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Abstract— Propagation of traveling waves along one-
dimensional networks of identical dynamical systems is ana-
lysed by suitably defining a family of ordinary differential
equations (ODEs) that describes the traveling wave itself. An
ODE of reduced order is derived for computing reference
solutions, which are then exploited to prove via implicit function
theorem the existence of similar solutions in the original
network. An example is included to illustrate the effectiveness
of the proposed approach.

I. INTRODUCTION

Networks of coupled dynamical systems arise in a wide

variety of fields, ranging from physics to biology to neuro-

science, just to name a few (see [1] and reference therein).

For example, brain stimuli move among different areas of the

brain by propagation of traveling waves across a network of

neurons [2]; similarly, ring networks of neurons have been

analysed as central pattern generators in the nervous system

[3]. Analogous models have been proposed to describe some

locomotory patterns such as crawling, where locomotion

is achieved by propagation of a peristaltic wave along the

animal body [4]. In physics, chains of masses linked by linear

or nonlinear springs have been used to model propagation

of information across networks [5] as well as in material

science [6]. Networks of dynamical systems have been also

proposed in computer science as a paradigm for analog

dynamic processors arrays, e.g. cellular neural networks [7]

have shown a great flexibility in generating patterns [8] and

self-emerging phenomena [9].

Understanding the basic mechanisms which give rise to

the emergence of such patterns represents a great challenge

due to the high dimension of state space of these systems, to

the rich family of behaviours that they can show and to the

nontrivial interplay between local rules and global behaviour.

Very often, as in all the above mentioned scenarios, the rele-

vant evolution of the network dynamics is well described by

the propagation of traveling waves across the nodes present

in the network itself. Being able to model traveling wave

propagation in networks can then be useful both for gaining

insights on existing behaviours and for designing systems

capable of sustaining waves having desired characteristics.

Several approaches have been proposed for analysing this

kind of problems. They include, for example, contraction

analysis [10] and harmonic balance techniques [11].

An alternative way for the analysis of networks of dynamical
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systems is considering the finite number of nodes as a

sampling from a continuous distribution of nodes with the

same dynamics. In other words, one tries to build a partial

differential equation whose solution evaluated at the location

of each system is close to the output of the system itself.

This allows for a dramatic reduction of the number of

parameters that are present in the systems, being both the

local dynamics and local interconnections collapsed into

a single equation. On the other hand, it leads naturally

to the problem of estimating how the partial differential

equation solution is close (in some sense) to the one given

by the original network. The reversed, and more diffused

in the literature, viewpoint is obviously simulating a partial

differential equation via a suitable network composed of a

finite number of dynamical systems, see, e.g., [12]. It has

been proved in [13] that the dynamics of a network of

dynamical systems is in general a broader class with respect

to the dynamics obtainable by partial differential equations.

This is mainly due to the presence of phenomena, such as

propagation failure, that are exclusive of spatially discrete

systems.

In this paper, we exploit the continuous interpolation

approach to study the existence of traveling waves and their

propagation in chains, i.e. one dimensional networks, of

nonlinear systems. Extensions to two- and three-dimensional

cases can be easily obtained as discussed in the text. In

particular, given a network, in Section II we introduce a

family of associated Partial Differential Equations (PDEs)

whose solutions approximate the network behaviour. We then

obtain a family of Ordinary Differential Equations (ODEs)

that describes the propagation of traveling waves in the cor-

responding PDEs. The ODE that provides the exact solution

of the traveling wave problem is an infinite order ODE, so a

reference finite order ODE is defined by truncating the higher

order terms. Conditions for the “equivalence” between the

nominal and the exact ODE solutions are obtained by the

implicit function theorem in Section III and an example is

included in Section IV to illustrate the proposed approach.

Notation. In the following we will denote as R the set

of real numbers and as R
+ and R

+

0 the set, respectively, of

positive and non-negative real numbers. The set of complex

numbers is referred to as C. Let f be a function f : [0, T ] →
R, then, we define its p-norm as

‖f‖p =

(

∫ T

0

|f |p
)

1

p

.

