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Abstract— We consider nonlinear control systems for which
there exist some structural obstacles to the design of classical
continuous stabilizing feedback laws. More precisely, it is
studied systems for which the backstepping tool for the design
of stabilizers can not be applied. On the contrary, it leads to
feedback laws such that the origin of the closed-loop system
is not globally asymptotically stable, but a suitable attractor
(strictly containing the origin) is practically asymptotically
stable. Then, a design method is suggested to build a hybrid
feedback law combining a backstepping controller with a locally
stabilizing controller. The results are illustrated for a nonlinear
system which, due to the structure of the system, does not have
a priori any globally stabilizing backstepping controller.

I. INTRODUCTION

Over the years, research in control of nonlinear dynamical
systems has lead to many different tools to design (globally)
asymptotically stabilizing feedbacks, see e.g. [8], [18], [19].
Usually these techniques require to impose special structure
on the control systems. Depending on the assumptions made
on the model, the designer may use high-gain approaches
(as in [13]), a backstepping technique (see [8], [20], [24])
or a forwarding approach (consider e.g., [17], [21], [31]),
among others design methods. Unfortunately, in presence of
unknown parameters or unstructured dynamics, these classi-
cal design methods may fail and some structural obstacles
to large regions of attraction may exist. Examples of such
systems are the partially linear cascades systems, considered
e.g. in [5], [28] and [32], for which the local stabilization
is linear but a perturbation may cause finite escape time, if
some parts are not properly controlled. This phenomenon,
so-called slow-peaking, has been studied (e.g. in [29], [30])
to design global stabilizers.

For such systems where the classical backstepping tech-
niques can not be applied, the approach presented may solve
the problem by combining a backstepping feedback law with
a locally stabilizing controller. More precisely, it is designed
a hybrid feedback law to blend both kinds of controllers.
The backstepping controller renders a suitable compact set
globally attractive, whereas the local one is assumed to
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sité de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne;
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have its basin of attraction containing the attractor of the
system in closed-loop with the backstepping controller. The
main result can thus be seen as a design techniques of
hybrid feedback laws for systems, which a priori do not
have classical nonlinear stabilizing controllers. The use of
hybrid stabilizers for systems which do not have continuous
stabilizers, is by now classical (see e.g., [14], [22], [25]).
This approach has been particularly fruitful for control
systems that do not satisfy the Brockett’s condition [6] that
is a necessary topological condition for the existence of a
continuous stabilizing feedback (see in particular [9], [10],
[15], [16], [26]). The considered class of hybrid feedback
laws has the advantage to guarantee a robustness property
with respect to measurement noise, actuators errors (see [27]
and also [12] for related issues).

Best to our knowledge this is the first work suggesting a
design method to adapt the backstepping technique to a given
local controller in the context of hybrid feedback laws. Other
works do exist in the context of continuous controllers (e.g.,
see [23] where a backstepping controller is blent with an LQ
controller, and consider [1] where, using control Lyapunov
functions, a globally stabilizing controller is combined with
a local optimal controller). In contrast to these works, for
the class of systems considered in this paper, a priori no
continuous stabilizing controller does exist.

This paper is organized as follows. In Section II, we
introduce precisely the problem under consideration in this
paper and the class of controllers that will be used to solve
this problem. In Section III the main result is stated, that
is the existence of a hybrid feedback law combining a
backstepping controller with a local stabilizer. In Section
IV, the main result is illustrated on an example, and it is
designed such a hybrid feedback law for a system for which
the classical backstepping approach can not be applied. All
technical proofs are collected in Section V, and Section VI
contains some concluding remarks.

The proof of some results has been removed due to space
limitation.

