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Abstract— This paper considers the switching time opti-
mization of time-varying linear switched systems subject to
quadratic cost—also potentially time-varying. The problem is
formulated so that only a single set of differential equations
need to be solved prior to optimization. Once these differential
equations have been solved, the cost may be minimized over
arbitrary number of modes and mode sequences without requir-
ing additional simulation. The number of matrix multiplications
needed to compute the gradient grows linearly with respect
to the number of switching times, resulting in fast execution
even for high dimensional optimizations. Lastly, the differential
equations that need to be simulated are as smooth as the
system’s vector fields, despite the fact that the optimization
itself is nonsmooth. Examples illustrate the technique and
its efficiency, including a comparison with other standard
techniques.

I. INTRODUCTION

This paper considers the linear quadratic switching time

optimization (LQSTO) problem—the problem of optimizing

a quadratic cost subject to the constraint of linear switch-

ing dynamics where the mode order is known ahead of

time—and formulates an efficient way of computing optimal

switching times. The primary result of this paper is showing

that a single set of differential equations may be solved

prior to optimization so that during optimization (e.g., during

computation of the gradient) no differential equations need to

be solved. This is in contrast to the optimization approaches

in [6], [7], [14], [15], which do not make full use of

the linearity of the switched system and therefore solve a

differential equation at every step of the descent algorithm.

Others have investigated the specific case of linear switch-

ing time control. Giua et al. [6], [7] present an optimal

control law that finds regions of the state space where

switches should occur. Their approach assumes the linear

modes are time-invariant as well as stable, neither of which

are requirements in the present work. Xu and Antsaklis [14],

[15] derive non-linear, switching time gradient and Hessian

calculations of the cost for steepest descent and Newton’s

method. The iterative descent-based approach as introduced

in Xu and Antsaklis’ work form the basis for the work in

This material is based upon work supported by the National Science
Foundation under award CCF-0907869 as well as the Department of Energy
(DOE) Office of Science Graduate Fellowship Program (DOE SCGF).
The DOE SCGF Program was made possible in part by the American
Recovery and Reinvestment Act of 2009. The DOE SCGF program is
administered by ORISE (which is managed by ORAU under DOE contract
number DE-AC05-06OR23100). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the NSF, DOE, ORAU, or ORISE.

T. M. Caldwell and T. D. Murphey are with the Department of Mechanical
Engineering, Northwestern University, 2145 Sheridan Road Evanston, IL
60208, USA E-mail: caldwelt@u.northwestern.edu ;
t-murphey@northwestern.edu

this paper. Egerstedt et al. [5] propose a computationally

more efficient adjoint-based gradient calculation, which only

requires solving two differential equations: the state and co-

state. In [3], [10], [11] the adjoint calculation for the Hessian

was identified, which also requires solving a constant number

of differential equations.

Xu and Antsaklis [14], [15] also consider the time-

invariant version of the LQSTO problem. Analogous to the

linear quadratic regulator problem of optimal controls (see

[1]), Xu and Antsaklis found that the gradient depends on the

state and a differential equation with solution specifying the

linear relationship between the state and co-state. By only

considering time-invariant switched systems, the evolution

of the state is dictated by the matrix exponential, which

allows one to avoid solving the state differential equation

numerically. However, under Xu and Antsaklis’ formulation,

the linear relation of the state and co-state must still be

numerically solved for at every step of a descent algorithm.

We present a formulation with two important differences.

We refer to our formulation as algebraic1 linear quadratic

switching time optimization (ALQSTO). First, ALQSTO

makes no assumption about the time-variance of the modes.

Therefore, ALQSTO does not exclude many important linear

systems. For example, power systems are often linear time-

varying [8], [12]. Also, the linearization about a trajectory

of a non-linear system, in general, is time-varying. Second,

ALQSTO generates a single set of differential equations

to be solved such that these differential equations are in-

dependent of the switching times as well as the assumed

mode sequence. Therefore, these differential equations must

be solved only once and off-line from the optimization. By

doing so, the state and Riccati equation may be computed al-

gebraically from the solutions of these differential equations

and moreover, the optimality equation (i.e., ∇J(T ) = 0)

does not require any additional differential equations to be

solved. For this reason, the optimization complexity does

not depend on the differential equations—they are only

computed once.

This paper is organized as follows:2 Section II reviews

switched systems. Section III, presents optimality con-

ditions for linear switched systems with quadratic cost.