We indicate with L2 [0, T ] the space of functions with

‖f‖
2
< ∞. Given a normed space N and an operator
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M : N → N , the norm ‖M‖ is defined as

‖M‖ = sup
f∈N

f 6=0

‖M(f)‖

‖f‖
.

Moreover, given two Banach spaces X and Y with the

respective norms ‖·‖X and ‖·‖Y , we denote by X ⊕ Y the

space X × Y equipped with the direct sum norm

‖x⊕ y‖ = ‖x‖X + ‖y‖Y . (1)

Note that X ⊕ Y is a Banach space as well [14].

II. NETWORK OF DYNAMICAL SYSTEMS

In this section we introduce a procedure to investigate

traveling waves propagation in networks of evenly distributed

identical dynamical systems. For the sake of simplicity, here-

after we will introduce the procedure for dynamical systems

settled in one-dimensional spatial configurations (chains),

with periodic boundary conditions and first neighbours linear

connections. Generalizations of this framework to networks

with different types of connections are straightforward, as

briefly discussed in the last section.

The main idea consists in the definition of a suitable

ODE, whose periodic solutions can be related to the patterns

showed by the original network. Some preliminary observa-

tions are in order.

The studied solutions are traveling waves, hence the outputs

of the systems along the chain represent a sampling of their

temporal evolutions. Moreover, since the number of systems

equals the number of spatial samples, the network can only

sustain real traveling waves with suitable shapes according

to the Shannon theory [15]. In particular, the spatially

discrete system can not show traveling wave solutions having

spatial frequencies greater than one-half of the characteristic

frequency z−1, z being the distance between two nodes of

the network.

Let us now consider N identical dynamical systems placed

along a chain of total length l with pace z = l/N . Assume

that they admit the following n-th order ODE model in their

variables ξj(t) ∈ R, j = 1, . . . , N :

L0(D
n
t , . . . ,Dt, 1) ξj(t) =

= F0

(

Dn−1
t ξj(t), . . . ,Dtξj(t), ξj(t)

)

+

+ h−1ξj−1(t) + h1ξj+1(t) , (2)

where Dt is the time derivative, L0 expresses a linear

combination of its arguments, F0 : Rn → R is a scalar

nonlinear function of ξj and its derivatives and h−1 , h1 ∈ R

are constant. Systems of the form (2) are an extension of

the well known Lur’e model [16], which has been largely

studied in the literature as central element of dynamical

networks [11], [17]. In order to have a clear separation

between the state space of the networked systems and their

position along the chain, we introduce the spatial coordinate

x ∈ [0, l). We also assume as working hypothesis that the

network is subjected to periodic boundary conditions, so that

the equivalence relationship x + zN ≡ x holds. Moreover,

let us denote by xj the j-th node position. It follows that

xj±1 ≡ (xj ±z) mod l, being mod the modulo operator.

Definition 1: A function ξ(x, t) : R × R → R is an

interpolation of the network state, if ξ(xj , t) = ξj(t), ∀j =
1, . . . , N , ∀t ∈ R.

The interpolation property defines a class of equivalence.

Among all the functions which satisfy this condition, we

point out the subclass of the ones with the following property.

Definition 2: An interpolation ξ(x, t) of the network state

is said a regular approximation of the system solution, if it

admits along the coordinate x the power series development

of radius z

ξ(xj±1, t) =

+∞
∑

i=0

1

i!

∂i

∂xi
ξ(xj , t)(±z)

i ,

∀j = 1, . . . , N , ∀t ∈ R .
Note that in terms of regular approximations, the dynamics

of ξ (x, t) can be represented by a PDE of infinite order in the

space variable x. Indeed, denoting by Dt and Dx the partial

derivatives with respect to time and space respectively, the

above model can be formulated as:

L0(D
n
t , . . . ,Dt, 1) ξ(xj , t) =

= F0

(

Dn−1
t ξ(xj , t), . . . ,Dtξ(xj , t), ξ(xj , t)

)

+

+ (h−1ξ(xj−1, t) + h1ξ(xj+1, t)) = (3)

