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Abstract— The high computational burden in complex system
simulation, particularly for a polymer system, prohibits long
term simulation that provides information to predict the system
attributes. We propose a coarse graining simulation method,
stemming from our earlier work on state reduction through
a modified local feature analysis (LFA), so that, based on
short term system dynamics, one can automatically identify
a low number of “seeds” based on correlations in the dynamic
motion of all states. The trajectories of the "seeds" are then
extrapolated. A simple matrix transformation is proposed to
calculate trajectories of the whole system from the extrapolated
"seed" trajectories. As the recovered system dynamics are
derived from the low dimensional seed trajectories, we call it
coarse grained dynamics. Simulation is carried out to illustrate
the application of the developed algorithm to the PVC polymer
dynamics.

I. INTRODUCTION
The high computational burden in complex system simu-

lation prohibits long term simulation to predict the system
attributes. In particular, for a polymer molecular dynamics
(MD) simulation, composed of multiple polymer chains,
which is defined by a large collection of discrete atoms,
their interactions, and the resulting dynamic trajectories, the
simulation time is typically on the order of nanoseconds,
while the relaxation time of the polymer ranges from 1-
1000 s [7]. The high computational burden in polymer
simulation is due to simulating many atoms while resolving
fast vibrational atomic time scales.
Intermediate order, which occurs in many polymers, e.g.

polyvinyl chloride (PVC) [14] and poly(n-butyl methacry-
late) as well as specialty polymers such as poly(trimethyl
silyl propyne) [6], [22] and poly(norbornene) [1], [2], [9],
[18], is a structural order that is in between the crystalline
and amorphous states [13]. Polymers that show intermedi-
ate order have potential applications including membrane
separation, photolithography and catalyst substrates. As the
intermediate order is responsible for the useful properties
of these polymers, in the polymer study we are interested
in modeling the process for polymeric materials to evolve
and reach intermediate levels of structural order. Intermediate
order is in general detected from the wide angle x-ray
diffraction (WAXD) curves. WAXD is an X-ray diffraction
technique that is often used to determine the crystalline
structure of polymers.
The initial object of our study is on PVC, where inter-

mediate order produces a unique thermoreversible gelation
property that makes PVC applicable to flexible applica-
tions. Some corporations are disrupting the order of highly
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crystalline polymers such as poly(paraphenylene) to create
intermediate order because it results in a polymer with
good mechanical properties that is easier to process than its
crystalline counterpart.
As in general the computational capability does not allow

us to simulate the process for a polymer to evolve enough to
reach the desirable state, e.g. intermediate order, where we
can analyze the system properties, we seek a model reduction
approach to reduce the simulation burden.
Methods for coarse-graining of molecular simulations,

by grouping nearby atoms, have been developed to speed
up molecular dynamics simulations [4], [15], but due to
the complexity of polymer tacticity, the size of the groups
has been limited to one monomer. However, much greater
speedup is still needed. An automated method for model
reduction and system identification could provide a com-
plementary approach for computational reduction, such as
equation-free computing [11]. However, identifying an ap-
propriate reduced-order state for equation-free computing
remains a challenging problem [5], even for a simple fluid.
In our earlier work [19] we proposed a modified local

feature analysis [16], [19], [21] algorithm and applied it in
a polymer simulation. This algorithm automatically iden-
tifies “seed” atoms, based on correlations in the dynamic
motion of all atoms. In this paper, we intend to extend our
earlier work and propose a modeling method for molecular
dynamics simulations of polymers, which combines features
from equation-free computing with polymer coarse-graining.
We call this method dynamic coarse graining. Although
the algorithm to be proposed is applicable to any complex
dynamic system, as our first concern is the polymer system,
we will describe it in the polymer context.

