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Abstract— Metabolic networks describe the set of biochem-
ical reactions and regulatory interactions of metabolism that
govern the phenotypical properties of a cell. Analysis of such
networks is critical not only to promote biological knowledge,
but also in drug discovery, where it can be used to identify
and knockout the targeted pathways. Flux Balance Analysis
(FBA) has been widely used to study metabolic networks. This
powerful technique employs the reaction stoichiometries and
reversibility constraints along with experimental measurements
of phenotypical properties of the cell, e.g., biomass composition
or ATP synthesis, to compute the fluxes of metabolites that
are best manifested in the cell. Although FBA has been shown
to satisfactorily capture cell behavior, its performance could be
significantly improved if measurement uncertainty is introduced
in the models. In this paper we propose Robust Flux Balance
Analysis (RFBA) to determine optimal fluxes of metabolites
for all phenotypical measurements in a given uncertainty set.
We derive a least squares bi-criterion approximation of the
uncertain problem and, using the S-procedure and tools from
matrix analysis, we show that this is equivalent to a semidef-
inite program that can be solved optimally using available
techniques. We illustrate our approach on synthetic metabolic
networks and discuss the effect of regularization on the final
solutions. Due to its convex nature, our approach can be applied
to genome-scale networks.

I. INTRODUCTION

Metabolic networks map the biochemical reactions in a

living cell to the flow of various chemical substances in the

cell, which are called metabolites. The metabolic network of

an organism can be thought of as production lines in a large

scale biochemical plant. It captures the totality of metabolic

reactions in which chemical substances are consumed to

produce metabolic products. Analysis of such networks is

critical not only to promote biological knowledge, but also in

drug discovery, where it can be used to identify and knockout

the targeted pathways.

Metabolic Flux Balance Analysis (FBA) [1], [2] studies

the feasible and optimal reaction fluxes through the net-

work at steady state [3], subject to structural, reversibility,

and flux capacity constraints [4], [5]. Structural constraints

arise from the stoichiometry of the metabolic reactions.

(Ir)reversibility constraints are thermodynamic in nature and

capture the direction in which chemical substances flow

within a reaction. Finally, flux capacity constraints can be

derived from the availability of nutrients, the existence of a

knockout, and biochemical data on the maximum throughput
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of enzymes. Given such constraints, the flux of chemical

substrates through the network is limited to a feasible region

defined by a convex polytope, and the objective of FBA is to

determine a feasible set of fluxes that is best manifested in

the biological system under consideration. The assumption

commonly made is that the metabolic system exhibits a

metabolic state that is optimal in terms of cellular growth [4],

[6]. Cellular growth can be represented by accumulation of

cellular biomass, which is composed of cellular metabolites.

If the composition of the cellular biomass is known, cellular

growth can be captured by an artificial biomass reaction

involving metabolites at stoichiometries defined by their

contribution in biomass composition. Therefore, calculation

of the optimal growth rate and the corresponding metabolic

fluxes can be posed as a Linear Program (LP) [1], [2].

To date, robustness analysis of metabolic networks has

primarily focused on the response of the network to structural

changes, such as gene knockouts or gene deletions, and has

traditionally relied on “brute force” FBA applied to different

knockout combinations [7], [8]. Minimal cutset algorithms

for knockout experiment design were proposed in [9], [10]

and were recently extended to arbitrarily large networks

[11]. The related literature also includes mixed integer linear

programming approaches [12], [13], as well as a convex

relaxations that scale better with the network size [14].

In this paper, we switch gears and study robustness of

FBA to perturbations in the biomass composition and the

metabolic flux capacities. These quantities are typically

subject to measurement uncertainty, which raises the need

for new Robust FBA (RFBA) techniques that return flux

distributions that are optimal for worst case measurements.

An important technical challenge in introducing uncertainty

in FBA is that this typically appears in the stoichiometric

equality constraints of the original LP, in the form of

uncertain stoichiometric coefficients of an artificial biomass

reaction [15], [16]. For this, we propose a least squares

approximation of the original uncertain LP that results in a

bi-criterion optimization problem. Using the S-procedure and

tools from matrix analysis, we show that this approximation

is equivalent to a semidefinite optimization problem that

can be solved optimally using available techniques [17]. We

illustrate our approach on synthetic data and study the effect

of regularization on the final solution.