The algebraic linear quadratic switching time optimization

(ALQSTO) problem is proposed in Section IV. Differential

equations are derived such that the state and a Riccati

relation may be computed from solutions to these differential

1We will use the term algebraic to refer to optimization procedures that
only need addition and multiplication to compute descent directions.

2This paper has been submitted to the IEEE journal, Transactions on
Automatic Control. That version includes a discussion on reference tracking.
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equations for any choice of switching times. Section V shows

how to apply the presented formulation to solve the LQSTO

problem using steepest-based methods.

II. REVIEW OF SWITCHED SYSTEMS

Switched systems are a class of hybrid systems that evolve

over a sequence of continuous modes of operation, where the

modes transition in a discrete manner. The times for which

the transitions occur are referred to as switching times. We

denote the set of strictly monotonically increasing switching

times as T = {T1, T2, . . . , TN−1}, where N is the number

of modes.

In this paper, the mode sequence is assumed to be known,

and therefore, the optimization is only over the switching

times. Mathematically, a switched system may be defined as

[3], [5], [13], [15]:

ẋ(t) = f
(

x(t), T , t
)

=

⎧

⎨

⎩

f1

(

x(t), t
)

, T0 ≤ t < T1

f2

(

x(t), t
)

, T1 ≤ t < T2

...
...

...

fN

(

x(t), t
)

, TN−1 ≤ t < TN

subject to: x(T0) = x0

(1)

where T0 is the initial time, TN is the final time, x0 is the

initial state, and fi : ℝ
n × ℝ 7→ ℝ

n is the vector field

corresponding to the ith mode in the assumed mode sequence.

III. OPTIMALITY CONDITIONS FOR LINEAR SWITCHED

SYSTEMS WITH QUADRATIC COST

According to [3], [5], the optimal switching times of the

cost functional,

J(T ) =

TN∫

T0

ℓ
(

�, x(�)
)

d� +m
(

x(TN )
)

,

must satisfy the following equations:3

ẋ(t) = f
(

t, x(t), T

)

, s.t.: x(T0) = x0 (2a)

�̇(t) = −D2f
(

t, x(t), T

)T

�(t)−D2ℓ
(

t, x(t)
)T

,

s.t.: �(TN ) = Dm
(

x(TN )
)T (2b)

0 = �T (Ti)
[

fi

(

Ti, x(Ti)
)

− fi+1

(

Ti, x(Ti)
)]

,

∀i ∈ (1, . . . , N − 1).
(2c)

The evolution of the state is given by Eq (2a) and the

evolution of the co-state is given by Eq (2b). Then, given

some set of optimal switching times, the corresponding

optimal state and co-state must satisfy Eq (2c). This set of

equations forms a necessary condition for optimality. We

refer to Eq (2c) as the set of optimality equations. Also,

3The notation D is the slot derivative. For a function g, Dg(⋅) is the
partial derivative of g with respect to its single argument. Similarly, Dig(⋅, ⋅)
is the partial of g with respect to the ith argument.

note that the right hand side of the optimality equations is

the gradient of the cost, ∇J(T ).
For this paper, we restrict our focus to linear time-varying

switched systems,

f
(

t, x(t), T

)

= A(t, T )x(t)

where A(t, T ) = Ai(t) for Ti−1 ≤ t < Ti. Moreover, we

choose a quadratic cost function such that

ℓ(t, x(t)) := 1
2 x(t)TQ(t)x(t) and

m(x(TN )) := 1
2 x(TN )TP1x(TN ).

(3)

where Q and P1 are symmetric positive semi-definite. Then,

the necessary condition, Eq (2), becomes

ẋ(t) = A(t, T )x(t), s.t.: x(T0) = x0 (4a)

�̇(t) = −A(t, T )T �(t)−Q(t)x(t),
s.t.: �(TN ) = P1x(TN ).

(4b)

0 = �T (Ti)[Ai(Ti)−Ai+1(Ti)]x(Ti),
∀i ∈ (1, . . . , N − 1).

(4c)

Notice that Eqs (4a) and (4b) make up a two-point boundary

value problem. As in the LQR from classical controls, we

will find a linear mapping between x and � in order to

transform the problem into an initial value problem.

A. The Linear Switched System Analog to the Riccati Equa-

tion from LQR

In the following theorem, the state, x(t), and co-state,

�(t), are shown to be linearly dependent through a Riccati

relation4.