II. PROBLEM DESCRIPTION

Consider a polymer system simulated with MD. For
simplicity we will focus on the dynamics of the back-
bone carbons. Assume that the polymer system has N
number of backbone carbons. After subtracting the overall
translational and rotational motion, the dynamics of the
polymer system is represented by its trajectory x(t) =
{x1(t), x2(t), ..., xN (t)}T ∈ RN×1, where xi(t) denotes the
state value of the i th backbone carbon at time t. Given that
observations of s time steps are available, we have

x(1 : s) =

⎧⎨⎩ x1(1 : s)
...

xN (1 : s)

⎫⎬⎭ ∈ RN×s

Moreover, as the motion of the polymer chains is three
dimensional, we extend the motion of atoms at time i
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into three vectors, which in turn introduces the equivalent
trajectory x(1 : L) ∈ RN×L, where L = 3s. In general
LÀ N. Then we construct the correlation matrix as

Ri,j =

¿
xi − x̄i
std(xi)

,
xj − x̄j
std(xj)

À
, hXi, Xji

thus
R = X ×XT

where R ∈ RN×N , X ∈ RN×L, xi, Xi ∈ R1×L, x̄i denotes
the mean value and std(xi) denotes the standard deviation
of xi. Note that in real applications, we can assume that R
is full rank because of the noise contained in X due to the
stochastic nature of MD.
We clarify that R is the matrix derived from a short term

detailed simulation. The LFA based state reduction algorithm
will be applied to R to pick out the “seeds”, that is, the atoms
with the most representative dynamics.

III. DYNAMICS COARSE GRAINING BASED ON LFA
A. Local Feature Analysis
The objective of LFA is to provide a topographic repre-

sentation for all system states through a reduced basis set,
i.e. local features. LFA stems from PCA (please see [19]
or [16] for detailed description of PCA) and preserves all
the information of PCA. However, unlike PCA which has a
global basis set, i.e. basis that span over all the states, LFA
provides a localized basis set. Moreover, as has been pointed
out in [3] and [21], the LFA basis is more stable over the
shift of sampling windows, e.g. windows of length L with
different starting time.
Considering the correlation matrix R ∈ RN×N described

in Sec. II, LFA kernel functions are defined as

K(l, k) =
rP
i=1
Ψi(l)

1√
λi
Ψi(k)

where k, l ∈ {1, · · · ,N}, K(l, k) is the (l, k) entry of
matrix K ∈ RN×N , λi and Ψi are the i th eigenvalue
and eigenvector of R respectively, and r is the number of
dominant eigenvalues determined through PCA according to
λ1 > . . . > λr À λr+1 > . . . > λN . Define the projection
coefficients of any Φ ∈ RN×1 onto the state variable xl,
l = 1, . . . , N as

ol =
NP
k=1

K(l, k)Φ(k) ≡
rP
i=1

ΨTi Φ√
λi
Ψi(l) (1)

where ol ∈ R is the LFA output (feature). We can see that
K(l, k) is a topographic kernel as the output ol from Φ only
relies on the components of the eigenvectors corresponding
to xl. Letting o = [o1, · · · , oN ]T , we have

o = KΦ = ΨΛ−
1
2ΨTΦ (2)

where Λ = diag(λ1, . . . ,λr), and Ψ ∈ RN×r is the matrix
that contains the r dominant eigenvectors. Through LFA, any
Φ ∈ RN×1 can be approximated with minimum mean square
error that is the same as in PCA, by

Φrec = K
(−1)o (3)

where K(−1) with entries K(−1)(l, k) =
rP
i=1
Ψi(l)

√
λiΨi(k), k, l ∈ {1, · · · , N}, is the approximate

inverse of K [16].
The reconstruction in (3) is with N local features, i.e. o,

such that the locality is achieved at the price that the number
of features are extended to N À r, much larger than that in
the PCA case. A sparsification step is thus critical in order
to get rid of the redundant local features.
In our earlier work [19], a novel sparsification algorithm

was derived. Rather than empirically searching based on
multiple linear regression among the whole state set, see
e.g. [12], [16], [20], [21], the newly developed algorithm
in [19] involves a simple matrix calculation and offers clear
theoretical foundation for sparsification.