= F0

(

Dn−1
t ξ(xj , t), . . . ,Dtξ(xj , t), ξ(xj , t)

)

+

+

+∞
∑

i=0

1

i!
Di

xξ(xj , t)
(

h1 + h−1(−1)i
)

zi . (4)

In the following, we focus on a particular class of solutions,

namely traveling waves. To this aim, let us consider regular

approximations of the form

ξ(x, t) = ψ(kx− ct) = ψ(τ) ,

where ψ : R → R is a periodic function of period T in

τ . Observe that, since ψ describes a traveling wave that

propagates with phase velocity c/k, there is no ambiguity

in the interpolation of the network samples. Moreover, with

respect to ψ, equation (3) must hold at every point x.

Denoting as D the derivative of ψ with respect to τ and

observing that Dtξ(x, t) = −cDψ(kx− ct) and Dxξ(x, t) =
kDψ(kx− ct), in terms of regular approximation, it follows

that

ξ(x± z, t) = ψ(kx± kz − ct) = ψ(τ ± kz) =

= ψ(τ) ± zkDψ(τ) +
1

2
z2k2D2ψ(τ) + . . .+

+
1

(n− 1)!
(±z)n−1kn−1Dn−1ψ(τ)+

+

+∞
∑

i=n

1

i !
(±z)ikiDiψ(τ) .

Let us then define the spatial shift operator parametrized by

z,

S(z)ψ(τ) = h1ψ(τ + kz) + h−1ψ(τ − kz) ,
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the linear parametric operator

L1(D
n−1, . . . ,D, 1; z)ψ(τ) = (h1 + h−1)ψ(τ)+

+ (h1 − h−1)zkDψ(τ) +
1

2
(h1 + h−1)z

2k2D2ψ(τ) + . . .+

+
1

(n− 1)!

(

h1 + h−1(−1)n−1
)

zn−1kn−1Dn−1ψ(τ)

and their composition

G(Dn−1, . . . ,D, 1, S(z))ψ(τ) =

= z−n
(

S(z)− L1(D
n−1, . . . ,D, 1; z)

)

ψ(τ) =

=

+∞
∑

i=n

1

i!

(

h1 + h−1(−1)i
)

zi−nkiDiψ(τ) .

It is worth noticing that G(Dn−1, . . . ,D, 1, S(z))ψ(τ) →
(1/n!)knDnψ(τ) as z → 0. Then, (3) becomes

L0 ((−c)
nDn, . . . ,−cD, 1)ψ(τ) =

= F0 ((−c)
nDnψ(τ), . . . ,Dψ(τ), ψ(τ)) +

+ L1(D
n−1, . . . ,D, 1; z)ψ(τ)+

+ znG(Dn−1, . . . ,D, 1, S(z))ψ(τ) ,

which, for the sake of simplicity, can be rewritten in compact

form as

L(D; c, z)ψ(τ) = F0(D, ψ(τ); c) + znG(D, S(z))ψ(τ)
(5)

where

L(D; c, z)ψ(τ) = (L0(D; c) − L1(D; z))ψ(τ) . (6)

Therefore, the study of traveling waves propagation in the

original network (2) has boiled down to the investigation of

the periodic solutions of the associated ODE (5), which is

derived from the general interpolating PDE (4).

Definition 3: The n-th order reference ODE describing

the original network is defined as

L(D; c, z)ψ(τ) = F0(D, ψ(τ); c) . (7)

In the following section we will introduce a procedure to

study the existence of periodic solutions of (5), when the

dynamical system represented by (7) admits limit cycles.

