
Control Aesthetics in Software Architecture for Robotic Marionettes

Todd D. Murphey and Elliot R. Johnson

Abstract— This paper considers the design of software for
embedded control of robotic marionettes using choreography
to specify the marionette motion. Marionettes are actuated
by strings, so the mechanical description of the marionettes
either creates a multi-scale or degenerate system—making
simulation of the constrained dynamics challenging. Moreover,
the marionettes have 40-50 degrees of freedom with closed
kinematic chains. Choreography requires motion primitives
typically originating from human motion that one wants the
marionette to imitate, resulting in a high dimensional nonlinear
optimal control problem that needs to be solved for each
primitive. Once one has motion primitives to use, they must be
pieced together in a way that preserves stability, resulting in
an optimal timing control problem. These three computational
components lead to software requirements for the embedded
system, including efficient computation of the 1) discrete time
dynamics that preserve the constraints and other integrals of
motion, 2) nonlinear optimal control policies (including optimal
control of LTV systems), and 3) optimal timing of choreography.
All of these need to take fast convergence into account. We show
how to provide all these capabilities in a single framework.
Moreover, in order to meet these requirements new results
on projection operators on finite dimensional function spaces
are needed—both of which are critical to ensuring acceptable
convergence of the algorithms. We conclude with our current
results and application of these ideas to other systems.

I. INTRODUCTION

Efficient methods in simulation for highly articulated rigid
body systems have been studied for many years [28], [27],
[4], [3], [2], [11]. However, less emphasis on control calcu-
lations for these same systems has been present. This paper
focuses on the questions of how to both simulate and control
an arbitrarily complex rigid body system while keeping scal-
ability and convergence of the resulting numerical routines.
We have been using robotic marionette systems (seen in
Fig. 1) as an example of a complex system that requires
careful embedded control that can handle many degrees of
freedom.

This work is a collaboration with Georgia Tech, The
Atlanta Center for Puppetry Arts, and Disney Imagineering.
Disney Imagineering has played a central role in helping
develop the hardware platform partially because animatronics
in theme parks are very heavy, slow, and expensive and
robotic marionettes promise to be both more agile and less

T.D. Murphey t-murphey@u.northwestern.edu
E.R. Johnson elliot.r.johnson@u.northwestern.edu
Department of Mechanical Engineering, Northwestern University, 2145

Sheridan Road, Evanston, IL, USA 60208
This material is based upon work supported by the National Science

Foundation under award IIS-0917837. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

(a) (b)
Fig. 1. The robotic marionette system in (a) is actuated by small wheeled
robots that run on the underside of a tarp. The goal is to use motion captured
from the dancers in (b) as reference data for the marionettes. Software
must enable transforming the dancers’ motion into dynamically admissible
motion for the marionettes and allow one to piece these motions together
using choreography.

costly and cumbersome. However, controlling marionettes is
a very hard technical problem; the marionettes have many
degrees of freedom, have mechanical degeneracy due to the
strings, and are highly constrained.

However, we know that puppeteers can solve these high
dimensional motion planning problems—puppeteers do suc-
cessfully get marionettes to convincingly imitate human
motion—so we know the problems are solvable. However,
how can we mimic how puppeteers manage complexity and
uncertainty and apply these insights to critical areas such as
embedded control of active prosthetics? Our current hypothe-
sis is that the choreography used in marionette theater plays a
critical role in how puppeteers manage complexity, and that
what we learn from studying choreography in marionettes
will affect our understanding of other complex applications
such as embedded control of prosthetics (briefly discussed at
the end of this article). Key questions include how do we deal
with complexity in motion control and how do we represent
what we want a complex system to do? Choreography
provides a way of canonically identifying useful motions
(e.g., walking, running, waving, reaching) that can be pieced
together. How one pieces these motions together determines
whether the motions stably and smoothly transition.

This paper is organized as follows. Section II describes
typical approaches in dynamic simulation and optimal con-
trol and what software requirements these approaches create.
Section III discusses what special considerations should
be taken into account when working in discrete time—as
software always does. Section IV illustrates our software
approach with a brief discussion of some successful example
systems that the software automatically optimizes.

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 3825

II. TYPICAL APPROACH

In this section we discuss typical analytical approaches
to optimal control and what sort of software infrastructure
these approaches assume. We start by describing how one
may describe the dynamics of a mechanical system and then
move on to computing optimal controllers for that system.

A. Dynamics

When computing dynamics we are typically trying to
compute dynamics of the form

ẋ = f(x, u) (1)

where x = (q, q̇) and q ∈ Q describes the configuration
of the system. For rigid body systems, it has historically
been convenient to write down the rigid body system in
Newton-Euler coordinates (i.e., Q = SE(3)n, where n is
the number of rigid bodies in the system. This yields a state
space of dimension 12n that is subject to constraints. For the
marionette, for instance, just the body has 10 rigid bodies, so
the state space for just the body would be 120 dimensions.
If one includes the actuators, one adds a minimum of one
degree of freedom for the length of each of the five strings
and three to six degrees of freedom for each of the five
actuators (depending on whether the actuators are planar
or not). For the marionettes this bring the total nominal
dimension of the state space up to 12·10+2·5+12·5 = 190. It
should be clear that we don’t want to be solving for feedback
controllers in a 190 dimensional space if we can avoid it.