B. LFA sparsification
In this section we briefly introduce the modified LFA

sparsification algorithm proposed in [19]; interested readers
may refer to [19] for more details.
Consider X ∈ RN×L in Section II with rank(X) = N ,

given any Φ ∈ RN×1 there exists P ∈ R1×L such that
Φ = XPT .
Defining the local feature matrix O ∈ RN×L as

O , KX = ΨΛ−
1
2ΨTX (4)

it is easy to see that rank(O) = r. From (2) and (4) we
obtain

o = OPT (5)

Defining
M , ΨTO

then M has the singular value decomposition

M = V ΣUT (6)

where U ∈ RL×r, Σ ∈ Rr×r, V ∈ Rr×r. It can easily be
shown that there exists Ô ∈ RN×r

such that

O = ÔUT (7)

The following proposition derived in [19] shows that the
reconstruction (3) can be based on only r correctly chosen
local features, i.e. or ∈ Rr×1.
Proposition 1: There exists a matrix K(−1)

r ∈ RN×r and
or ∈ Rr×1, the subvector of o, such that

Φrec = K
(−1)o = K(−1)

r or

Defining the index set S that corresponds to the indices of
entries in o that comprise or, we have

S ∈ {{k1, · · · , kr}, rank(Ôr) = r}
where Ôr ∈ Rr×r is the submatrix of Ô by including only
the rows with indices {k1, · · · , kr}. Given Ôr, the kernel
function K(−1)

r = ΨΛ
1
2ΨrÔ

−T
r Ô

−1
r , where Ψr ∈ Rr×r is

the submatrix of Ψ by including the rows corresponding to
index set S.
Prop. 1 tells us that any Φ can be approximately recon-

structed based on only r local features, or, as long as the
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corresponding Ôr matrix has rank(Ôr) = r. We clarify
that the choice of index set S is not unique. The process of
choosing the most representative r local features is called
sparsification. There are practical considerations in favor of
their judicious choice. In [16] it is suggested to choose
indices set S such that Oki , Okj are the least dependent
for any ki 6= kj , ki, kj ∈ S, where Oki is the k th

i row of
O. Such a set S is corresponding to the most representative
local features.
Definition 1: The index of dependency between two vec-

torsOi,Oj is defined as ρij =
|hOi,Oji|
kOikkOjk ; a small ρ indicates

that Oi, Oj are highly independent.

C. Dynamic Coarse Graining Algorithm

By sparsification, we find index set S = {k1, · · · , kr}
through identifying the least dependent vectors
Ok1 , · · · ,Okr , so that or = [ok1 , · · · , okr ]T are
the most representative local features, corresponding
to “seed” states, xk1 , · · · , xkr , with kernel matrix
K
(−1)
r = ΨΛ

1
2ΨrÔ

−T
r Ô

−1
r . As xkl , l ∈ {1, · · · , r},

is the “seed” state and xkl(1 : L), l ∈ {1, · · · , r} is the
“seed” trajectory, from (4) we can view the counterpart
Okl , l ∈ {1, · · · , r}, also as a time series of length L
corresponding to the most representative local features, thus
we call Okl the “seed” dynamics (trajectories).
Next we describe the dynamic coarse graining algorithm.

The idea is to develop the relationship between trajectories
of Xi, i ∈ {1, · · · , N} and “seed” trajectories Okl , l ∈
{1, · · · , r} as well as to identify the time series model of
“seed” trajectories so that, by extrapolating the seed trajec-
tories, we can recover the dynamics of Xi, i ∈ {1, · · · ,N}
in the future time. As the recovery of the whole system
dynamics is derived from the dynamics of r “seeds”, we
name our algorithm “dynamic coarse graining algorithm”.
Define X̂ , ΨΨTX as the filtered X , i.e. X without the

non-principal components. We have the following claims.
Claim 1: The Euclidean norm between X̂ and X is°°°X̂ −X

°°°
2
= °(pλr+1), where °(

p
λr+1) means the

order of
p
λr+1.