III. EXISTENCE OF PERIODIC SOLUTIONS

Let us consider the complete ODE (5). For a fixed pair

(c, z), the operator L(D; c, z) produces a linear combination

of the input function and its derivatives. Then, if we apply

such an operator to periodic functions, the corresponding

kernel turns out being characterized only by the period and,

in particular, there may exist at most n different frequencies

related to it. Since L(D; c, z) does not change the period,

it is locally invertible when dealing with periodic functions

that do not belong to the kernel. Then, let us denote by

L−1(D; c, z) its inverse operator and consider the following

parametric form of (5):

ψ(τ) = Π(ψ(τ); ε) = (8)

= L−1(D; c, ε)
(

F0(D, ψ(τ); c) + εnG(D, S(ε))ψ(τ)
)

where we have introduced a parameter ε in place of z in

order to be able to vary it continuously. Assume that, for

ε = 0, ψ0 is a periodic solution of (8) with period T0 and

angular frequency ω0 = 2π/T0, that is ψ0 is a fixed point of

Π( · ; 0). Observe that the output of Π, when it is fed with

a periodic function of period T = 2π/ω, is still a periodic

function, that admits a unique representation in terms of the

functional basis of L2 [0, T ] provided by the powers of eω,

i.e. in terms of Fourier series development. Notice also that,

by introducing in (8) the time transformation τ 7→ τ∗ = τ/T ,

the periodic function ψ(τ) of period T reduces to a new

periodic function u(τ∗) = ψ(Tτ∗) ∈ L2 [0, 1]. However,

since the linear maps L, G and also the nonlinear function

F0 depend on multiple time derivatives of their arguments,

it follows that their periodic outputs depend on the original

angular frequency of the related periodic inputs.

Proposition 4: Any bounded periodic function can be

represented as a pair (u, ω) ∈ Q = L2 [0, 1] × R
+

0 , where

u specifies its shape and ω = 2π/T takes into account its

original period. Any non constant bounded periodic function

admits infinite isolated representations in Q.

Proof. The only non trivial point is given by the infinite

isolated representations. Let us consider a non constant

periodic function of period T = 2π/ω and observe that all

its equivalent descriptions can only be originated by different

way of expressing it as the concatenation of a certain unit

pattern. Then, all the alternative representations can only be

obtained by repeating the original pattern an integer number

n of times and recurring to the related angular velocity equal

to ω/n. This implies the existence of infinite descriptions,

which are also isolated along the ω coordinate. To complete

the proof, it is sufficient to notice that all the considered

operators are time invariant and thus time shifts can be

neglected. �

Remark 5: The space Q = L2 [0, 1]⊕ R
+

0 provided with

the direct sum norm (1) is a Banach space.

It is worth observing, that we can represent the parametric

operator Π as the map Π∗ : Q× R → Q defined by

Π∗(u, ω; ε) = [û, ω̂]
T
= (9)

=

[

L−1(ω; c, ε) (F0(u, ω; c) + εnG(ω, ε)u)
ω

]

,

where L, G and F0 acts on the shape of the input according

to the value of ω. Some considerations on Π∗ are in order. It

is straightforward to observe that G and L−1 (where L can

be inverted) are linear in u. Moreover, they are continuous

functions with respect to ω and ε. Notice also that F0 is

the composition of two different functions. Indeed, given

the original F0 in (2), we have that F0 in (9) is such that

F0(u, ω; c) = F0 (∆(ω)u; c), where ∆ : R → Cn is the

column operator defined as

∆(ω) =
[

ωn−1Dn−1 . . . ωD 1
]T

(10)

and it is responsible for the multiple time derivatives of u.

Proposition 6: If F0 in (2) is a continuous nonlinearity in

u, then Π∗(u, ω; ε) turns out to be a continuous operator in

u, ω and ε.

5045



Proof. The operator F0(u, ω) is continuous with respect

to its arguments, since the original nonlinearity is such and

∆ acts linearly on u and it is continuous on ω. Furthermore,

the continuity with respect to ε is trivial. Then, Π∗(u, ω; ε)
is a continuous operator as well, because it is a composition

of functions and operators which satisfy that property. �

Let us assume that F0 is differentiable in q0 = (u0, ω0),
which represents the fixed point of (8) for ε = 0, and let

DF0(u0, ω0) be its derivative in that point:

DF0(q0) = [DuF0(u0, ω0), DωF0(u0, ω0)] =

=
[

JF0(∆(ω0)u0) D∆(ω0)u0 ,

JF0(∆(ω0)u0) J∆(ω0) u0
]

,

where JF0 represents the Jacobian row vector of the original

F0 in (2), J∆ is the Jacobian column vector of the function

(10) with respect to ω and D∆ is the derivative with respect

to u of the function ∆(ω)u. Similar considerations hold for

L and G.