This paper is organized as follows: In Section II we

describe FBA for maximization of cellular growth. In Sec-

tion III we introduce measurement uncertainty and develop

RFBA based on a least squares approximation of the original

uncertain LP. We illustrate our approach on synthetic data in

Section IV, and study the effect of regularization.

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 2915



II. FLUX BALANCE ANALYSIS (FBA)

A. Metabolic Network Modeling at Steady State

Consider a metabolic network with n metabolites and m
reactions. The k-th reaction can be written as

α1,kA1 + · · ·+ αn,kAn → β1,kA1 + · · ·+ βn,kAn, (1)

where Ai denotes the i-th metabolite, and α•,k, β•,k are non-

negative integers that denote the stoichiometric coefficients

of the k-th reaction. Obviously, if Ai is not involved as a

reactant in the k-th reaction, then αi,k = 0. Similarly, if

Ai is not involved as a product in the k-th reaction, then

βi,k = 0. In regular reactions we have

α•,k 6= 0, (2a)

β•,k 6= 0, (2b)

which means that there is always some reactant and prod-

uct associated with the reaction. Here we assume that all

reactions are irreversible. This is done without any loss of

generality, since reversible reactions can be written as two

opposite irreversible reactions.

In addition to the regular reactions, we also have uptake

reactions. These are reactions that can be written as

∗ → Ai, (3)

and model the uptake of metabolite Ai from the environment.

Uptake reactions can be also expressed as in (1), without the

restriction of (2a).

If we denote the concentration of the i-th metabolite as xi

and the rate of the k-th reaction as ωk, then we can show

that x and ω are related through

dx

dt
= (β − α)ω, ω ≥ 0 (4)

where α and β are the n × m matrices formed by the

coefficients of (1), and the symbol ≥ denotes element-wise

inequality.

In microbes, the transient dynamics of the metabolic

network are faster than both cellular growth rates and the dy-

namic changes in the organism’s environment. In analyzing

the network, thus, it is assumed that it is in its steady-state.

In steady-state, the rates dx/dt represent the accumulation

of metabolites and must be element-wise nonnegative. This

is because the cell can act as a perpetual sink, but not as a

perpetual source (without any uptake). Thus, in steady-state

condition, the following relations hold:

(β − α)ω −
dx

dt
= 0, (5a)

ω ≥ 0,
dx

dt
≥ 0. (5b)

We can rewrite (5) in a more compact form by introducing

pseudo-reactions as sinks. These are reactions that can be

written as

Ai → ∗. (6)

We associate a sink with every metabolite. Thus, there are

n pseudo-reactions. Equation (5) can, therefore, be written

compactly as [14]

Sv = 0, v ≥ 0, (7)

where

S ,
[

β − α −I
]

∈ Z
n×(m+n)
+ , v ,

[

ω
dx
dt

]

∈ R
m+n.

(8)

Since, typically, the number of reactions is greater than

the number of metabolites, i.e., S is a wide matrix, the

system (7) may have multiple solutions corresponding to flux

distributions representing different metabolic states. There-

fore, the null space, or the set of all feasible flux distribu-

tions, represents the capabilities of the metabolic genotype.

The transport fluxes represent environmental conditions that,

along with the genotype, define the metabolic state. However,

obtaining all possible metabolic states for any genotype-

environment interaction depends on how well the genotype

and environmental factors are characterized [18].