Proof: Proof is trivial using the definition of Euclidean
norm of matrix.
From the above claim, we see that X̂ can approximate X

with error °(pλr+1), which is small if λr+1 is small.
Claim 2: Ok1 , . . . ,Okr form the basis to reconstruct X̂,

and X̂ = ΨΛ
1
2ΨTC

⎡⎢⎣ Ok1
...
Okr

⎤⎥⎦ , where C = ÔÔ−1r .
Proof: Proof is derived directly from the definition of

O, C and X̂.
Now we see that the dynamics X̂j of any state j can

be reconstructed by the seed dynamics {Ok1 , · · · ,Okr}.
That is, X can be reconstructed, with small 2-norm errorp
λr+1, through seed dynamics {Ok1 , · · · ,Okr} during s

time period.
Claim 3: Considering the system discussed above, choose

fl,p so that

O
(p)
kl
(t) = fl,p(t), l ∈ {1, · · · , r}, p ∈ {x, y, z}, 1 6 t 6 s

(8)
where O(p)

kl
(t) denotes to the entry in Okl that corresponds

to the value in the p direction at time step t. (Recall the
construction of X matrix in Sec. II, and note that vector
Okl is composed of O

(p)
kl
(t), 1 6 t 6 s, p ∈ {x, y, z}.)

Assuming that s is long enough so that (8) and the linear
relationship in Claim 2 stay the same for M À s, then

X̃(p)(M) = ΨΛ
1
2ΨTC

⎡⎢⎣ fk1,p(M)
...

fkr,p(M)

⎤⎥⎦ (9)

where X̃(p) denotes the extrapolation of X̂(p) ∈ RN×s, the
submatrix of X̂ ∈ RN×L corresponding to the p direction.

Proof: Proof is obtained directly from Claim 2 and
the assumption O(j)

kl
(M) = fl,p(M), l ∈ {1, · · · , r}, j ∈

{x, y, z}.
This claim assumes that the complete system information

can be obtained from the system dynamics over time period s
and that the linear transformation in Claim 2 is enough to de-
scribe the relationship between X̂ and Okl , l ∈ {1, · · · , r}.
However, this is usually not true so we can only approximate
X̃(p) based on fl,p, l ∈ {1, · · · , r}, p ∈ {x, y, z}. Through
time series identification techniques, e.g. neural network,
genetic algorithm, wavelet or simply linear fitting methods
in the Matlab system identification toolbox, we can fit each
time series O(p)

kl
by fl,p so that

O
(p)
kl
(1 : s) ≈ fl,p(1 : s), l ∈ {1, · · · , r}, p ∈ {x, y, z}

Although the real system is not necessary linear, we can
assume that, for relatively short time M , s ¿ M ¿
∞, the linear relationship in Claim 2 can provide a good
approximation. Thus we can approximate the dynamics of
X̂ at time M by (9).
Based on the discussion above, we propose the dynamic

coarse graining algorithm:
Algorithm 1:
1) Record trajectory data for s time steps and construct
R, O and Ô matrices;

2) Find the most representative local feature indices
k1, · · · , kr and calculate the C matrix;

3) Identify fl,p based on O
(p)
kl
(1 : s), l ∈ {1, · · · , r};

4) Recover X̃(p)
j (t) in terms of fl,p(t), l ∈ {1, · · · , r}

through (9), s < t ≤M, j ∈ {1, · · · , N}
We remark here if the dynamics is a slow process, given

limited time, we may not be able to collect enough data to
model the whole system. Moreover, linear approximation to
a nonlinear relationship will be inaccurate as time goes on.
We call this the undersampling problem. Aware of this, we
adopt a iterative scheme similar to that in [10], [17] to model
the long term system dynamics.
Algorithm 2:
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1) Run the detailed simulation for time duration s, adopt
Algorithm 1 to choose seed dynamics Okl and extrap-
olate them to time step M , approximate X̃(M) based
on Õkl(M).

2) Map X̃(M) back to real trajectories x(M) by mul-
tiplying the standard deviation and adding the mean
value; go to Step 1.

Note here the iterative algorithm allows the algorithm to
represent system dynamics over different time duration s by
selecting different seed dynamics and recovery formula (9).