Theorem 1: For optimizing a quadratic cost function de-

scribed by Eq (3) and subject to a linear time-varying

switched system of the form in Eq. (4a), the state, x(t), and

co-state, �(t), are linearly dependent:

�(t) = P (t)x(t),

where P (t) is the solution to the following linear differential

equation:

Ṗ (t) = −A(t, T )TP (t)− P (t)A(t, T )−Q(t),
s.t.: P (TN ) = P1.

(5)

Proof: The proof follows from manipulation of x(t) and

�(t) using the state-transition matrix. Begin with the solution

to ẋ (see Eq (4a)): x(t) = Φ(t, T0)x0, where Φ(t, T0)
is the state-transition matrix corresponding to A(t, T ) (i.e.
d
dt
Φ(t, T0) = A(t, T ) ⋅ Φ(t, T0)). Furthermore, the integral

form of the adjoint equation, �(t), is

�(t) = Φ(TN , t)TP1x(TN ) +

TN∫

t

Φ(�, t)TQ(�)x(�) d�.

4We use the term, Riccati relation, as it is used in optimal control
theory—as the variable specifying the linear mapping between the state
and the co-state. Here, the Riccati relation is the solution to a linear differ-
ential equation and should not be confused with the 2nd-order differential
equations studied by the mathematician Jacopo Riccati.
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Plugging in for x(t),

=Φ(TN , t)TP1Φ(TN , T0)x0+

TN∫

t

Φ(�, t)TQ(�)Φ(�, T0)x0d�.

Noting Φ(TN , T0) = Φ(TN , t)Φ(t, T0),

= Φ(TN , t)TP1Φ(TN , t)Φ(t, T0)x0

+

TN∫

t

Φ(�, t)TQ(�)Φ(�, t)Φ(t, T0)x0 d�.

Pulling x(t) = Φ(t, T0)x0 to the right and denoting the

matrix integral equation as P (t)

=
[

Φ(TN , t)TP1Φ(TN , t)+

TN∫

t

Φ(�, t)TQ(�)Φ(�, t) d�

︸ ︷︷ ︸

P (t)

]

x(t).

The differential form of P (t) is Eq (5). Furthermore, x(t)
and �(t) are linearly dependent through P (t).

B. Linear Quadratic Switched System Optimality Condition

Using the linear dependence of �(t) and x(t), the opti-

mality equations become:

0 = x(Ti)
TP (Ti)[Ai(Ti)−Ai+1(Ti)]x(Ti),
∀i ∈ (1, . . . , N − 1).

(6)

The optimality equations provides N−1 equations and N−1
switching time unknowns such that the problem of finding

the optimal switching times may be formulated as a root-

finding problem where x(Ti) and P (Ti) may be calculated

separately (i.e. two separate initial value problems). Eq (6),

along with Eqs (4a) and (5) together make up the necessary

condition for optimality for the linear quadratic switching

time optimization problem.

IV. ALGEBRAIC LINEAR QUADRATIC SWITCHING TIME

OPTIMIZATION

(ALQSTO)

As seen in the previous section, LQ switching time op-

timization is a root-finding problem that depends on the

solutions to differential equations. Suppose the problem may

be reformulated such that all of the differential equations may

be solved off-line from an optimization routine.

Consider the optimization problem characterized by the

quadratic cost function described by Eq (3) and subject to

the linear switched system of Eq (4a). We hypothesize that

an equivalent optimization problem exists that depends on

the solutions to a set of differential equations, where once

the solutions have been obtained, no additional integration

is necessary in order to solve the optimization problem

using standard techniques (e.g. steepest descent, Newton’s

method, etc). These differential equations are switching

time and mode sequence invariant and because they need

only be solved once, we shall refer to them as the single

integration differential equations (SIDE). Furthermore, we

shall refer to this equivalent optimization problem as the

Algebraic Linear Quadratic Switching Time Optimiza-

tion (ALQSTO) problem for it relies solely on addition and

multiplication once the SIDE have been solved for.

In order for the hypothesis to be true, the state, x(t), and

Riccati relation, P (t), (i.e. the solutions to Eq (4a) and Eq

(5)) must be computable from the solutions to the SIDE

for any arbitrary, valid set of switching times. Furthermore,

this computation must not require solving any additional

differential equations. Then, the optimality equations, Eq (6),

may also be computed without solving additional differential

equations. The rest of this section is devoted to finding the

SIDE as well as the associated computations of x(t) and

P (t).

