =







−
∑4

µ=1 aµ(Xi), for i = j,

aµ(Xi), for all j such that xj = xi + νµ,

0, otherwise.

Here, µ, νµ and aµ are the terms appearing in (8). If x(t)
denotes the underlying stochastic process, P (XJ , T ) gives

the probability of x(t) being in any of the states listed in

XJ during the time [0, T ], conditioned on the event of never

leaving the inside region for any time t ∈ [0, T ]. We can

rewrite the probability as the conditional probability

P (XJ , T |x(t ≤ T ) 6= Xexit) = exp(AT )P (XJ , 0),

where Xexit accounts for the aggregation of the outside

region. The probability of being inside the region XJ without

ever leaving it during the interval [0, T ] and the probability of

visiting Xexit once should sum to one (Xexit is an absorbing

state). Therefore

P (x(t ≤ T ) = Xexit) = 1 − 1T exp(AT )P (XJ , 0).

The equation above gives the probability of exiting the

specified region at least once within a time T . The region

being projected into an absorbing state, corresponds to

ComK > 80. The probability with which the state of the

system reaches Xexit corresponds then to the probability

with which the cell reaches a state of competence. Denoting

P (XJ , t) by P(t) and P (Xexit, t) by pexit(t) we can see

that the probability of competence at time t, pexit(t), is given

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1
Reduced and full models using SSA and FSP

 

 

β
k
 (Saturating expression of ComK positive fdbk) in nM/s

P
ro

b
ab

il
it

y
 o

f 
co

m
p

et
en

ce

FSP reduced

SSA full

SSA reduced

Fig. 3: This figure shows the probability of entering in

competence when βk is varied.

by

(

Ṗ

ṗexit

)

=

(

A 0
b 0

)(

P

pexit

)

, (12)

where b is chosen so that the columns of the state transition

matrix add up exactly to zero. Using the above formulation,

we find that the probability of entering in competence at least

once in 40 hours is 0.3339 (compare to 0.341 estimated from

10000 runs of SSA). The slight difference between the SSA

and the FSP results comes from the fact that 10000 runs of

SSA might not be enough to get a proper estimate on the

probability.

C. Reduced model analysis with SSA and FSP

We present in this section a comparison between the full

and reduced models for the competence gene regulatory

circuit. The full model was presented in Equations (1)-(4),

while the reduced model was presented in Equations (5)-

(6). Deterministic characterizations of both models were

presented in [13]. We simulate both models using SSA and

compare the probability of entering in competence as the

parameters presented in Table II were changed. We show

in Figures 3 and 4 the effect of the saturating expression

of ComK and of the unrepressed expression of ComS on

the probability with which a cell enters in competence. We

also compare in these figures, the results given by the SSA

and the FSP method, when applied to the reduced model.

Our numerical results show that SSA and FSP give similar

results for the reduced model. Finally, our numerical results

shown in these figures also confirm that the reduced model

approximates the full model very well. The plots in Figures 3

and 4 show simulations from the full model using SSA

(black), the reduced model using FSP (blue) and the reduced

model using SSA (red). SSA results were generated by

averaging over 10, 000 runs. For each data point, the error

indicated by the errorbar is no larger than ±0.025 with a

certainty no smaller than 0.999. This is to be compared to

an upper bound of 10−3 when using FSP.

We next show how FSP can be used to conduct a sensi-

tivity analysis with respect to the parameters of the system.
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Fig. 4: This figure shows the probability of entering in

competence when βs is varied.

IV. NUMERICAL METHOD FOR SENSITIVITY

In this section, we illustrate how the analytical solution

of the CME can be used to conduct a sensitivity analysis

indicating the dependence of the stochastic switching in bac-

teria to various system parameters such as binding affinities,

transcription rates, degradation rates, etc. We then compare

answers obtained using the analytical solution to the CME

to estimates of sensitivities that we obtained using a finite

difference method.

Recalling that Ṗ = AP, suppose we are interested in

looking at the sensitivity of P with respect to a parameter λ,

which represents one of the parameters presented in Table II.