II. PROBLEM STATEMENT

Consider the nonlinear system{
ẋ1 = f1(x1, x2) + h1(x1, x2, u)
ẋ2 = f2(x1, x2)u+ h2(x1, x2, u),

(1)

where (x1, x2) ∈ Rn−1 × R and u ∈ R is the input. The
functions f1, f2, h1 and h2 are locally Lipschitz continuous.
Furthermore, the functions satisfy f1(0, 0) = h1(0, 0, 0) =
h2(0, 0, 0) = 0 and f2(x1, x2) 6= 0, ∀(x1, x2) ∈ Rn.
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In a more compact notation, we denote system (1) by ẋ =
fh(x, u). Furthermore, when h1 ≡ 0 and h2 ≡ 0 we write
ẋ = f(x, u).

A. Assumptions

The first assumption concerns the local stabilizability
around the origin of system (1). More precisely,

Assumption 1: (Local stabilizability) There exist a C1
positive definite and proper function V` : Rn → R≥0, a
continuous function ϕ` : Rn → R and a positive constant v`
such that,

∂xV`(x) · fh(x, ϕ`(x)) < 0 , ∀x ∈ {x : 0 < V`(x) ≤ v`}.
Note that, when the first order approximation of system

(1) is controllable, Assumption 1 is trivially satisfied. Indeed,
if the couple of matrices (A,B), with A = ∂xfh(0, 0) and
B = ∂ufh(0, 0) is controllable, then there exist matrices
P > 0 and K such that V`(x) = xTPx and ϕ`(x) = Kx.
Thus Assumption 1 holds with a sufficiently small positive
constant v`.

The second hypothesis provides estimates on terms which
prevents using the traditional backstepping method. More
precisely, this assumption concerns the global stabilizability
of the system

ẋ1 = f1(x1, x2) (2)

with x2 as an input and bounds of functions h1 and h2. This
assumption will be also useful to state a global practical
stability property of (1) (see Proposition 3.1 below).

Assumption 2: There exist a C1 proper and positive defi-
nite function V1 : Rn−1 → R≥0, a C1 function ϕ1 : Rn−1 →
R such that ϕ1(0) = 0, a locally Lipschitz K∞ function
α : R≥0 → R≥0, a continuous function Ψ : Rn → R and
two positive constants ε < 1 and M such that the following
properties hold.

1. (Stabilizing controller ϕ1 for (2)) ∀x1 ∈ Rn−1,

∂x1
V1(x1) · f1(x1, ϕ1(x1)) ≤ −α(V1(x1)).

2. (Estimation on h1) ∀(x1, x2, u) ∈ Rn−1 × R× R,

Lh1
V1(x1, ϕ1(x1), u) ≤ (1− ε)α(V1(x1))

+εα(M), (3)

|h1(x1, x2, u)| ≤ Ψ(x1, x2) (4)
3. (Estimation on ∂x2h1) ∀(x1, x2, u) ∈ Rn−1 × R× R,

|∂x2
h1(x1, x2, u)| ≤ Ψ(x1, x2). (5)

4. (Estimation on h2) ∀(x1, x2, u) ∈ Rn−1 × R× R,

|h2(x1, x2, u)| ≤ Ψ(x1, x2). (6)
As we will see in this work, it is not necessary that ϕ1 be

C1 in a neighborhood of the origin because, in such a region,
we use the local controller ϕ`.

Before introducing the third assumption, let us denote A
the subset of Rn defined by

A = {(x1, x2) ∈ Rn : V1(x1) ≤M, x2 = ϕ1(x1)}. (7)

Since, by Assumption 2, the function V1 is proper, this set is
compact. Moreover, it will be proven below (see Proposition

3.1) that with the other items of Assumption 2 a controller
to (1) can be designed such that A is globally practically
stable to the system in closed-loop with this controller.

The last assumption describes that A is included in the
basin of attraction of the controller ϕ`.