A. Computing x(t)

As stated, the SIDE for computing x(t) are the state-

transition matrices for each Ai(t). Using Φi(⋅, ⋅) to denote

the STM corresponding to Ai, the value of x at the ith

switching time is

x(Ti) = Φ(Ti, T0)x0 =
[ 1∏

j=i

Φj(Tj , Tj−1)
]

x0. (7)

The product is from j = i down to j = 1 so that the

sequence of matrix multiplications is correct. Now, suppose

each Φj(t, T0) has been solved for all times t ∈ [T0, TN ]
and for all j = 1, . . . , N and stored in memory. Then,

Φj(Tj , Tj−1) is Φj(Tj , T0)Φ
j(Tj−1, T0)

−1. It follows that

x(t) may be computed using only addition and multiplication

for any arbitrary choice of switching times.

B. Computing P (t)

We wish to find an analogous operator to the STM to be

the SIDE for computing P (t). We refer to such an operator as

the adjoint-transition matrix, or ATM, and denote Ψi : ℝ×
ℝ → ℝ

n×n, i = 1, . . . , N as the ATM corresponding to each

linear mode. We also consider the ATM that corresponds to

A(t, T ), which we label as Ψ. We will find that Ψ may be

calculated from the Ψi for arbitrary switching times using

only matrix multiplication and addition. We will also find

that the operation,

P (t) = Ψ(t, TN ) ∘ P1, (8)

gives the solution to Eq (5). First, we define the ATM and its

properties and second, use the properties to calculate P (t)
from Ψi, i = 1, . . . , N and the terminal condition P1.

Definition 1: Consider the linear systems defined by A(t),
associated STM, Φ(t, �), and cost function defined by Q(t).
Then, the adjoint-transition matrix (ATM), Ψ(�, t) : ℝ ×
ℝ 7→ ℝ

n×n, is defined as the solution to

d
d�
Ψ(�, t) = −A(�)TΨ(�, t)−Ψ(�, t)A(�)−Q(�)

subject to: Ψ(t, t) = 0n×n
(9)

Note that the arguments of Ψ(�, t) and Φ(t, �) are switched.

This notational choice is due to how the state and adjoint

are solved in opposing directions.
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The following theorem defines the properties of the ATM

that will be used to compute P (t) in a similar manner the

properties of the STM are used to compute x(t).

Theorem 2: The ATM, Ψ, characterized by A(t) and

associated STM, Φ(t, �), and cost function defined by Q(t)
has the following properties:

1. Ψ(�, t) =

t∫

�

Φ(s, �)TQ(s)Φ(s, �) ds

2. Ψ(�, t) = −Φ(t, �)TΨ(t, �)Φ(t, �)

3.
P (�) = Ψ(�, t) ∘ P (t)

= Ψ(�, t) + Φ(t, �)TP (t)Φ(t, �)

4.
Ψ(t1, t3) = Ψ(t1, t2) ∘Ψ(t2, t3)

= Ψ(t1, t2) + Φ(t2, t1)
TΨ(t2, t3)Φ(t2, t1),

(10)

where t, �, t1, t2, t3 ∈ ℝ are arbitrary times.

Proof: We prove each property separately.

Property 1: Property 1 may be derived directly from the

definition of the ATM. Take the derivative of Ψ(�, t) with

respect to � :

d

d�
Ψ(�, t) =

d

d�

[
t∫

�

Φ(s, �)TQ(s)Φ(s, �) ds
]

=

t∫

�

d

d�

[
Φ(s, �)TQ(s)Φ(s, �)

]
ds− Φ(�, �)TQ(�)Φ(�, �)

=

t∫

�

[−A(�)TΦ(s, �)TQ(s)Φ(s, �)

−Φ(s, �)TQ(s)Φ(s, �)A(�)]ds−Q(�)
= −A(�)TΨ(�, t)−Ψ(�, t)A(�)−Q(�).

Clearly, property 1 is in the integral form of the ATM.

Further, notice that property 1 is consistent with the boundary

condition, Ψ(t, t) = 0.

Property 2: Start with property 1:

Ψ(�, t) =

t∫

�

Φ(s, �)TQ(s)Φ(s, �) ds

= −Φ(t, �)T
�∫

t

Φ(s, t)TQ(s)Φ(s, t) dsΦ(t, �)

= −Φ(t, �)TΨ(t, �)Φ(t, �)

Properties 3 and 4 are proven using the Fundamental

Theorem of ODEs [9] by showing that for each property,

the left-hand side, L , and right-hand side, R , share the same

differential equation and initial condition.