B. Maximization of Cellular Growth

The objective of Flux Balance Analysis (FBA) is to

determine a feasible metabolic state that is best manifested in

the biological system under consideration. The assumption

commonly made is that the metabolic system exhibits a

metabolic state that is optimal under some criteria. In the

case of cell growth, the objective is biomass production,

i.e., the rate at which metabolic compounds are converted

into biomass constituents, such as nucleic acids, proteins

and lipids. Biomass production can be mathematically rep-

resented by an artificial biomass reaction [15], [16]

n
∑

i=1

biAi
ωb−→ Biomass (9)

that consumes precursor metabolites Ai at stoichiometries

bi that simulate biomass production. The biomass reaction

is based on experimental measurements of the biomass

components bi contained in the vector b and is scaled so

that the flux through it is equal to the exponential growth

rate µ = ln(2)/T of the organism, where T > 0 is the

doubling time. Reaction (9) introduces an additional column

in the stoichiometric matrix, which becomes

Sb ,
[

β − α −b −I
]

∈ R
n×(n+m+1)
+ , (10)

with corresponding flux vector

vb ,
[

ωT ωb
dxT

dt

]T

∈ R
n+m+1, (11)

where ωb is the rate of the artificial biomass reaction (9).

Therefore, we can define an optimization problem to deter-

mine the metabolic fluxes vb that ensure desired cell growth,

dictated by precursor requirements contained in b, as

maximize eTb vb
subject to Sbvb = 0

0 ≤ vb ≤ vmax

, (12)
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where eb is a column vector with all entries equal to

zero except for the (m + 1)-st entry that is equal to one

and corresponds to the position of ωb in vb (c.f. (11)). In

problem (12), we have also included flux capacities vmax,

which in the case of the precursors correspond to their

actual experimentally measured concentrations for given cell

growth. If no such knowledge is available, the fluxes can be

unconstrained.

III. ROBUST FLUX BALANCE ANALYSIS (RFBA)

The experimentally measured biomass composition vector

b ∈ R
n
+ and the flux capacities vmax ∈ R

n+m+1
+ are

typically subject to uncertainty. In this section we introduce

measurement uncertainty in (12) and propose a reformulation

of the FBA problem that is robust with respect to worst case

parameter uncertainty.

Observe first that parameter uncertainty enters (12) in

the equality constraints Sbvb = 0, which poses technical

difficulties in finding a unique flux distribution vb that

satisfies these constraints for all possible evaluations of b
within an uncertainty set. Therefore, we approximate (12)

by the least squares bi-criterion optimization problem

minimize ǫ‖Sbvb‖2 − (1− ǫ)eTb vb
subject to 0 ≤ vb ≤ vmax

, (13)

where ǫ ∈ [0, 1] is a tuning (regularization) parameter [17]

that regulates the relative contribution of the two objectives

‖Sbvb‖2 and −eTb vb in (13). In problem (13) we trade

exact satisfaction of the stoichiomertic equality constraints

for maximization of biomass. In choosing ǫ, we should

ensure that equality violation is not too large, i.e., that the

stoichiometric error ‖Sbvb‖2 is small enough. We will study

sensitivity of the solution of problem (13) to the tuning

parameter ǫ in Section IV.

A. Uncertainty in the Biomass Composition

To model the uncertainty in the biomass composition vec-

tor b ∈ R
n
+, assume that there are p available measurements

{bi}
p
i=1 ∈ R

n
+ of the biomass composition and for every

ξ ∈ R
p with ‖ξ‖2 ≤ ρ let

b(ξ) = b0 +

p
∑

i=1

ξibi

where b0 = 1
p

∑p

i=1 bi denotes a mean biomass composition

vector (b0 can also be taken the zero vector 0n).1 Then, the

stoichiometric matrix Sb becomes

Sb(ξ) = Sb0 +

p
∑

i=1

ξiSbi ,

1Hereafter, bi will denote the i-th measurement of the biomass composi-
tion vector, rather than the stoichiometric coefficient of the i-th metabolite in
the biomass reaction previously defined in (9). The stoichiometric coefficient
of the j-th metabolite of the i-th measurement of the biomass composition
vector will be denoted by bij .

with Sbi defined as in (10) for biomass composition vector bi.
Therefore, we can define the robust counterpart of problem

(13) by

minimize ǫr(Sb, vb, ρ)− (1− ǫ)eTb vb
subject to 0 ≤ vb ≤ vmax

. (14)

where

r(Sb, vb, ρ) = max
‖ξ‖2≤ρ

‖Sb(ξ)vb‖2 (15)

denotes the worst case stoichiometric error. Without the

presence of the objective eTb vb, problem (14) is also known

as a Robust Least Squares problem [19], [20]. Let

M(vb) =
[

Sb1vb . . . Sbpvb
]

and define the quantities

F = MT (vb)M(vb), g = MT (vb)Sb0vb, h = ‖Sb0vb‖
2
2.