Assumption 3: (Inclusion assumption)

max x∈AV`(x) < v` . (8)
The problem under consideration in this paper is the design

of a controller such that the origin is globally asymptotically
stable for (1). Due to the presence of the functions h1
and h2 and their dependence with respect to u, a classical
backstepping can not be achieved to compute a global
stabilizer.1

However we succeed to design a controller rendering a
compact set globally asymptotically stable to (1) in closed-
loop. Then a natural approach is to combine this controller
with a local feedback law given by Assumption 1. Global
asymptotical stabilization of the origin of Rn can be achieved
by considering a hybrid controller which blends the different
controllers according to each basin of attraction. The strategy
is similar to that one developed in [25], namely, we divide
the continuous state space in two open sets introducing a
region with hysteresis. This asks to make precise the class
of controllers under consideration in this paper.

B. Class of controllers

Definition 2.1: A hybrid feedback law to (1), denoted by
IK, consists of

• a totally ordered countable set Q;
• for each q ∈ Q,

– closed sets Cq ⊂ Rn and Dq ⊂ Rn such that Cq ∪
Dq = Rn;

– a continuous function ϕq : Cq → R;

1 More precisely, following the classical basckstepping approach, let us
assume that item 1 of Assumption 2 holds and let us consider the Lyapunov
function candidate V (x1, x2) = V1(x1)+

1
2
(x2−ϕ1(x1))2. We compute

along the solutions of (1), for all (x1, x2, u) in Rn−1 × R× R,

V̇ ≤ −α(V1(x1)) + [x2 − ϕ1(x1)] [f2(x1, x2)u+ h2(x1, x2, u)

− ∂ϕ1
∂x1

(x1) · (f1(x1, x2) + h1(x1, x2, u))

+ ∂V1
∂x1

(x1) ·
∫ 1
0 f1(x1, sx2 − (1− s)ϕ1(x1))ds

]
+ ∂V1

∂x1
(x1) · h1(x1, x2, u) .

And thus to get an term (x2 − ϕ1(x1))2 in the right-hand side of this
inequality, it is natural to look for a control u = u(x1, x2) satisfying the
following identity, for all (x1, x2) in Rn−1 × R,

f2(x1, x2)u+ h2(x1, x2, u)− ∂ϕ1
∂x1

(x1) · (f1(x1, x2) + h1(x1, x2, u))

+ ∂V1
∂x1

(x1) ·
∫ 1
0 f1(x1, sx2 − (1− s)ϕ1(x1))ds = −k (x2 − ϕ1(x1))

for some positive value k. However this equation is implicit in the variable u
due to dependance of h1 and of h2 with respect to u. Therefore it seems to
us that the classical backstepping cannot be achieved to compute a stabilizer
for (1).
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– an outer semi-continuous2, and locally bounded3,
uniformly in q, set-valued mapping Gq : Dq ⇒ Q
with non-empty images,

such that the family {Cq}q∈Q is locally finite and covers Rn.
System (1) in closed loop with IK lies in the class of hybrid

systems as considered in e.g., [3]. It is defined as the hybrid
system

IH :

{
ẋ = fh(x, ϕq(x)), x ∈ Cq
q+ ∈ Gq(x), x ∈ Dq.

(9)

Note that the state space of IH is Rn ×Q.
Definition 2.2: A hybrid time domain S ⊂ R≥0×N, is the

union of finitely of infinitely many time intervals [tj , tj+1]×
{j}, where the sequence {tj}j≥0 in nondecreasing, with the
last interval, if it exists, possibly of the form [t, T ) with T
finite or T =∞.

Definition 2.3: A solution to IH with initial condition
(x(0, 0), q(0, 0)) = (x0, q0) consists of
• A hybrid time domain S 6= ∅;
• A function x : S → Rn, where t 7→ x(t, j) is absolutely

continuous, for a fixed j, and constant in j for a fixed
t over (t, j) ∈ S;

• A function q : S → Q such that q(t, j) is constant in t,
for a fixed j over (t, j) ∈ S;

meeting the conditions
S1) x(0, 0) ∈ Cq(0,0) ∪Dq(0,0);
S2) ∀j ∈ N and æ t such that (t, j) ∈ S,

q̇(t, j) = 0, ẋ(t, j) ∈ Fq(t,j)(x(t, j)), x(t, j) ∈ Cq(t,j);

S3) ∀(t, j) ∈ S such that (t, j + 1) ∈ S

x(t, j + 1) = x(t, j), q(t, j + 1) ∈ Gq(t,j)(x(t, j)),
x(t, j) ∈ Dq(t,j).