Property 3: The left and right sides of property 3 are

L(�) = P (�) and R (�) = Ψ(�, t) + Φ(t, �)TP (t)Φ(t, �).
The initial conditions are L(t) = P (t) and R (t) = Ψ(t, t)+
Φ(t, t)P (t)Φ(t, t). Simplifying R (t) by noting that Ψ(t, t) =
0 and Φ(t, t) = Φ(t, t) = I , results in R (t) = P (t). Now,

to check the differential equations:

d

d�
L(�) =

d

d�
P (t) = −A(�)TP (�)− P (�)A(�)−Q(�),

(11)

and

d
d�

R (�) = d
d�

[

Ψ(�, t) + Φ(t, �)TP (t)Φ(t, �)
]

= −A(�)TΨ(�, t)−Ψ(�, t)A(�)−Q(�)
−A(�)TΦ(t, �)TP (t)Φ(t, �)
−Φ(t, �)TP (t)Φ(t, �)A(�).

However, Ψ(�, t) = P (�)− Φ(t, �)TP (t)Φ(t, �), so

d

d�
R (�) = −A(�)TP (�)− P (�)A(�)−Q(�),

thus satisfying the Fundamental Theorem of ODEs and

proving property 3.

Property 4: The left and right sides of property 4 are

L(t1) = Ψ(t1, t3) and R (t1) = Ψ(t1, t2) + Φ(t2, t1)
T

⋅Ψ(t2, t3)Φ(t2, t1). Furthermore, the initial conditions are

L(t3) = Ψ(t3, t3) = 0 and

R (t3) = Ψ(t3, t2) + Φ(t2, t3)
TΨ(t2, t3)Φ(t2, t3)

=

t2∫

t3

Φ(s, t3)
TQ(�)Φ(s, t3)ds

= +Φ(t2, t3)
T

t3∫

t2

Φ(s, t2)
TQ(�)Φ(s, t2)dsΦ(t2, t3)

= −

t3∫

t2

Φ(s, t3)
TQ(�)Φ(s, t3)ds

+

t3∫

t2

Φ(s, t3)
TQ(�)Φ(s, t3)ds = 0.

Now, the equivalence of the differential equations of L and

R are checked:

d
dt1

L(t1) =
d
dt1

Ψ(t1, t3)

= −A(t1)
TΨ(t1, t3)−Ψ(t1, t3)A(t1)−Q(t1), and

d
dt1

R (t1) =
d
dt1

[

Ψ(t1, t2) + Φ(t2, t1)
TΨ(t2, t3)Φ(t2, t1)

]

= −A(t1)
TΨ(t1, t2)−Ψ(t1, t2)A(t1)−Q(t1)

−A(t1)
TΦ(t2, t1)

TΨ(t2, t3)Φ(t2, t1)
−Φ(t2, t1)

TΨ(t2, t3)Φ(t2, t1)A(t1).

Recall, Ψ(t1, t2) = Ψ(t1, t3)− Φ(t2, t1)
TΨ(t2, t3)Φ(t2, t1),

so

d

dt1
R (t1) = −A(t1)

TΨ(t1, t3)−Ψ(t1, t3)A(t1)−Q(t1).

The left-hand and right-hand sides of property 4 share the

same differential equation and initial conditions, completing

the proof of the properties.

The ATM may be solved from its differential form, Eq (9).

The ATM’s integral form, property 1, is useful in proofs. The

second property specifies the operation of the ATM on the

adjoint such that the operation transitions the adjoint from

one time to another (i.e. P (�) = Ψ(�, t) ∘ P (t)). Property 4

specifies how an ATM operates on another ATM. Property 4

will be useful for computing Ψ from the set {Ψi}
N
i .
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Now to prove the ATM is the operator that satisfies Eq

(8).

Theorem 3: The operator that satisfies Eq (8) is Ψ(�, t),
where Ψ(�, t) is characterized by two copies of the linear

system defined by A(t, T ).
Proof: Using property 3 and recalling that P (TN ) =

P1,

Ψ(t, TN ) ∘ P1 = Ψ(t, TN ) + Φ(TN , t)TP1Φ(TN , t),

which is the solution to Eq (5).

Using property 4 of ATM and defining Ψi := ΨAi,Ai
for

i = 1, . . . , N , Ψ(⋅, ⋅) is computed as follows:

Ψ(Tj , Ti) = Ψ(Tj , Tj+1) ∘ ⋅ ⋅ ⋅ ∘Ψ(Ti−1, Ti)

=
∑i

k=j+1 Φ(Tk−1, Tj)
TΨk(Tk−1, Tk)Φ(Tk−1, Tj).

