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Abstract— This paper examines robust partially mode de-
lay dependent H∞ output feedback controller design for
discrete-time systems with random communication delays. A
finite state Markov chain with partially known transition
probabilities is used to model random communication delays
between sensors and controller. Based on Lyapunov-Krasovskii
functional, a novel methodology for designing a partially mode
delay-dependent output feedback controller is proposed. Using
cone complementarity linearization algorithm bilinear matrix
inequalities (BMIs) are solved to obtain the controller gains.
We also show that the results for completely known transition
probabilities and completely unknown transition probabilities
can be derived as special cases of our result. The effectiveness of
the proposed design methodology is demonstrated by a numer-
ical example. To the best of authors’ knowledge, the problem of
designing an output feedback controller for a partially known
transition probability has not been fully investigated.

I. INTRODUCTION

Networked control systems (NCSs), where the spatially
distributed system components are connected via a network,
are a branch in control systems that has been receiving
significant research interest in recent years. Its main feature,
lack of wires, provide several advantages such as modularity,
quick and easy maintenance and low cost, most of which
have been very difficult to achieve in traditional point-to-
point architecture [1]-[5]. Introduction of network in the
control loop and the limited bandwidth of the network creates
numerous challenges, mainly network induced delays. Since
these delays are usually time-varying and nondeterministic,
the traditional control methodologies for time delay systems
(TDSs) may not apply to NCSs [6]-[10]. Other issues such
as packet dropout, packet reordering, quantization error and
variable sampling/transmission intervals also contributes to
the need for a specific control scheme.

In many literatures, Markov chain is used to model the
network delays, making the overall system Markov jump
systems (MJSs)[11]-[16]. However in complex systems, it
is very difficult to obtain fully known transition probability
matrix. This has fueled recent researches where the transition
probably matrix is partially known [15], [16]. In [15], a
mode-dependent state feedback controller is designed where
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the controller gain is not only dependent on the delay upper
bound but also the delay range. However, this approach is
still conservative since it is not completely mode-dependent.
The paper in [15] derives the conditions for the existence
of the controller by completely separating the known and
unknown parts, which makes it even more conservative,
that is the unknown part does not contain any transition
probabilities. In [16] H∞ filtering problem is investigated
where the unknown elements are estimated. This particular
filtering design method bridges two extreme cases, mode-
independent and mode-dependent. However this method does
not contain transition probabilities in the filtering design. In
[18] H∞ output feedback control of NCSs, with completely
known transition probabilities, is considered. In this paper we
adapt the approaches in [18] and [19], where H∞ state feed-
back control of NCSs with partially known transition prob-
ability matrix is considered, to investigate output feedback
control of NCSs with partially known transition probability
matrix. To the best of authors’ knowledge this has not yet
been investigated in NCSs with partially known transition
probability matrix.

The aim of this paper is to consider a class of uncertain
discrete-time linear systems with random communication
delays. A Markov chain with a partially known transition
probability matrix is used to model the network induced
delay. The number of nodes in the Markov chain depends
on the number of possible delays in the network. A par-
tially mode delay-dependent output feedback controller is
proposed based on the Lyapunov-Krasovskii functional. The
partially mode delay dependent controller is obtained by
solving Bilinear matrix inequalities (BMIs) using the cone
complementarity linearization algorithm.

The main contributions of the paper can be summarized
as follows:
• The existing method in [15] handles the unknown part

without using any transition probability information.
However we know that the sum of unknown transition
probabilities is equal to one minus the sum of known
transition probabilities. Therefore, in this paper, we
incorporate this information into the unknown part to
yield less conservative results.

• It is shown that the proposed method is a generalization
of completely known [20] and completely unknown

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 1680



Fig. 1. Networked control systems with sensor-to-controller delay

transition probabilities [21]-[24].
The rest of the note is organized as follows. Section II
presents system description and definitions including mod-
eling of the delays using a finite state Markov chain with
partially known transition probabilities. Section III proposes
an algorithm to solve BMIs in order to obtain partially
mode-dependent controller gains for systems with partially
known transition probability matrix. Section IV illustrates
the effectiveness of the proposed design methodology using
a servo motor system. Conclusions are presented in Section
V.