From now on, we will refer to the domain of a solution
(x, q) to IH as dom(x, q). A solution (x, q) to IH is called
maximal if it cannot be extended, i.e., does not exists any
solution defined on a larger domain of definition and equal
to (x, q) on dom(x, q). A solution is complete if its domain
is unbounded.

During flows, x evolves according to the differential equa-
tion ẋ = fh(x, ϕq(x)), x ∈ Cq while q remains constant.
During jumps, q evolves according to the difference inclusion
q+ ∈ Gq(x), x ∈ Dq while x remains constant.

Remark 2.4: Note that a sufficient condition for the ex-
istence of a hybrid stabilizer for (1) is the global asymptotic
controllability (see [27], Theorem 3.7 for more details).

Together with locally Lipschitz continuity assumption, we
consider the Filippov regularization of (1) which assures
existence, uniqueness and bounded dependence on the initial
condition for solutions of IH. Moreover, IH is robust and its

2a set-valued mapping F : Rm ⇒ Rn is said to be outer semicontinuous
if each sequence (xi, fi) in Rm×Rn that satisfies fi ∈ F (xi) for each i,
and converges to a point (x, f) in Rm×Rn has the property that f ∈ F (x).

3a set-valued mapping F : Rm ⇒ Rn is said to be locally bounded if,
for each compact set K1 ⊂ Rn, there exists a compact set K2 ⊂ Rn such
that F (K1) :=

⋃
x∈K1

⊂ K2. The boundedness is said to be uniform
with respect to a parameter if the set K2 can be selected uniformly with
respect to this parameter.

solution behaves as follows: it is either complete or blows
in a finite hybrid domain time or eventually jumps out of
Cq ∪ Dq , q ∈ Q. For further information, see [2], [4], [7],
[11] and [12].

We can now define the notion of stability needed to design
the controller for the hybrid closed loop system.

Definition 2.5:
• A set A ⊂ Rn is stable for IH if ∀ε > 0, ∃δ > 0 such

that any solution (x, q) to (9) with |x0|A ≤ δ satisfies
|x(t, j)|A ≤ ε, for all (t, j) ∈ dom(x, q);

• A set A ⊂ Rn is attractive for IH if there exists δ > 0
such that

– for all (x̄, q̄) ∈ Rn ×Q with |x̄|A ≤ δ there exists
a solution to IH with (x, q)(0, 0) = (x̄, q̄);

– for any maximal solution (x, q) to IH with
|x(0, 0)|A ≤ δ we have |x(t, j)|A → 0 as t →
sup t(dom(x, q)).

• The set A ⊂ Rn is asymptotically stable if it is stable
and attractive;

• The basin of attraction, denoted by IBIH(A), is the set
of all x̄ ∈ Rn such that for all q̄ ∈ Q, there exists a
solution to IH with x(0, 0) = x̄, q(0, 0) = q̄ and any
such solution that is also maximal satisfies |x(t, j)|A →
0 as t→ sup t dom(x, q);

• The set A ⊂ Rn is globally asymptotically stable if
IBIH(A) = Rn.

III. MAIN RESULT

Let us denote the unit closed ball in Rn by B. Before
stating our main result, let us first solve a preliminary design
problem by adapting the backstepping technique:

Proposition 3.1: Under Assumption 2, the set A defined
by (7) is globally practically stabilizable, i.e. for each a >
0 there exists a continuous controller ϕg such that the set
A+ aB contains a set that is globally asymptotically stable
for system (1) in closed-loop with ϕg .