(12)

Then, using property 3,

P (Ti) = Ψ(Ti, TN ) ∘ P1

= Ψ(Ti, TN ) + Φ(TN , Ti)
TP1Φ(TN , Ti).

(13)

Now, we conduct a similar numerical exercise as done when

computing x(t). Suppose, Ψi(t, TN ) has been solved for all

i = 1, . . . , N and t ∈ [T0, TN ]. Consequently, by noting that

Ψk(Tk−1, Tk) = Ψk(Tk−1, TN ) ∘Ψk(TN , Tk)
=Ψk(Tk−1, TN )+Φk(Tk, Tk−1)

TΨk(TN , Tk)Φ
k(Tk, Tk−1)

=Ψk(Tk−1, TN )−Φk(Tk, Tk−1)
TΨk(Tk, TN )Φk(Tk, Tk−1),

then, Ψ(Tj , Ti), Eq (12), may be computed without solving

any additional differential equations for all i, j = 1, . . . , N .

Additionally, this result implies the calculation of P (Ti) (see

Eq (13)) also does not require solving any extra differential

equations.

C. Example

In the following example, we solve an LQSTO problem

using the ALQSTO formulation. The problem set up comes

from the example in [4].

Example 1: Suppose a switch system is described by the

two linear vector fields:

Mode � = 1 : f1

(

x(t)
)

= A1x(t) and

Mode � = 2 : f2

(

x(t)
)

= A2x(t),

where

A1 =

(
−1 0
1 2

)

and A2 =

(
1 1
1 −2

)

.

Further suppose that at initial time T0 = 0, the system is

in mode � = 1 with initial configuration x0 = (1, 1)T . It

is also known that the system transitions between modes 1

and 2 on 5 occasions (i.e. Σ = {1, 2, 1, 2, 1, 2}) before the

conclusion of the time interval at TN = 1. The goal is to

find the switching times that optimize the cost function with

Lagrangian described by Q = diag(2, 2) and zero terminal

cost.5

In Mathematica, we calculate the optimality conditions,

Eq (6), with variable switching times. The process to do

5We use diag() as a compact representation of the diagonal matrix.

so begins by solving for {Φi(t, T0)} and {Ψi(t, TN )} ∀t ∈
[T0, TN ] and storing in memory. To elaborate, we solve
∂
∂t
Φi(t, T0) = Ai(t)Φ(t, T0), s.t. Φi(T0, T0) and Eq (9) for

each Ai respectively using Adam’s method for numerically

solving differential equations and store in memory the dis-

crete data points chosen from the method’s adaptive time

stepping. The value of {Φi(t, T0)} and {Ψi(t, TN )} is then

given by a third-order polynomial interpolation of the four

data points surrounding the time t. In this example, a total

of 162 data points were saved to fully constitute {Φi(t, T0)}
and {Ψi(t, TN )} for all t ∈ [T0, TN ].

Following, we compute {x(Ti)} and {P (Ti)} for variable

switching times according to Eqs (7) and (13), respectively.

By obtaining the optimality conditions in this way transforms

the LQSTO problem into an ALQSTO problem. Under this

formulation, the optimal switching times are given by finding

the switching times that are the roots to the optimality

condition. In Mathematica, we conduct Newton’s method

with a trust region, starting with an evenly distributed set of

initial switching times. Doing so results in the locally optimal

switching times, T ★ = (0.100, 0.297, 0.433, 0.642, 0.767)T ,

which have an associated locally optimal cost of 2.252. The

algorithm converges after six iterations to within 10−8 of

∥∇J(T )∥ = 0.

V. IMPLEMENTATION AND COMPLEXITY

For ALQSTO, we assume the STM, Φi(t, T0), and ATM,

Ψi(TN , t), corresponding to the N modes have been previ-

ously solved for and saved in memory for all t ∈ [T0, TN ].
Then, following from the previous sub-section, the compu-

tation of x(t) and P (t) (and consequently the optimality

equations) relies simply on memory calls and matrix algebra.

For this reason, the number of differential equations one

needs to solve at each iteration of the descent direction is

0.

The complexity of ALQSTO may instead be discussed in

terms of the number of matrix multiplications.

Theorem 4: Given Φi(t, T0) and Ψi(t, TN ) for all i =
1, . . . , N and t ∈ [T0, TN ], the number of matrix multipli-

cations needed to compute {x(Ti)}
N−1
i=1 , {P (Ti)}

N−1
i=1 and

the right hand side of the optimality equations, Eq (6) for

ALQSTO, is 7(N − 1).
Proof: When computing x(Ti), begin with x(T0) = x0.