II. SYSTEM DESCRIPTION AND DEFINITIONS

Consider the simple system setup in Figure 1. A class of
uncertain discrete-time linear systems under consideration is
described by the following model:

x(k + 1) = [A+ ∆A(k)]x(k) + [B1 + ∆B1(k)]w(k)

+[B2 + ∆B2(k)]u(k), x(0) = 0

z(k) = [C1 + ∆C1(k)]x(k)

+[D11 + ∆D11(k)]w(k)

+[D12 + ∆D12(k)]u(k)

y(k) = C2x(k) (1)

where x(k) ∈ <n, u(k) ∈ <m, z(k) ∈ <m1 , y(k) ∈ <m2

are the state, input, controlled output and measured output,
respectively and w(k) ∈ <m3 is the disturbance which
belongs to L2[0,∞), the space of square summable vector
sequence over [0,∞]. The matrices A, B1, B2, C1, D11,
D12 and C2 are of known dimensions. The matrix functions
∆A(k), ∆B1(k), ∆B2(k), ∆C1(k), ∆D11(k) and ∆D12(k)
represent the time-varying uncertainties in the system which
satisfy the following assumption.

Assumption 2.1:[
∆A(k) ∆B1(k) ∆B2(k)
∆C1(k) ∆D11(k) ∆D12(k)

]
=

[
E1

E2

]
F (k)

[
H1 H2 H3

]

where Hi and Ei are known matrices which characterize
the structure of the uncertainties. Furthermore, there exists a
positive-definite matrixW such that the following inequality
holds:

FT (k)WF (k) ≤ W (2)
Let {rk, k} be a discrete homogeneous Markov chain

taking values in a finite set S = {1, 2, · · · , s}, with the
following transition probability from mode i at k to mode j
at time k + 1

pij := Prob{rk+1 = j|rk = i}

where i, j ∈ S.
In this paper, the random delays τk is modeled by a finite

state Markov process as τk = τ(rk) with 0 ≤ τ(1) <
τ(2) < · · · < τ(s) ≤ ∞. We assume that the controller
will always use the most recent data, that is, if there is no
new information coming at step k + 1 (data could be lost
or there is a longer delay), then x(k − τk) will be used for
feedback. Thus the delay τk can only increase at most by 1
at each step, and we constrain

Prob{τk+1 > τk + 1} = 0

Note that it is very unlikely that all the elements in
the transition probability matrix are known especially when
the systems are complex. Along with this assumption, the
structured transition probability matrix [25] is restructured
as shown below:

Pτ =


p11 p12 0 0 . . . 0
? ? p23 0 . . . 0
...

...
...

...
. . .

...
...

...
...

...
... p(s−1)s

ps1 ? ? ps4 . . . pss

 (3)

where “?” represents the unknown, but time-invariant terms.
Note 0 ≤ pij ≤ 1 and

∑i+1
j=1 pij = 1.

In this paper, the controller is in the following form:

x̂(k + 1) = Ac(i)x̂(k) +Bc(i)y(k − τk)
u(k) = Cc(i)x̂(k)

(4)

where x̂(k) is the controller’s state, Ac(i), Bc(i) and Cc(i)
are the controller matrices. The closed loop system of (1)
with (4) is given as follows:

ζ(k + 1) = [Acl(i) + Ē1F (k)H̄1(i)]ζ(k)

+Bcl(i)C̄2ζ(k − τk)

+[B̄1 + Ē1F (k)H2]w(k)

z(k) = [Ccl(i) + E2F (k)H̄1(i)]ζ(k)

+[D11 + E2F (k)H2]w(k). (5)
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where ζ(k) = [x(k) x̂(k)]
T ,

Acl(i) =

[
A B2Cc(i)
0 Ac(i)

]
, Bcl(i) =

[
0
Bc(i)

]
,

B̄1 =

[
B1

0

]
, C̄2 =

[
C2 0

]
,

Ē1 =

[
E1

0

]
, H̄1(i) =

[
H1 H3Cc(i)

]
,

Ccl(i) =
[
C1 D12Cc(i)

]
.

In this paper we denote

SiK , {j : if pij is known},
SiUK , {j : if pij is unknown} (6)

where ∀i ∈ S.
Moreover, for SiK 6= ∅, the following is defined.

SiK = {Ki1, . . . ,Kim}, 1 ≤ m ≤ s (7)

where Kim ∈ N+ represents the mth known element in
the ith row of matrix Pτ . Also we denote piK ,

∑i+1
j∈Si

K
pij

and piUK ,
∑i+1
j∈Si

UK
pij respectively.