Then,

‖Sb(ξ)vb‖
2
2 =

∥

∥

∥

∥

∥

Sb0vb +

p
∑

i=1

ξiSbivb

∥

∥

∥

∥

∥

2

2

=
∥

∥Sb0vb +
[

Sb1vb . . . Sbpvb
]

ξ
∥

∥

2

2

= (Sb0vb +M(vb)ξ)
T
(Sb0vb +M(vb)ξ)

= h+ gT ξ + ξT g + ξTFξ

=
[

1 ξT
]

[

h gT

g F

] [

1
ξ

]

,

which gives

r2(Sb, vb, ρ) = max
‖ξ‖2≤ρ

[

1 ξT
]

[

h gT

g F

] [

1
ξ

]

.

Therefore, minimizing r(Sb, vb, ρ) is equivalent to minimiz-

ing λ ≥ 0 such that

[

1 ξT
]

[

h gT

g F

] [

1
ξ

]

≤ λ

for all possible ξ ∈ R
p with ξT ξ ≤ ρ2. In other words, we

need to find a minimum scalar λ and a vector vb such that

[

1 ξT
]

[

λ− h −gT

−g −F

] [

1
ξ

]

≥ 0

whenever
[

1 ξT
]

[

ρ2 0
0 −I

] [

1
ξ

]

≥ 0,

for all ξ ∈ R
p. By the S-procedure, this happens if and only

if
[

λ− h −gT

−g −F

]

� τ

[

ρ2 0
0 −I

]

,

for some τ ≥ 0.2 Therefore, problem (14) can be equivalently

written as

minimize ǫλ− (1− ǫ)eTb vb

subject to

[

λ− ρ2τ − h −gT

−g τI − F

]

� 0

0 ≤ vb ≤ vmax

. (16)

2We write X � 0 if and only if the symmetric matrix X ∈ Sn belongs
in the positive semidefinite cone, defined by Sn

+
= {X ∈ Sn | X � 0}.
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TABLE I

STOICHIOMETRIC MATRIX [ β − α | − b ] FOR THE METABOLIC NETWORK SHOWN IN FIG. 1. THE REACTIONS R−

•
INDICATE OPPOSITE

DIRECTIONALITY WITH RESPECT TO THE REACTIONS R• , AND ARE INTRODUCED TO MODEL REVERSIBILITY (21). REACTIONS R6 THROUGH R8

MODEL UPTAKE OF METABOLITES FROM THE ENVIRONMENT (22), WHILE REACTION R9 CORRESPONDS TO THE ARTIFICIAL BIOMASS REACTION (23).

R1 R2 R3 R4 R5 R−

1 R−

2 R−

3 R−

4 R−

5 R6 R7 R8 R9

A1 -2 0 -1 0 0 2 0 1 0 0 1 0 0 0
A2 -1 0 0 0 0 1 0 0 0 0 0 1 0 0
A3 0 -1 0 -2 0 0 -1 0 -2 0 0 0 1 0
A4 1 -1 0 0 -2 -1 1 0 0 2 0 0 0 0
A5 0 1 -2 0 0 0 -1 2 0 0 0 0 0 −µb5
A6 0 0 2 -1 0 0 0 -2 1 0 0 0 0 −µb6
A7 0 0 1 -1 0 0 0 -1 1 0 0 0 0 0
A8 0 0 0 2 0 0 0 0 -2 0 0 0 0 −µb8
A9 0 0 0 1 -1 0 0 0 -1 1 0 0 0 −µb9
A10 0 0 0 0 1 0 0 0 0 -1 0 0 0 0