The jth entry in P is given by p = ejP, where ej , is an 1×n

vector with 1 in the jth entry and zero everywhere else. We

then have from equation (9) that ṗ = ejṖ = ejAP. Letting

λ represent any of the parameters {αk, βk, βs, δk, δs}, and

using the fact that
d

dp

dt

dλ
=

d
dp

dλ

dt
, we get ṗλ = ejAλP+ejAPλ

where Pλ is defined to be dP
dλ

. Similar equations hold for

pexit. Hence we have the following system:








Ṗ

ṗexit

Ṗλ

ṗexitλ









=









A 0 0 0
b 0 0 0

Aλ 0 A 0
bλ 0 b 0

















P

pexit

Pλ

pexitλ









. (13)

Solving the above linear system, we obtained the sensitivity

of the exit probability to all the parameters, evaluated at the

nominal values given in Table II.

The results for normalized sensitivities are shown in table

I. We next compute the same terms numerically, according

to the following formula: S = P (λ0+δλ)−P (λ0)
δ

, where λ0 is

the nominal value of the parameter, and

λ = λ0 + δλ, δλ = 0.001×
λ0

2l
l = 0, ..., 10. (14)

To summarize, the sensitivity presented in table I are calcu-

lated in two different ways:

Analytical derivative: In the first method we solve the

double order system in (13). This results in more accurate

answers but is more computationally expensive.

Finite difference: In the second method, we use the

solutions for the original system describing the evolution of

the probabilities of the states presented in (12) in addition to

the numerical approximation method presented in (14) with

l = 10. This method is less accurate than the first but is

considerably faster to implement.

V. CONCLUSION

Competence is an exhaustive state for the cell, nevertheless

it is occasionally necessary. The plot in figure 3 shows that

an increase in βk increases the probability of entering in

competence. Our calculations also show that an increase in

δs has a similar effect to an increase in δk. Remember that

δk is the degradation rate of ComK, and δs is the degradation

rate of ComS. Also recall that whenever the number of ComS

molecules is smaller, more MecA molecules will be available

for ComK binding. And clearly a degradation of ComK will

lead to a decrease in the number of ComK molecules. So

both a low number of ComS molecules and the degradation

of ComK lead to driving the cell back to its vegetative

state and decrease the probability with which it enters in

competence. This explains the similarity in the effect of δk

and δs. Although Figures 3 and 4 show that ComK and

ComS have similar roles in driving a cell into and back from

competence, table I suggests that changes in ComS affected

by the values of (βs, δs) affect the probability of entering and

staying in competence more than changes in ComK affected

by the values of (βk, δk). This leads to the expectation that

the genetic circuits controlling ComS levels need to be much

more sophisticated and complex than those regulating ComK

in order to keep ComS concentration at specific values.

In this paper we developed a discrete stochastic model for

competence in Bacillus subtilis. We performed simulations

of the model using Monte Carlo based SSA and verified

that the reduced order model gave a valid approximation of

the full model. We then applied the recently developed FSP

method to the reduced model and computed the probability

of competence, where competence has been defined in terms

of the trajectory leaving a certain region of the state space.

Having the analytical solution, we were able to conduct

sensitivity analysis of entrance in competence with respect

to the model parameters.

This paper presents numerical methods that are applicable

to many biological systems that exhibit a transient behavior.

In summary these methods were shown to be very useful in

studying the competence network in a cell, and in answering

questions about the computation of the probabilities of events

in a biological network. They were also useful in studying

sensitivities of these events when expression for proteins,

their degradation rate, repression rates or activation rates

are changed. Finally, the methods introduced in this paper

showed how expected times for trajectories for return from

transient states can be calculated. Many other terms charac-

terizing different transient physiological behaviors, such as

the number of molecules that are most likely to enter in the

transient states, and the return trajectories that are most likely

to be taken can be computed using similar approaches to the

one discussed in this paper.

2300



TABLE I: Sensitivity of the system with respect to various

system parameters, when the parameters are set to their

nominal values as presented in [13].

αk βk βs δk δs

Analytical derivative 4.9931 8.4417 43.0166 -11.9632 -43.1321

Finite difference 4.9844 8.2370 42.3560 -11.9632 -43.0821
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