We are now in position to state our main result.
Theorem 1: Let v` and ṽ` be two positive constants

satisfying 0 < ṽ` < v`. Under Assumptions 1, 2 and 3 there
exists a > 0 such that the hybrid controller IK defined by
Q = {1, 2}, subsets

C1 = {(x1, x2) ∈ Rn−1 × R : V`(x1, x2) ≤ v`},
C2 = {(x1, x2) ∈ Rn−1 × R : V`(x1, x2) ≥ ṽ`},
Dq = (Rn−1 × R) \ Cq, ∀q = 1, 2,

controllers C1 3 (x1, x2) 7→ ϕ1(x1, x2) = ϕ`(x1, x2) ∈ R
and C2 3 (x1, x2) 7→ ϕ2(x1, x2) = ϕg(x1, x2, a) ∈ R and
set-valued mapping Dq 3 (x1, x2) 7→ Gq(x1, x2) = {3−q},
q ∈ Q, renders the origin globally asymptotically stable for
(1) in closed-loop with IK.

Let us emphasize that this result is more than an existence
result since its proof allows to design a suitable hybrid
feedback law. Let us sketch the proof of Theorem 1. First, we
use Assumption 2, and Proposition 3.1 is applied to design
a controller, denoted ϕg , such that the set A is globally
practically stable for the system (1) in closed-loop with ϕg .
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Using Assumptions 1 and 3, this set is shown to be included
in the basin of attraction of the system (1) in closed-loop
with ϕ`. Then we design a hybrid feedback law based on an
hysteresis of both controllers ϕ` and ϕg on appropriate sets.
This latter construction is adapted from other works like [11]
or [25]. The complete proof of Theorem 1 is in Section V
below.

IV. ILLUSTRATION

Before applying the main result of this paper, let us first
consider the following example in R2{

ẋ1 = x1 + θx21 + x2
ẋ2 = u

, (10)

where θ is a positive constant.
This system is in backstepping form and many references

on how to design a global stabilizer are presented in the
literature, for instance, the reader may see [8], [18], and [19].
Following this approach, in a first step, we consider the two
smooth functions ϕ1(x1) = −(1+c1)x1−θx21 and V1(x1) =
1
2x

2
1 where c1 is a positive constant. It can be checked that

this function is such that, for all x1 in R,

∂x1V1(x1)
[
x1 + θx21 + ϕ1(x1)

]
= −2c1V1(x1) . (11)

This gives the control law, for all (x1, x2) in R2,

ϕb(x1, x2) = −(1 + c1 + 2θx1)(x1 + θx21 + x2)
−x1 − c2

(
x2 + (1 + c1)x1 + θx21

)
which is such that along the solutions of (10),

V̇b(x1, x2) = −c1x21 − c2
(
x2 + (1 + c1)x1 + θx21

)2
where Vb(x1, x2) = V1(x1) + 1

2 (x2 + (1 + c1)x1 + θx21)2.
However the backstepping technique cannot be applied to

the following system:{
ẋ1 = x1 + x2 + θ[x21 + (1 + x1)sin (u)]
ẋ2 = u

(12)

due to the presence of the term (1 + x1)sin (u) in the
time-derivative of x1 (recall the discussion in Footnote 1).
Therefore, it is necessary to revise the controller design for
(1) and to apply Theorem 1. With obvious definitions of the
functions f1, f2, h1 and h2, system (12) may be rewritten as
system (1) and system (10) may be rewritten as ẋ = f(x, u).
There exists θ > 0 sufficiently small such that we may apply
Theorem 1. Indeed we have the following result.

Lemma 4.1: Let θ be a positive constant. If θ is suffi-
ciently small, then Assumptions 1, 2, and 3 hold for system
(12).

The proof has been removed due to space limitation.
Combining this result with Theorem 1, we may design

a hybrid feedback law IK such that the origin is globally
asymptotically stable to (12) in closed-loop with IK.