and an artificial biomass reaction

R9 : bi,5A5 + bi,6A6 + bi,8A8 + bi,9A9 → Biomass (23)

with bi =
[

0 0 0 0 bi,5 bi,6 0 bi,8 bi,9 0
]T

the i-th measurement of the biomass composition vector, for

i = 1, . . . , p with p = 10 (Fig. 1). We assume that bi has

mean [0 0 0 0 3 1 0 2 1 0]T and that every one of its

entries is subject to zero mean and 0.5 variance gaussian

noise. Every biomass composition vector bi is normalized

so that bi,5 + bi,6 + bi,8 + bi,9 = 1. Let T = 1h be the

doubling time of the organism, so that the growth rate is

µ = ln(2)/T = 0.69h−1. Then, the stoichiometric matrix

of the network under consideration is shown in Table I.

Furthermore, we assume that all fluxes are unconstrained,

except for the uptake fluxes of reactions R6, R7 and R8 that

are upper bounded by 0.1. For simplicity, we assume that

these bounds are deterministic.

We evaluated the performance problem (20) for different

values of the tuning parameter ǫ ∈ [0, 1] and for ρ = 1.5.

Simulations were performed in MATLAB using the cvx

toolbox for disciplined convex programming [21]. Fig. 2

illustrates as a function of the tuning parameter ǫ ∈ [0, 1] (a)

the biomass objective eTb vb, (b) the upper bound λ on the

worst case stoichiometric error r(Sb, vb, ρ) defined in (15),

and (c) the stoichiometric errors ‖Sbivb‖2 for all measured

biomass compositions bi, with i = 1, . . . , p. Observe that the

values of ‖Sbivb‖2 are always upper bounded by λ, since

ρ = 1.5 ≥ 1. In other words, the set {‖Sb(ξ)vb‖2 | ‖ξ‖2 ≤
ρ} includes the errors ‖Sbivb‖2 for all measured biomass

compositions (15). This is not necessarily the case if ρ < 1.

For ǫ = 0 the stoichiometric equality constraints are

ineffective and, therefore, the resulting value of eTb vb has

no biological meaning. We are interested in regions of the

plot where λ is minimum and eTb vb is maximum. Note that

λ can not become identically zero, since there does not exist

a unique nontrivial flux vector vb for which ‖Sbvb‖2 = 0 for

all biomass compositions b ∈ {b0 +
∑p

i=1 ξibi | ‖ξ‖2 ≤ ρ}.

From Fig. 2 we see that λ is almost at its minimum for

ǫ ≥ 0.85. Since eTb vb decreases rapidly as ǫ increases beyond

0.85, we choose ǫ = 0.85 to obtain eTb vb = 0.1593. The

flux vector vb obtained by the solution of problem (20) for

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

 

 

eTb vb
λ

‖Sbi
vb‖2

Fig. 2. Plots of (a) the biomass objective eT
b
vb, (b) the upper bound λ

on the worst case stoichiometric error r(Sb, vb, ρ) defined in (15), and (c)
the stoichiometric errors ‖Sbivb‖2 for all measured biomass composition
vectors bi, with i = 1, . . . , p, with respect to the tuning parameter ǫ ∈
[0, 1]. The y-axis is in log-scale.

e = 0.85 is shown in Table II. Note that for this value of

ǫ = 0.85 there is maximum uptake of metabolites A1 and A3

(fluxes ω6 and ω8) equal to the upper bound 0.1, which is

distributed among the five reactions to result in metabolites

that maximize biomass. All steady state metabolite con-

centrations are effectively constant (dxi/dt = 0), except

for the concentrations of A2 and A9 that slightly increase.

This increase is due to the stoichiometeries in the network

that prevent these metabolites from being fully consumed

to produce biomass. The values of the errors ‖Sbivb‖2 for

i = 1, . . . , p are small, ranging between 0.01–0.02 in value.