In order to study the existence of fixed points of (8) as ε
varies, let us introduce the operator H(q, ε) : Q × R → Q
defined as H(q, ε) = q − Π∗(q; ε) with q = (u, ω) ∈ Q.

According to Proposition 6 and the assumptions about the

differentiability property, H is defined and continuous on

Banach spaces, H(q0, 0) = (0, 0) and H is differentiable

in (q0, 0). In particular, the derivative DH(q0, 0) is a linear

operator defined by the matrix

DH(q0, ε) = (11)

=

[

1− L−1(ω0; c, ε)DuF0(u0, ω0) 0
J(L−1)(ω0; c, ε)J∆(ω0)DωF0(u0, ω0) 1

]

.

Proposition 7: Assume that

L−1(ω0; c, 0)DuF0(u0, ω0) 6= 1 . (12)

Then, the inverse map of the linear operator DH(q0, ε) is

bounded for sufficiently small ε.
Proof. The proof directly follows by checking the singular

value for the matrix operator in (11), also considering that

L−1(ω0; c, 0) is bounded, because of the hypothesis about

the existence of the nominal solution ψ0. �

Then, under condition (12) and according to the Im-

plicit Function Theorem [18], we can state that there exists

a continuous function q(ε) = (u(ε), ω(ε)) such that its

graph is contained in a sufficiently small ball centered in

((0, 0), r) and such that H (q(ε), ε) = H(q0, 0) = (0, 0).
The above reasoning proves that, when the reference ODE

has a bounded periodic solution for ε = 0, the map Π( · ; ε)
has a solution, which is close to it for a sufficiently small

ε < ε̄.
Proposition 8: Assume that L−1 admits the power series

development

L−1(u, ω; ε) = L−1(u, ω; 0) +Dε(L
−1)(u, ω; 0)ε+

+
1

2
D2

ε(L
−1)(u, ω; 0)ε2 + . . . . (13)

Then, for a sufficiently small ε the reference ODE (7) has a

periodic solution which is a better approximation than ψ0.

Proof. Under assumption (12) for a sufficiently small ε
there exists a periodic solution of the complete ODE (5).

Since the term with the lowest order in ε belongs to

L−1(u, ω; ε)F0(u, ω), being G a O(εn), it follows that the

reference ODE with ε 6= 0 represents a most suited operator

to describe the complete ODE when ε is sufficiently small.

�

Proposition 9: Let us assume that the reference ODE

admits a periodic solution ψ0(τ) for z = 0 and that

condition (12) is satisfied. Then, there exists a new network,

counting a sufficiently large numberN∗ of identical systems,

such that the reference ODE (7) with z∗ = l/N∗ has a peri-

odic solution ψz∗(τ), which is close to an existing periodic

solution of the complete network ODE (5), i.e. the admissible

traveling waves are approximated by ψz∗(kx− ct).
Proof. The proof is a direct consequence of the previous

results by choosing N∗ such that z∗ = l/N∗ < ε̄. �

IV. AN ILLUSTRATIVE EXAMPLE

In this section we show the effectiveness of the proposed

approach by considering an example where the features

of the solution of the reference ODE can be obtained by

analytical tools, whereas the direct analysis of the original

network dynamics is not trivial.

Let then consider a network composed of N third-order

dynamical systems with local nonlinearities, where each

system receives as input the sum of its first neighbours

outputs. The dynamics of the j−th system can be thus

written as

...
ξ j + αξ̈j + βξ̇j + γξj = ϕ (ξj) + δ (ξj+1 + ξj−1) , (14)

where ϕ(·) indicates the nonlinear function that acts on the

local dynamics. Comparing (14) with the generic expression

(2) we have L0 (Dn
t , . . . ,Dt, 1) = D3

t + αD2
t + βDt + γ,

F0

(

Dn−1
t ξj , . . . ,Dtξj , ξj

)

= ϕ (ξj) and h1 = h−1 = δ.