IV. SIMULATION
A. Illustrative Example
We constructed a spring mass damper system as shown

in Figure 1, where 10 masses were connected by 11 linear
springs. In Figure 1, the initial position of masses were
x1 = 0.05, xi+1 = xi + 0.1, i ∈ {1, · · · , 10}. The
spring equilibrium lengths were all at Ei = 1/11. Damping
coefficients were all equal to 1. Spring constants were 950
for l1 to l3, 1000 for l5 to l7, 1050 for l9 to l11 and 10−5
for l4, l8. A duration of 10s data was simulated and the
position dynamics are shown in Figure 2. The first 1 s length
data were used to calculate the correlation matrix R and the
remaining 9 s simulation data were test data to compare with
the recovered trajectories of all masses.
Through PCA we chose r = 3 in order to obtain small

approximation error. According to the method discussed in
Section III-B we picked three seed masses as shown in Figure
1. The corresponding seed dynamics Okl , l ∈ {1, 2, 3} were
modelled by a modified version of the Matlab identification
toolbox. A function set that contains sinusoid and exponen-
tial functions were used for modeling the seed dynamics
Okl , l ∈ {1, 2, 3}. Based on the identified functions, seed
dynamics were extrapolated for an extra 9 s, then the
recovered trajectories of X̂ were calculated according to (9).
The comparison between the modeled and real time series
Okl over the first 1 s is shown in Figure 3. Figure 4 shows the
comparison between the real and the recovered trajectories
of X̂, for Mass 2 and Mass 10 over the entire 10 s. The
others were omitted due to space constraints, and they show
similar results.

Figure 1. Mass spring damper system

As we can see from the construction of the system as
well as in Figure 2, masses m1 to m3, m8 to m10 and
masses m4 to m7 have different dynamic behavior. So there
should be at least one seed in each group. As we chose
r = 3, dynamics of group m1 to m3, m8 to m10 had
been further decomposed into two different features that are
represented by two different seeds, which matches what is
shown in Figure 1. From Figure 3, we see that with the
modified identification toolbox, the modelled seed dynamics
fit the real seed dynamics very well. By comparing the real

and recovered dynamics of X̂ in Figure 4, we see that the
proposed algorithm introduces very small estimation error
even over the long time (9 s) extrapolation.
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Figure 2. Position trajectories of masses.

Curves from low to high correspond to Masses 1 through 10.
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Figure 3. The modeled and true seed dynamics over 1 s.
In order, Seed 1 (Mass 2), Seed 2 (Mass 3), Seed 3 (Mass 4)

Positions are preprocessed, i.e. centered and normalized.
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Figure 4. The real and estimated trajectories for
X̂2 (left) and X̂2 (right)

B. Polymer System Dynamics Simulation
We built the PVC polymer model and run the MD simu-

lation in a simulation software MOE (Molecular Operating
Environment).
Sixteen syndiotactic poly(vinyl chloride) polymer chains

with 16 backbone carbons each were built in MOE within
a periodic cell with size 20.48 × 20.96 × 20.32 Å. Initial
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monomer conformations were constructed according to [8].
The potential energy of this system was then minimized
using the steepest descent method, until the absolute value
in the Eulidean norm of the total potential energy gradient
was smaller than 0.05 kJ/mol. Then a 250 ps molecular
dynamics simulation with a 2 fs simulation time step was
performed at 500 K with the NPT ensemble. The pressure is
set to be 2×106 Pa. We give in Figure 5 the conformations
and WAXD curves at the initial time as well as at 250 ps
for the real (fully simulated) system. We can see that at the
beginning the polymer chains are very well aligned while
when it reaches 250 ps the system conformation changed
significantly and the chain arrangement is more disordered.
Also the WAXD curve changed obviously from the initial
time to 250 ps for the real system.