Let us consider the following parameters θ = 10−3, ρ = 2,
c1 = (2+ρ)θ

2 + 1 = 1.0020, a = 10 and c = 10. Item 1 of
Assumption 2 is satisfied with α(s) = 2c1s, ∀s ≥ 0. Item
2 is satisfied with positive constants ε = 1− θ 2+ρ

2c1
= 0.998

and M = θ
2ρ(2c1−θ(2+ρ)) = 1.25× 10−4 . Items 3 and 4 are

satisfied with Ψ(x1, x2) = θ(1 + |x1|).
Since the pair of matrices (A,B) =

(∂xfh(0, 0), ∂ufh(0, 0)) is controllable, Assumption 1 holds
with ϕ`(x) = k1x1 + k2x2, where k1 = −5 − θ and k2 =
−3+3θ+θ2, V`(x) = 1

2 (x1−θx2)2 + 1
2 (2x1 +(1−2θ)x2)2

and v` =
(

2
θp(θ)

)2
= 0.1042. Moreover, in the set defined

by

A = {(x1, x2) ∈ R2 : |x1| ≤
√

2.5× 10−4, x2 = ϕ1(x1)}.

we may check that

max x∈AV`(x1, x2) = 0.0001 < v`,

and thus Assumption 3 holds. Following Proposition 3.1
and Theorem 1, we may define a hybrid controller. More
precisely, computing k = 2M+a

a2 = 0.2, we define the global
controller

ϕg(x1, x2) = ũ
k − (1 + c1 + 2θx1)(x1 + θx21 + x2) + x1

2k ,

where ũ = (x1 − ϕ1(x1))
[
−c− c

4∆(x1, x2)2
]

and

∆(x1, x2) = |x1|θ(1 + |x1|) + θ(1 + |x1|)
·k(1 + |(1 + c1)x1 + θx21|)

Then, letting ṽ` = 0.05, the origin is globally asymptoti-
cally stable for (12) in closed-loop with the hybrid controller
IK defined as in Theorem 1.

Let us check this property on numerical simulations. To
do that, we consider the initial condition x1(0, 0) = 0.5,
x2(0, 0) = 0.1 and q(0, 0) = 1. See Fig. 1 for the time
evolution of the x1, x2 and q components of the solution of
(12) in closed-loop with IK. First the system (12) is in closed-
loop with the controller ϕg (for continuous time between 0
and 0.5314). Then the system (12) is in closed-loop with the
controller ϕ`, and the solution converges to the origin.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

flows [t]

x
1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.8

−0.6

−0.4

−0.2

0

flows [t]

x
2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

flows [t]

q

Fig. 1. At top, time evolution of x1, at middle, time evolution of x2 and,
at bottom, time evolution of q.

V. PROOF OF THEOREM 1
A. Proof of Proposition 3.1

Proof: Let a be a positive value. We wish to show that
there exists a continuous controller ϕg such that A + aB
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contains a set that is globally and asymptotically stable.
First of all, note that if we introduce the function

r1(x1, x2, u) = f1(x1, x2) +h1(x1, x2, u), we get with Item
1 and Item 2 of Assumption 2 that along the solutions of
(1), we have for all (x1, x2) in Rn and u in R,

V̇1(x1) ≤ ε[α(M)− α(V1(x1))]
+∂x1

V1(x1) · [r1(x1, x2, u)− r1(x1, ϕ1(x1), u)]
(13)

Moreover, with the C1 function ηx1,x2(s) = sx2 + (1 −
s)ϕ1(x1), it yields

∂sr1(x1, ηx1,x2
(s), u) = ∂x2

r1(x1, ηx1,x2
(s), u)(x2−ϕ1(x1)) ,

which implies

r1(x1, x2, u)− r1(x1, ϕ1(x1), u) = (x2 − ϕ1(x1))∫ 1

0
∂x2

r1(x1, ηx1,x2
(s), u) ds.

Hence, Equation (13) becomes,

V̇1(x1) ≤ ε[α(M)− α(V1(x1))]

+(x2 − ϕ1(x1))∂x1
V1(x1) ·

∫ 1

0
∂x2

r1(x1, ηx1,x2
(s), u) ds.