Note that equation (16) includes as special cases well known

systems like Coullet systems [19] and the Genesio-Tesi

system [20].

Introducing the interpolating function ξ (x, t) such that

ξj (t) = ξ (jz, t), the partial differential equation associated

with (14) boils down to

∂3ξ

∂t3
+ α

∂2ξ

∂t2
+ β

∂ξ

∂t
+ (γ − 2δ) ξ = ϕ (ξ) + δ

∂2ξ

∂x2
z2 ,

(15)

where we have truncated the Taylor expansion of ξj±1 at

the first non-vanishing spatial derivative. We are now able

to study the traveling wave solutions of (15) by setting

ψ (kx− ct) := ξ (x, t), thus obtaining

−c3ψ′′′ +
(

αc2 − δk2z2
)

ψ′′ − βcψ′ + (γ − 2δ)ψ = ϕ (ψ) ,
(16)

where the primes indicate derivatives with respect to the

moving coordinate τ = kx − ct. We note that the presence

of periodic boundary conditions imposes constraints on the

possible values that the wave number k can assume. In fact,
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given the total length l of the chain and the number N of dy-

namical systems, the periodic solution must have an integer

number of period fitted in l, so that k = s (Tτ/l) , s =
1, 2, . . . where Tτ is the period of the periodic solution

of the ODE (16). In the following simulations we always

choose s = 1, i.e. we make the hypothesis that only one

period of the ODE solution is fitted in the total length of

the chain. Moreover, as working hypothesis, we assume that

the systems of the network are naturally stable when isolated

(δ = 0). Then, we investigate if traveling waves may arise

when the connections are turned on (δ 6= 0). We consider

nonlinearities that vanish in the origin in order to have a

fixed point at ξj = 0. Necessary conditions for stability of

the linear part indicate that each isolated systems has a stable

fixed point in the origin if α > 0, γ > 0, β > γ/α. Let us

then consider, for example, the choice α = 1, β = 1.2, γ = 1
so that the isolated nodes are stable.

Let us now focus on the reference ODE (16). When δ = 0
the equation admits stable solutions only with c < 0 because

only in this case the leading term of (14) and (16) have the

same sign. In this case, the ODE (16) shows a stable fixed

point ψ (τ) = 0 and both the solutions of (16) and (14)

converge towards the origin. A positive interconnection gain

δ > 0 preserves the stability of this solution and all the

systems still converge toward the origin. On the other hand,

a negative interconnection gain δ < 0 makes the stable fixed

point lose its stability and the solution of the ODE converges

towards a stable limit cycle.

One can easily estimate some of the characteristics of this os-

cillating solution by noticing that the dynamical system (16)

can be expressed in Lur’e form, which counts on well estab-

lished theories for its analysis, such as describing function

and harmonic balance techniques [16]. Let us then assume

that the periodic solution of (16) can be well approximated

by a pure harmonic function ψ (τ) ≃ Bτ cos (ωττ). Then,

the nonlinear block ϕ can be substituted by its describing

function defined as N (Bτ , ωτ ) := B−1
τ (B + jA), where

B and A are defined as ϕ (Bτ cosωττ) ≃ B cos (ωττ) +
A sin (ωττ). The harmonic balance technique asserts that Bτ

and ωτ are such that

L (jωτ )N (Bτ , ωτ ) = 1 , (17)

where L (jωτ ) ∈ C is the frequency response of the linear

part of the system [16]. If ϕ (·) is a static nonlinearity, as in

this example, then A = 0, N (Bτ , ωτ ) = N (Bτ ) ∈ R and

(17) implies L (jωτ ) ∈ R, i.e. the frequency ωτ does not

depend on the nonlinearity. By imposing this condition in

(16), we obtain ωτ =
√

β/c2. Moreover, once the frequency

ωτ is known, the oscillation amplitude can be estimated by

solving (17) in the only unknown Bτ . In the following we

will focus only on the cubic nonlinearity ϕ (ξi) = ξ3i . The

describing function for the cubic nonlinearity is [16]

N (Bτ , ωτ ) =
3

4
B2

τ .