Figure 5. Full MD simulation for PVC
Top left: Conformation - 0 ps, Top right: WAXD - 0 ps

Lower left: Conformation - 250 ps, Lower right: WAXD - 250 ps

We studied different scenarios by varying the training/test
time ratio. Note by training time we mean we ran the detailed
MD simulation over this period while the test time period is
when we extrapolated the system. Given similar estimation
accuracy, the lower the training/test time ratio is, the more
efficient of the proposed algorithm is.
In Scenario 1, we used the first 150 ps length data as

training data and calculated correlation matrix R based on
it; the remaining 100 ps simulation data were used for the
test purpose. Through PCA we chose r = 9, and thus
picked 9 seed atoms according to the sparsification approach.
The corresponding seed dynamics Okl , l ∈ {1, · · · , 9} were
modeled by the modified Matlab identification toolbox with
sinusoid and exponential function basis. Based on the iden-
tified functions, the seed dynamics were extrapolated for
an extra 100 ps, then the recovered trajectories of X̃ were
calculated according to (9). Taking the value of X̃ at 250
ps, and mapping it back to real trajectories x at 250 ps

by multiplying the standard deviation as well as adding the
mean value, we obtained the position of backbone carbons
of the polymer system at 250 ps. Fixing the position of
backbone carbon and minimizing the potential energy until
the absolute value in the Eulidean norm of the total potential
energy gradient was smaller than 0.01 kJ/mol, we obtained
the recovered conformation for the polymer system at time
250 ps. With this conformation we calculated the WAXD
curve of the recovered system at 250 ps. We repeated the
above procedure so that training/test time is of 100 ps/150
ps in Scenario 2 or 55 ps/195 ps in Scenario 3. In both
cases, we chose r = 7 manually as in PCA, by observing
the gaps among eigenvalues of the R matrix.

Figure 6. The extrapolated system at 250 ps
First row: Conformation and WAXD of Scn. 1 - 150/100 ps

Second row: Conformation and WAXD of Scn. 2 - 100/150 ps

Third row: Conformation and WAXD of Scn. 3 - 55/195 ps

We give in Figure 6 the extrapolated system conformation
and WAXD curves at time 250 ps for the three scenarios.
As we can see, in Scenario 1, the recovered system is almost
equivalent to the real system at 250 ps, both in conformation
and WAXD curves. The recovered system in Scenario 2 also
provided a good approximation to the real system, as we
can see from the comparison in conformation and WAXD,
although the dominant peak has now changed. In Scenario 3,
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the recovered system provided a low quality approximation
at 250 ps, as we can see clearly that the recovered system
conformation is more ordered, which is obviously different
from that of the real system. This might be due to that the
system information contained in the dynamics over short
training time is limited and not enough to represent the
information over the long term, e.g. 195 ps here. The
results in these three Scenarios indicate the sensitivity of the
extrapolation accuracy to the training time. We will study this
issue, as well as to choose the best time series identification
basis functions/approaches, in our ongoing work.
It is also remarkable that only 9 “seed” atoms in Scenario

1 and 7 in Scenario 2 which represent 9 / 7 groups, are
selected to reconstruct the whole system composed of 144
monomers. Compared to the method in [4], [15], which
would introduce 144 groups, our simulation complexity is
considerably reduced here.
Note in this example we did not include multiple iterations

as in Algorithm 2. As long as the extrapolated system in
one iteration can approximate the real system accurately, the
iterations are used to repeat the process to retain the long
time extrapolation accuracy.

V. CONCLUSIONS AND FUTURE WORK

A coarse graining simulation method has been proposed so
that, based on short term system dynamics, it can automati-
cally identify a low number of “seeds” based on correlations
in the dynamic motion of all states. The trajectories of
“seeds” are then extrapolated. A simple matrix transforma-
tion has been proposed to calculate trajectories of the whole
system from the extrapolated “seed” trajectories. Iteration
of the proposed procedure, i.e. the procedure combining
detailed simulation and coarse grained simulation, has been
suggested to overcome the undersampling problem. The ef-
fectiveness of the proposed approach has been demonstrated
from several simulations.
In our future work, we will characterize the local fea-

tures (seed atoms) that comprise the intermediate order. We
plan to study on more advanced time series identification
approaches, to specify suitable time series identification basis
functions, to develop a nonlinear relationship between the
seed and the system dynamics, as well as to identify an
optimal training/test time ratio so we can predict longer
term dynamics from shorter training period accurately. The
ultimate goal is to use the proposed algorithm to formulate
mesoscale models that retain the dynamics and physics
responsible for the intermediate order, and to use such
models to explore the formation of intermediate order in new
polymers.
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