Problem Formulation: Given a prescribed γ > 0 design
an output feedback controller of the form (4) such that

1) the system (1) with (4) and w(k) = 0 is stochastically
stable, i.e., there exists a constant 0 < α < ∞ such
that

E

{ ∞∑
`=0

xT (`)x(`)

}
< α (8)

for all x(0), r0.
2) Under the zero-initial condition, the controlled output

z(k) satisfies

E

{ ∞∑
k=0

zT (k)z(k)|r0

}
< γ

∞∑
k=0

wT (k)w(k) (9)

for all nonzero w(k).
The following lemmas which will play a vital role in

deriving our main results are shown below.
Lemma 2.1: [19] Let x̄(k) = x(k+1)−x(k) and ζ̃(k) =[
ζT (k) ζT (k − τ(rk)) wT (k) ζT (k)H̄T

1 (i)FT (k)

ζT (k − τ(rk))C̄T2 H
T
3 F

T wT (k)HT
2 F

T (k)
]T
∈ <l, then

for any matrices R ∈ <n×n, M ∈ <n×l and Z ∈ <l×l
satisfying [

R M
MT Z

]
≥ 0 (10)

the following inequality holds

−
k−1∑

i=k−τk

x̄T (i)Rx̄(i) ≤ ζ̃T (k)
{

Υ1+ΥT
1 +τkZ

}
ζ̃(k) (11)

where Υ1 = MT [diag{I, 0} diag{−I, 0} 0 0 0 0].

Lemma 2.2: [16] For given scalars a1 ≥ 0 and bi ≥
0, i = 1, 2, . . . , N , we have

N∑
i=1

aibi ≤
N∑
i=1

ai

N∑
i=1

bi (12)

Lemma 2.3: [16] For given scalar λ ≥ 0 and matrix Pi ≥
0, i = 1, 2, . . . , N , we have

N∑
i=1

λiPi ≤
N∑
i=1

λi

N∑
i=1

Pi (13)

III. ROBUST DELAY DEPENDENT H∞ OUTPUT
FEEDBACK CONTROL DESIGN WITH PARTIALLY KNOWN

TRANSITION PROBABILITIES

The following theorem proposes stability criteria for the
system shown in (1) with partially known transition proba-
bilities.

Theorem 3.1: [19] For given controller gains K(i), i ∈
S, and γ > 0, if there exist sets of positive-definite matrices
P (i), R1(i), R1, R2(i), R2, W1(i), W2(i), W3(i), Q, Z(i)
and matrices M(i), Ω1(i), Ω2(i), ∀i ∈ S, satisfying the
following inequalities

R1 > R1(i), R2 > R2(i) (14)

Λ(i) + ΓT2 (i)τ(s)R2Γ2(i) + Υ1(i) + ΥT
1 (i) + τ(i)Z(i)

+ΞT (i)Ξ(i) + Ω1(i) + Ω2(i) < 0 (15)

ΓT1 (i)P̃K(i)Γ1(i)+ΓT2 (i)τ̃KR1Γ2(i)−Ω1(i) < 0, ∀j ∈ SiK
(16)

(
1− piK

) [
ΓT1 (i)P (j)Γ1(i) + ΓT2 (i)τ(j)R1Γ2(i)

]
−Ω2(i) < 0, ∀j ∈ SiUK (17)

and

[
(1− pi(i+1))R1(i) +R2(i) M(i)

MT (i) Z(i)

]
≥ 0 (18)[

piKR1(i) +R2(i) M(i)
MT (i) Z(i)

]
≥ 0, pi(i+1) ∈ SiUK (19)

where

Γ1(i) =
[
Acl(i) Bcl(i)C̄2 B̄1 Ē1 Ē1 Ē1

]
Ξ(i) =

[
Ccl 0 D11 E2 E2 E2

]
Γ2(i) =

[
Ā 0 B̄1 Ē1 Ē1 Ē1

]
Υ1 = MT [diag{I, 0} diag{−I, 0} 0 0 0 0]

P̃K(i) =
∑i+1
j∈Si

K
pijP (j)

τ̃K(i) =
∑i+1
j∈Si

UK
pijτ(j)

Ā =

[
A− I B2Cc(i)
0 0

]
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Λ(i) = diag
{(

(τ(s)− τ(1) + 1)Q

+H̄T
1 (i)W1(i)H̄1(i)− P (i)

)
,(

C̄T2 H
T
3 W2(i)H3C̄2 −Q

)
,(

HT
2 W3(i)H2 − γI

)
,

−W1(i),−W2(i),−W3(i)
}

(20)

Then the closed-loop system is stochastically stable with
the prescribed H∞ performance.