Remark 4.1 (ǫ → 1): Observe that as ǫ → 1, both eTb vb →
0 and ‖Sbivb‖2 → 0, for all measurements i = 1, . . . , p
(Fig. 2). This behavior is justified, since as ǫ → 1 the

biomass objective eTb vb becomes effectively inactive and

the optimization problem (20) determines fluxes vb to only

minimize the worst case stoichiometric error r(Sb, vb, ρ).
Numerically, a sparse flux vector vb as the one shown

in Table II is not optimal as a minimizer of r(Sb, vb, ρ).
In fact, if ǫ = 1, the flux vector vb returned by (20)

for the metabolic network of Fig. 1 is rather dense with
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TABLE II

FLUX VECTOR vb DETERMINED BY PROBLEM (20) FOR THE NETWORK

ILLUSTRATED IN FIG. 1 AND FOR TUNING PARAMETER ǫ = 0.85. THE

FLUXES ω1 THROUGH ωb ARE POSITIVE IF THEIR DIRECTION AGREES

WITH REACTIONS (21), (22) AND (23), AS SHOWN IN FIG. 1.

Flux Value Flux Value

ω1 = ω(R1) 0.0448 dx1/dt 0.0000

ω2 = ω(R2) 0.0701 dx2/dt 0.0315

ω3 = ω(R3) 0.0129 dx3/dt 0.0000

ω4 = ω(R4) 0.0156 dx4/dt 0.0000

ω5 = ω(R5) –0.0101 dx5/dt 0.0000

ω6 = ω(R6) 0.1000 dx6/dt 0.0000

ω7 = ω(R7) 0.0764 dx7/dt 0.0000

ω8 = ω(R8) 0.1000 dx8/dt 0.0000

Biomass Reaction dx9/dt 0.0081

ωb = ω(R9) 0.1593 dx10/dt 0.0000

TABLE III

FLUX VECTOR vb DETERMINED BY PROBLEM (20) FOR THE NETWORK

ILLUSTRATED IN FIG. 1 AND FOR TUNING PARAMETER ǫ = 1.00. THE

FLUXES ω1 THROUGH ωb ARE POSITIVE IF THEIR DIRECTION AGREES

WITH REACTIONS (21), (22) AND (23), AS SHOWN IN FIG. 1.

Flux Value Flux Value

ω1 = ω(R1) 0.0327 dx1/dt 0.0131

ω2 = ω(R2) 0.0234 dx2/dt 0.0400

ω3 = ω(R3) 0.0091 dx3/dt 0.0383

ω4 = ω(R4) 0.0057 dx4/dt 0.0058

ω5 = ω(R5) 0.0018 dx5/dt 0.0052

ω6 = ω(R6) 0.0876 dx6/dt 0.0125

ω7 = ω(R7) 0.0727 dx7/dt 0.0034

ω8 = ω(R8) 0.0730 dx8/dt 0.0114

Biomass Reaction dx9/dt 0.0039

ωb = ω(R9) 5.27 · 10−6 dx10/dt 0.0018

very little biomass is produced (Table III). As expected, all

resources are consumed to produce metabolites A1, . . . , A10

and obtain a dense flux vector vb. The stoichiometric errors

{‖Sbivb‖2}
p
i=1 in this case are of the order of 10−7, as

expected (but still nonzero).

V. CONCLUSIONS

Metabolic Flux Balance Analysis (FBA) is a powerful

optimization-based technique that studies the feasible and

optimal reaction fluxes through the network at steady state,

subject to structural, reversibility, and flux capacity con-

straints. Among the large number of possible flux distribu-

tions, FBA determines the one that is best manifested in

the system under consideration. The assumption commonly

made is that the metabolic systems exhibits a metabolic state

that is optimal in terms of cellular growth, which is typically

represented by accumulation of cellular biomass.

In this paper, we proposed Robust Flux Balance Analysis

(RFBA) to account for uncertainty in the biomass composi-

tion and flux capacities. We showed that flux distributions

that are robust to worst case parameter uncertainty can

be obtained by the solution of a bi-criterion semidefinite

program, which can be solved to optimality using available

techniques and scales well to large networks due its convex

nature. We illustrated our approach on synthetic data and

studied the effect of regularization on the final solution.

Future work involves application of our method to real

experimental data and comparison with existing techniques.
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