Let V (x) = V1(x1) + k
2 (x2 − ϕ1(x1))2 for all (x1, x2)

in Rn with k = 2M+a
a2 . Let a′ be a positive value such that

V1(x1) ≤ a′ implies x1 ∈ {x′1 : V1(x′1) ≤ a′}+aB, in other
words, a′ is such that

V1(x1) ≤ a′ ⇒ ∃x′1 s.t. V1(x′1) ≤ a′ and |x1 − x′1| ≤ a .

Such positive value a′ exists since V1 is assumed to be a
proper function. Let ã = min {a, a′}. With these definitions
of k and a′, we get

{x : V (x) ≤M + ã} ⊂ A + aB (14)

Consider now the control ϕg defined for all ũ in R as in
Proposition 3.1.

Along the solutions of (1) with u = ϕg(x1, x2, ũ), it yields
for all (x1, x2) in Rn and ũ in R,

V̇ (x) ≤ ε[α(M)− α(V1(x1))] + (x2 − ϕ1(x1))[ũ

+Υ(x1, x2, u)],

where

Υ(x1, x2, u) = ∂x1
V1(x1) ·

∫ 1

0
∂x2

h1(x1, ηx1,x2
(s), u) ds

+kh2(x1, x2, u)− k∂x1
ϕ1(x1)h1(x1, x2, u).

With Item 2, 3 and 4 of Assumption 2, the function Υ
satisfies |Υ(x1, x2, u)| ≤ ∆(x1, x2) with

∆(x1, x2) = |∂x1V1(x1)|
∫ 1

0
Ψ(x1, ηx1,x2(s)) ds (15)

+Ψ(x1, x2)k(1 + |∂x1
ϕ1(x1)|)

Using a particular case of the Cauchy-Schwartz inequality
(i.e. α ≤ 1

c + c
4α

2), we get, for all c > 0

(x2 − ϕ1(x1))Υ(x1, x2, u) ≤ 1
c

+ c
4 (x2 − ϕ1(x1))2∆(x1, x2)2.

Consequently, it implies, that by taking

ũ = (x2 − ϕ1(x1))
[
−c− c

4
∆(x1, x2)2

]
, (16)

it yields along the solutions of

ẋ = f(x, ϕg(x1, x2, ũ)) . (17)

and for all (x1, x2) in Rn,

V̇ (x) ≤ ε[α(M)− α(V1(x1))] + 1
c − c(x2 − ϕ1(x1))2 .(18)

Note that for all c ≥ 1, it gives,

V̇ (x) ≤ ε[α(M)− α(V1(x1))] + 1− (x2 − ϕ1(x1))2 .

The function V1 being proper, the set A1 ⊂ Rn defined by

A1 =
{
x : εα(V1(x1)) + (x2 − ϕ1(x1))2 ≤ εα(M) + 1

}
,

is compact. Moreover, selecting c > 1, we get, along
the solutions of (17), V̇ (x) < 0, for all x such that
V (x) ≥ ζ, where ζ is the positive value defined as ζ =
max x∈A1{V (x)}. Consequently, for all c > 1, the set
{x, V (x) ≤ ζ} is globally asymptotically stable for (17).

The function α being locally Lipschitz, we can define Kα

its Lipschitz constant in the compact set {x, V (x) ≤ ζ}.
Hence, for all x in {x, V (x) ≤ ζ}, it yields,

|α(V1(x1))− α(V (x))| ≤ kKα

2 (x2 − ϕ1(x1))2 .

Consequently, with (18) and c > 1, we get along the
solutions of (17), for all x such that V (x) ≤ ζ,

V̇ (x) ≤ ε[α(M)− α(V (x))] + 1
c

−
(
c− εkKα

2

)
(x2 − ϕ1(x1))2 .

Finally, taking c > cg where

cg = max
{

1
ε[α(M+ã)−α(M)] , ε

kKα

2 , 1
}
,

it gives, along the trajectories of (17), for all x such that
V (x) ≤ ζ, V̇ (x) ≤ ε [α(M + ã)− α(V (x))].