Then, recursively calculate

x(Ti) = Φi(Ti, Ti−1)x(Ti−1) (14)

where

Φi(Ti, Ti−1) = Φi(Ti, T0)Φ
i(Ti−1, T0)

−1. (15)

Therefore, each additional mode requires two extra multipli-

cations and a matrix inverse. However, Φi(t, T0)
−1 may too

be stored in memory for t ∈ [T0, TN ] if desired.

Similarly, for P (Ti), begin with P (TN ) = P1 and recur-

sively calculate

P (Ti) = Ψi+1(Ti, Ti+1)
+Φi+1(Ti+1, Ti)

TP (Ti+1)Φ
i+1(Ti+1, Ti).
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Recall Ψi+1(Ti, Ti+1) = Ψi+1(Ti, TN ) − Φi+1(Ti+1, Ti)
T

⋅Ψi+1(Ti+1, TN )Φi+1(Ti+1, Ti) and that Φi+1(Ti+1, Ti) has

already been calculated using Eq (15) for {x(Ti)}. Therefore,

P (Ti) = Ψi+1(Ti, TN ) + Φi+1(Ti+1, Ti)
T [P (Ti+1)

−Ψi+1(Ti+1, TN )]Φi+1(Ti+1, Ti).
(16)

Thus, each additional mode requires two additional multi-

plications to compute P (t). Furthermore, each of the N − 1
optimality equations, Eq (6), require three multiplications. In

total, these computations require 7(N − 1) matrix multipli-

cations.

A. Implementation by Steepest Descent

Eqs (14) and (16) in the proof of Theorem 4 show

how x(Ti) and P (Ti) should be calculated for executional

efficiency. These equations are easily implemented in a

numerical optimization routine. In Algorithm 1, we present

solving the ALQSTO problem using steepest descent. The

steepest descent direction is the negative gradient of the cost:

∇J(T ) = {x(Ti)
TP (Ti)[Ai(Ti)−Ai+1(Ti)]x(Ti)}

N−1
1 ,

(17)

which equals the 0 vector when at a local optimum (i.e.

satisfies Eq (6)).

Algorithm 1 ALQSTO Steepest Descent: sd()

Arguments:

Σ is the mode sequence

T0 is the set of initial switching times

Φi(t, T0) are the STM ∀i ∈ {1, . . . , N} and t ∈ [T0, TN ]
Ψi(t, TN ) are the ATM ∀i ∈ {1, . . . , N} and t ∈ [T0, TN ]

T ∗ = sd(Σ,T0 ,Φi(t, T0),Ψ
i(t, TN )):

(1) k = 0; Tk = T0; x(T0) = x0; P (TN ) = P1

while ∥∇J(Tk )∥ is not near 0 do

(2) Recursively solve for {x(Ti)}
N−1
i=1 with switching

times Tk (see Eq (14))

(3) Recursively solve for {P (Ti)}
N−1
i=1 with switching

times Tk (see Eq (16))

(4) Calculate the gradient, ∇J(Tk ) (see Eq (17))

(5) Update the switching times: Tk+1 = Tk−
∇J(Tk),
for some step size 


(6) k = k + 1
end while

If one needs to calculate the cost (e.g. for choosing the

step size from a line search as in [2]), then notice that

J(T ) =

TN∫

T0

1

2
x(�)TQ(�)x(�) d� +

1

2
x(TN )TP1x(TN )

= 1
2x

T
0

[
TN∫

T0

Φ(�, T0)
TQ(�)Φ(�, T0) d�

+Φ(TN , T0)
TP1Φ(TN , T0)

]

x0

= 1
2x

T
0

[
Ψ(T0, TN ) ∘ P1

]
x0

= 1
2x

T
0

[
Ψ(T0, T1) ∘ P (T1)

]
x0.

The computation, Ψ(T0, T1) ∘ P (T1) should be calculated

from the already calculated P (T1) (from step 3) using Eq

(16). Then, the number of additional matrix multiplications

to calculate the cost is 4.