The following theorem provides a robust H∞ controller
design procedure for the system (1) with partially known
transition probabilities.

Theorem 3.2: For a given γ > 0, if there exist sets
of positive-definite matrices X(i), Y (i), Y(i), R̃1(i), R̃1,
R̃2(i), R̃2, W1(i), W2(i), W3(i), Q, Q, W̃1(i), W̃2(i),
N1, N2, Z̃(i), S(i, j) and matrices M̃(i), Ω̃1(i), Ω̃2(i),
A(i), B(i), C(i) and J(i) for i = 1, 2, · · · , s satisfying the
following inequalities

R̃1 > R̃1(i), R̃2 > R̃2(i) (21)

 −Ω1(i)
√
piKΓ̃T1 (i)

√
τ̃kΓ̃T2 (i)

∗ −ΦK(i) 0
∗ ∗ −N1

 < 0, ∀j ∈ SiK

(23)[
S(i, j) JT (i)
∗ Y (j)

]
> 0 (25)

[
(1− pi(i+1))R̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0 (26)[

piKR̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0, pi(i+1) ∈ SiUK (27)

and

N1R̃1 = I, N2R̃2 = I, W̃1(i)W1(i) = I

and W̃2(i)W2(i) = I, (28)

where

Λ̃(i) = diag
{
−
[
Y (i) I
I X(i)

]
,−Q,(

HT
2 W3(i)H2 − γI

)
,−W1(i),−W2(i),

−W3(i)
}

Γ̃1(i) =
[
Ǎcl(i) B̌cl(i)C̄2(i) B̌1 Ě1 Ě1 Ě1

]
Γ̃2(i) =

[
Ǎ(i) 0 B̄1 Ē1 Ē1 Ē1

]
Γ̃3(i) =

[√
(τ(s)− τ(1) + 1)T (i)

0 0 0 0 0
]

W = diag
{
W̃1(i), W̃2(i)

}

ΦK =
[
piK
(
S̃(i)− J(i)− JT (i)

)
I

I∑i+1
j∈Si

K
pijX(j)

]
ΦUK =

[ (
1− piK

)−1(
S̄(i)− J(i)− JT (i)

)
I

I

(1− piK)
∑i+1
j∈Si

UK
X(j)

]
Ξ̃(i) =

[
Čcl(i) 0 D11 E2 E2 E2

]
H =

[
Ȟ1(i) 0 0 0 0 0

0 H3C̄2 0 0 0 0

]
Υ̃1(i) = M̃T (i)[diag{I, 0} diag{−I, 0} 0 0 0 0]

Ǎcl(i) =

[
AY (i) +B2C(i) A

A(i)
∑i+1
j=1 p̄ijX(j)A

]
B̌1(i) =

[
B1∑i+1

j=1 p̄ijX(j)B1

]
Ǎ(i) =

[
(A− I)Y (i) +B2C(i) A− I

0 0

]
Čcl(i) =

[
C1Y (i) +D12C(i) C1

]
T (i) =

[
Y (i) I
Y (i) 0

]
, B̌cl(i) =

[
0
B(i)

]
Ȟ1(i) =

[
H1Y (i) +H3C(i) H1

]
Ě1(i) =

[
E1∑i+1

j=1 p̄ijX(j)E1

]

and

i+1∑
j=1

p̄ijX(i) =

i+1∑
j∈Si

K

pijX(j) + (1− piK)

i+1∑
j∈Si

UK

X(j)

i+1∑
j=1

p̄ijY
−1(j) =

i+1∑
j∈Si

K

pijY
−1(j)

+(1− piK)

i+1∑
j∈Si

UK

Y −1(j).

Then the closed-loop system is stochastically stable with
the prescribed H∞ performance. Furthermore, the controller
is given as follows:

Ac(i) =
( i+1∑
j=1

p̄ijY
−1(j)−

i+1∑
j=1

p̄ijX(j)
)−1

(
A(i)−

i+1∑
j=1

p̄ijX(j)(AY (i) +B2C(i))
)
Y −1(i)

Bc(i) =
( i+1∑
j=1

p̄ijY
−1(j)−

i+1∑
j=1

p̄ijX(i)
)−1
B(i)

Cc(i) = C(i)Y −1(i). (29)
Proof: The proof is omitted due to lack of space.
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Λ̃(i) + Υ̃1(i) + Υ̃T

1 (i) + τ(i)Z̃(i) + Ω̃1(i) + Ω̃2(i)
√
τ(s)Γ̃T2 (i) Γ̃T3 (i) Ξ̃T (i) HT (i)