Therefore, with c > cg , for all x such that ζ ≥ V (x) >
M + ã, we get along the solutions of (17), V̇ (x) < 0.
Since cg > 1 the same control gives also V̇ (x) < 0 for
all x such that V (x) ≥ ζ. Therefore the set {x, V (x) ≤
M + ã} in an attractor for system (1) in closed-loop with
u = ϕg(x1, x2, ũ). Consequently, with (14), the set A+ aB
contains a set that is globally and asymptotically stabilizable
with the control law ϕg(x1, x2) = ϕg(x1, x2, ũ) where ũ
is defined in (16) and c > cg . This concludes the proof of
Proposition 3.1.

B. Proof of Theorem 1

Proof: Since Assumption 2 holds, Proposition 3.1
applies. Let us choose the positive real number 0 < a such
that

max x∈A+aBV`(x) < ṽ` . (19)

Such values exist since Assumption 3 holds, and since V` is
a proper function.

Let us consider the controller ϕg given by Proposition 3.1
with this value of a.

Let us design a hybrid feedback law IK defining it as
in Theorem 1, i.e., building an hysteresis of ϕ` and ϕg
on appropriate domains (see also [11] or [25] for similar
concepts applied to different control problems).
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Consider an initial condition (x(0, 0), q(0, 0)) in Rn×Q,
and a maximal solution (x, q) of (1) in closed-loop with the
hybrid feedback law IK = (Q, (Cq, Dq, ϕq)q=1,2). Let us
assume, for the time-being, the following

Lemma 5.1: There exists a hybrid time (t̄, j̄) in dom(x, q)
such that q(t̄, j̄) = 1 and x(t̄, j̄) in C1.

Now, recalling (19) and using Assumption 1, the sets
C1 is forward invariant for system (1) in closed-loop with
ϕ`. Thus with Lemma 5.1, we get that (1) in closed-loop
with the hybrid feedback law IK is globally asymptotically
stable (since system (1) in closed-loop with ϕ` is locally
asymptotically stable).

Therefore to conclude the proof of Theorem 1, it remains
to prove Lemma 5.1. Let us prove this result by assuming
the converse and exhibiting a contradiction. More precisely,
let us assume that, for all (t, j) in dom(x, q),

x(t, j) 6∈ C1 or q(t̄, j̄) = 2 . (20)

Thus, due to the expression of D2, for all (t, j) in dom(x, q),
we have

x(t, j) ∈ D2 \ C1 or q(t̄, j̄) = 2 . (21)

If there is a time such that x(t̄, j̄) ∈ D2 \C1 and q(t̄, j̄) =
1, then a jump occurs for the q-variable and, due to the
expression of G1, x(t̄, j̄+1) ∈ C1 and q(t̄, j̄+1) = 2, which
is a contradiction with (20). Therefore, if x(t̄, j̄) ∈ D2 \C1,
then q(t̄, j̄) = 2. Thus we get with (21), for all (t, j) in
dom(x, q), x(t, j) ∈ D2 and q(t̄, j̄) = 2. Therefore the x-
component is a solution of (1) in closed-loop with ϕg with
does not enter C1. Since, with (19), C1 strictly contains the
set A, we get the existence of a solution of (1) in closed-
loop with ϕg which does not converge to A+ aB. This is a
contradiction with the choice of the controller ϕg satisfying
the conclusion of Proposition 3.1.

This concludes the proof of Theorem 1.

VI. CONCLUSION

A new design method has been suggested in this paper
to combine a backstepping controller with a local feedback
law. The class of designed controllers lies in the set of
hybrid feedback laws. It allows us to define a stabilizing
control law for nonlinear control systems for which there
exist some structural obstacles to the existence of classical
continuous stabilizing feedback laws. More precisely, it is
studied systems for which the backstepping tool for the
design of stabilizers can not be applied.
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State-space and lyapunov techniques, Modern Birkhäuser Classics,
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