B. Complexity Comparison with the Literature

The literature has found that each step of steepest descent

for switching time optimization requires solving a constant

number of differential equations. In [3], [5], the gradient

requires solving the state, Eq (2a), forward in time, and the

co-state, Eq (2b), backward in time. This approach works for

non-linear switched systems. In this discussion, we refer to

this steepest descent calculation as the “differential gradient

switching time optimization,” or DGSTO. Moreover, in [14],

[15], Xu and Antsaklis present an approach which solves for

the Riccati relation, Eq (5), and calculates the state using the

matrix exponential. Their approach assumes the modes are

linear time-invariant. We shall refer to this technique as “Xu

and Antsaklis switching time optimization,” or XASTO.

Each step of the descent of DGSTO and XASTO requires

solving an additional constant number of differential equa-

tions. In comparison, each step of descent for ALQSTO

requires solving zero differential equations, which implies

the ALQSTO descent direction calculation time is invariant

to any choice of differential equation solver. In comparison,

the execution time of DGSTO and XASTO depends on the

number of steps a variable (or fixed) ODE integrator requires

to solve their respective differential equations.

It is of note, however, that DGSTO generalizes to non-

linear switched systems. In fact, ALQSTO’s restriction to

quadratic costs that are subject to linear switched systems

is the reason why ALQSTO does not require solving any

differential equations during the optimization.

Furthermore, the complexity of ALQSTO comes at a price;

ALQSTO trades computational complexity for memory de-

mands. Depending on the application, storing the STM and

ATM over the full time interval for each mode may be too

costly, in which case, XASTO or DGSTO may be preferable.

C. Example

We compare the execution times of steepest descent for

ALQSTO, XASTO and DGSTO in an example.

Example 2: Consider the bi-modal system in Example 1.

For this example, however, the number of modes, N , is

varied and the execution time to calculate a single gradient

is compared between ALQSTO and DGSTO. The mode

sequence begins with mode 1 and alternates between modes

1 and 2 over N − 1 occasions.

Fig.1 compares the calculation times of the gradient for

ALQSTO, XASTO and DGSTO for up to 100 modes. Fig.2

shows the gradient calculation time for ALQSTO for up to

1000 modes. The initial computation time of 0.016 seconds

for calculating the SIDE is not factored into the results

for ALQSTO. The results were simulated in Mathematica

on a 2.26 GHz PC. Mathematica’s AbsoluteTime[] function

was used to time the gradient calculations. The differen-

tial equations for DGSTO and XASTO were solved using
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NDSolve[] with method “ExplicitRungeKutta”—an adaptive

time stepping method.
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Fig. 1. Comparison of the execution times for one calculation of the
gradient for ALQSTO, XASTO and DGSTO. At 100 modes, one gradient
calculation of ALQSTO executes in 0.046 seconds.
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Fig. 2. The execution times for one calculation of the steepest descent
direction for ALQSTO. The number of modes is varied between 1 and
1000.

Remark: A few remarks on the results

1) For this example, at 100 modes, Fig.1 shows that

XASTO is greater than one order of magnitude slower

than ALQSTO, while DGSTO is greater than two

orders of magnitude slower.

2) A different choice of ODE integrator may result in

a quicker execution of XASTO and DGSTO. For

instance, an integrator with a fixed step size would

result in a linear relation between the number of modes

and execution time. However, such an integrator would

lose accuracy, especially near the switching times due

to the state and co-state being non-differentiable at

those times. The choice of step size would likely

depend on the number of modes and the stability of

the integration.

This sort of discussion is irrelevant for ALQSTO.

The accuracy of ALQSTO depends on the numerical

solver used to solve for {Φi(t, T0)} and {Ψi(t, TN )}.

Since the numerical integration of these STM and ATM

are as smooth as each of the modes, ALQSTO has

additional numerical robustness. Furthermore, since the

integration is only done once and off-line from the

optimization, the integration may be as slow as needed.

VI. CONCLUSION

This paper considers the switching time optimization of

linear time-varying switched systems subject to quadratic

cost. We formulate the problem such that a set of differential

equations, which we refer to as single integration differential

equations (SIDE), may be solved once and off-line from

the optimization routine and that once the SIDE have been

solved, no more integration is necessary to solve the op-

timization problem using standard techniques (e.g. steepest

descent, Newton’s method, etc.). We refer to this formulation

as algebraic linear quadratic switching time optimization, or

ALQSTO. Once the SIDE have been solved, the computation

of the gradient for an arbitrary set of switching times requires

an O(N) number of matrix multiplications, resulting in fast

execution. Furthermore, since the SIDE are as smooth as the

switched system’s vector fields, the ALQSTO formulation

has additional robustness to numerical errors compared with

solving the state and co-state directly.
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