∗ −N2 0 0 0
∗ ∗ −Q 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −W

 < 0 (22)

 −Ω2(i)
√

(1− piK)Γ̃T1 (i)
√

(1− piK)
∑
j∈Si

UK
τ(j)Γ̃T2 (i)

∗ −ΦUK(i) 0
∗ ∗ −N1

 < 0, ∀j ∈ SiUK (24)

∇∇∇
Remark 3.1: When SiUK = 0, we can see that the overall

result is reduced to systems with completely known tran-
sition probability matrix. When SiK = 0 the overall system
becomes that with completely unknown transition probability
matrix. Furthermore when SiK = 0 it is clear that the
system is no longer mode-dependent. Therefore it is clear
that existing literatures such as [20], where the transition
probabilities are completely known, or [21]-[24], where the
transition probabilities are completely unknown, are special
case of our proposed result.

In accordance with the cone complementary algorithm
[26], the nonconvex feasibility problem formulated by (21)-
(26) can be converted into the following nonlinear minimi-
sation problem subject to LMIs:

Minimize Tr
(
N1R̃1 + N2R̃2 + W̃1(i)W1(i) +

W̃2(i)W2(i) +QQ
)

Subject to (21)-(26) and

[
N1 I

I R̃1

]
≥ 0,

[
N2 I

I R̃2

]
≥ 0,[

W̃1(i) I
I W1(i)

]
≥ 0,

[
W̃2(i) I
I W2(i)

]
≥ 0,[

Q I
I Q

]
≥ 0 (30)

To solve this optimization problem, the algorithm shown
in [19] can be used.

IV. EXAMPLE

Consider a servo system where the discrete state space
representation of the system is given as follows:

A =

[
0.2802 −0.0273

1 0

]
B1 =

[
0.002
0.003

]
C1 =

[
0.8875 −0.1404

]
B2 =

[
0

0.1

]
D11 = 0 D12 = 0.005

(31)
and the uncertainties are characterized by matrices below:

E1 =

[
0.005
0.002

]
H1 =

[
0.007 0.002

]
E2 = 0.001 H2 = 0.004 H3 = 0.003 (32)

The delays are characterized by a Markov chain taking
values in a finite set S = {1, 2}, which correspond to
2, 3 seconds delays, respectively. The transition probability
matrix is given by;

Pτ =

[
0.4 0.6
? ?

]
(33)

Using Theorem III, we obtain the controller matrices as
follows:

Ac(1) =

[
0.2842 −0.0266
−0.0857 0.8772

]
Bc(1) =

[
0.0007
0.0059

]
Cc(1) =

[
−10.9181 8.7029

]
Ac(2) =

[
0.2820 −0.0267
−0.0691 0.9463

]
Bc(2) = 1× 10−3 ×

[
0.3987
−0.8123

]
Cc(2) =

[
−10.6811 9.3458

]
(34)

Consider the following two cases.
Case 1: Let us say that the transition probability matrix is
given by;

Pτ1 =

[
0.4 0.6

(0.3) (0.7)

]
(35)

Case 2: The transition probability is now given by;

Pτ2 =

[
0.4 0.6

(0.9) (0.1)

]
(36)

the results obtained for these cases are shown on Figure
2.

Remark 4.1: Figure 2, shows the ratio of energy of
the controlled output to the energy of the disturbance. In
Case 1, the attenuation level is approximately equal to√

2.1× 10−6 = 0.0014, which is less than the prescribed
level γ = 0.5. Similarly, the ratio is also less than the
prescribed level in Case 2. State transition is made according
to the transition probability matrices Pτ . The same controller
gains in (34) control systems with two different transition
probability matrix.

1684



Fig. 2. Ratio of energy of the controlled output to the energy of the
disturbance (γ = 0.5), Pτ1

V. CONCLUSIONS

In this paper, stability criteria and partially mode delay
dependent H∞ output feedback controller are developed for
a class of networked control systems. Random network-
induced delays are modeled by Markov processes with
partially known transition probability matrix. Conditions for
stochastic stability with a given attenuation gain are de-
rived by using Lyapunov-Krasovskii functional. The partially
mode delay dependent controller design technique is given
in terms of the solvability of bilinear matrix inequalities. An
iterative algorithm is proposed to change this non-convex
problem into quasi-convex optimization problems, which can
be solved effectively by available mathematical tools. Finally,
the effectiveness of the proposed design methodology is
illustrated by a servo motor numerical example.
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