Notice that this describing function is monotonically in-

creasing in Bτ , which is a shared feature among several
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.,
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Fig. 1. Comparison between (a) reference ODE (16) solution ψ (τ), (b)
ξ1(t) given by the distributed dynamics (14) and (c) final spatial profile
ξ (jz,30) , j = 1, . . . 11.

nonlinearities (polynomial of arbitrary degree, hyperbolic

and so on...) and thus the qualitative behaviour of the network

is quite not affected by the exact shape of the nonlinearity.

Within this hypothesis, the harmonic balance equation (17)

provides the following estimate for the oscillation amplitude

Bτ =

√

4

3
[− (αc2 − δk2z2)ωτ + γ − 2δ] . (18)

Consider now the case δ = −0.2, l = 1, N = 11 and

c = −2 as illustrative example. The magnitude of the

interconnection gain δ is sufficient to make the fixed point

of (16) lose its stability and an Hopf bifurcation occours.

The harmonic balance estimates for the frequency and the

amplitude of oscillation read ωτ = 0.5477, Bτ = 0.4017,

whereas periodic boundary conditions impose k = 11.4715.

Note that obtaining these estimates directly from (14) would

have been not trivial.

To check the quality of these predictions, numerical simu-

lations have been performed as follows:

1) given the system parameters α, β, γ, δ, c, l and N ,

equation (16) is numerically integrated with random

initial condition close to the origin, thus obtaining

ψ(τ);
2) we sample ψ (τ) every kz unit of the moving coordi-

nate τ ;

3) we numerically integrate the distributed system (14) to

obtain ξj (t);
4) we check that the amplitude Bτ , the wave speed c and

the wave vector k estimated from the latter simulation

are in sufficient agreement with the ones imposed at

the beginning.

In Fig. 1 we compare the solutions given by the reference

ODE (16) with the distributed system (14) solution. Note

that ψ (τ) has a period twice as long as that of ξj (t), in

complete agreement with the hypothesis c = −2. Indeed, the

estimated c is −1.994, within less than one percent error. The

spatial wave profile obtained by fixing t = t̄ in the distributed

system solution and plotting ξj (t̄) at location z = (j−1)z is

reported at the bottom, showing that a full period is fitted in

the total length l, in agreement with the choice of k. The full

spatiotemporal profile is reported in Fig. 2. A discrepancy

exists between ODE and distributed system solutions ampli-

tude. Indeed, the amplitude of ξj (t) is 0.406, whereas that of
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Fig. 3. Percentage error on oscillation amplitude as a function of the
number N of chain elements.

ψ (τ) is 0.402 (about 1% error). This discrepancy is directly

related to the approximation introduced by neglecting the

exact ODE higher order dynamics to obtain the reference

ODE (16) and can be reduced by increasing the number N
of systems in the chain. In Fig. 3 the error on the amplitude

is plotted as a function of N , showing a monotone behaviour,

as expected.

V. FINAL REMARKS

In this paper we have analysed the propagation of traveling

waves along one-dimensional chains of dynamical systems.

We have proposed an approach based on the definition

of a partial differential equation whose solutions evaluated

at the position of each dynamical system are close to its

output. Then a traveling wave solution has been imposed,

thus obtaining a reference ODE. Conditions for the equiv-

alence between the solutions of the distributed system and

the reference ODE have been derived by implicit function

theorem to provide useful informations about the existence

of a class of traveling wave solutions in the original network.

An example has been included to show the effectiveness

of this approach. Similar qualitative results still hold for

different local dynamics and interconnections, although they

are not shown here due to space constraints. The presented

results, here used for analysing the possible behaviour of an

existing network, could also be exploited for designing the

local dynamics or interconnections with the goal of obtaining

a network capable of sustaining traveling waves with certain

desired characteristics.

Although we have considered networks with first-neighbours

interactions, long range coupling would only require con-

sidering higher order spatial derivatives in the derivation

of the associated PDE. Similarly, networks in two or three

dimensions can be studied by simply considering PDEs in

two- or three-dimensional spaces. In both these extensions

the only change is in the definition of the PDE, while the

remaining part of the results still holds.
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