Because of these issues, we don’t want to represent Eq. (1)
as Newton-Euler equations and instead insist on working in
generalized coordinates. In the case of the marionettes, this
reduces the dimension of the state to 2m, where m is the
number of generalized coordinates. This give us 22 dynamic
degrees of freedom for the marionette itself and another
18 degrees of freedom for the actuators, yielding 80 states.
By utilizing a kinematic reduction [6], [5] we can reduce
the state of the actuators down to 18 because the actuators
are fully actuated. This gives us equations of motion of the
following form.

ẋa = u

ẋp = f(xp, xa) (2)

where xa is the kinematic configuration of the actuators and
xp = (qp, q̇p) is the dynamic configuration and its velocity
of the marionette itself. (For details on this, see [17].) This
leaves us with a much smaller, more manageable system to
work with that only has a total of 62 dimensions in its state
space.

The last thing to point out is that because of the strings
there are holonomic constraints relating the end of the arm
to the length of the string (e.g., when the string length is
constant L, the end of the arm evolves on a sphere of radius
L). This creates a constraint

h(xa, qp) = 0 (3)

that must be maintained during the simulation.

(a)

(b)

Fig. 2. Simulation of complex rigid bodies can take advantage of the
mechanical topology of the system. For instance, a marionette is being
simulated in (a) using a tree structure representation of the humanoid form
in (b) and representing the constraints by cycles in the graph (see [16]).

Assume for a moment that Eqs (2) and (3) can be stably
simulated in an efficient manner. How do we construct the
differential equation and constraints in a systematic manner?
The standard way to do this is based on Featherstone’s
early work [11] on articulated body dynamics. This work
was largely used in the context of animation, where the
requirements are substantially different than embedded con-
trol (for instance, if one can get an animation to “look
right” once, the task is done, whereas controlled physical
systems have to be repeatable). Recursive approaches to
calculating dynamics [25], [11] take advantage of special
representations of mechanical systems that allow the values
needed for simulation to be calculated quickly and avoid
redundant calculations.

The work in this paper is based on the methods presented
in [16] (based on [11]). Systems are represented as graphs
where each node is a coordinate frame in the mechanical
system and the nodes are connected by simple rigid body
transformations (typically translations along and rotation
about the X , Y , and Z axes though any rigid body screw
motion can be used). Transformations are either constant or
parameterized by real-valued variables. The set of all vari-
ables establishes the generalized coordinates for the system.
Figure 2 is an example of a marionette. The graph description
can include closed kinematic chains, but in practice the graph
is converted to an acyclic directed graph (i.e, a tree) and
augmented with holonomic constraints to close the kinematic

3826

chains. This approach leads to fast ways to calculate f(·, ·)
in Eq. (2) and h(·) in Eq. (3). Moreover, one can use the
same structure to efficiently calculate the linearization [14],
which is critical to nonlinear optimal control calculations,
discussed next.

B. Nonlinear Optimal Control

Optimal control typically starts out with a cost function
of some sort, often of the form

J =

∫ tf

t0

L(x(t), xref(t), u(t))dt+m(x(tf), xref(tf)) (4)

where L(·) represents a weighted estimate of the error
between the state and the reference state (which is potentially
not a feasible trajectory for the system). Minimizing this cost
function subject to the dynamics in Eqs. (2) and (3) can
be done using iterative descent methods. In particular, one
uses the equivalence between the constrained minimization
and the unconstrained minimization of the objective function
composed with a differentiable projection P(·) onto the
constrained subspace. That is, the two minimizations

min
v∈W⊆V

g(v) = min
v∈V

g(P(v))

(where V is the vector space and W is the differentiable
submanifold of admissible vectors) are equivalent [12]. The
projection operator P(·) comes from computing a feedback
law (discussed in more detail in the next section). In partic-
ular, if one interprets the “gradient” descent algorithm as
starting at some nominal trajectory ξ = (x(t), u(t)) and
solving for a descent direction ζ = (z, v) that optimizes
the local quadratic model

ζ = arg min
ζ
Dg(ξ) ·DP(ξ) · ζ + ‖ζ‖2,

then one just has to solve a standard time-varying LQR
problem. This means that one has to be able to compute
the time-varying linearization

ż = A(t)z +B(t)v (5)

where A(t) = ∂f
dx (x(t), u(t)) = D1f(x(t), u(t)) and B(t) =

∂f
du (x(t), u(t)) = D2f(x(t), u(t)). One has to be able to
do so for arbitrary trajectories in the state space, potentially
including infeasible trajectories (in the case of linearizing
about the desired trajectory). Solving for the descent direc-
tion involves solving the Riccati equations

Ṗ +A(t)TP + PA(t) +Q− PB(t)R−1B(t)TP = 0. (6)

If we additionally want to guarantee quadratic convergence,
then we can solve a different LQR problem

ζ = arg min
ζ
Dg(ξ) ·DP(ξ) · ζ + ‖ζ‖2D2J

where

D2J(ξ) · (ζ1, ζ2) = D2g(ξ) · (DP(ξ) · ζ1, DP(ξ) · ζ2)

+Dg(ξ) ·D2P(ξ) · (ζ1, ζ2). (7)

The second derivative D2P(·) requires that we be able
to also calculate ∂2f

dx2 , ∂2f
du2 , and ∂2f

dxdu . The details of this

approach can be found in [12] and elsewhere, but for us the
key thing is that we have to be able to compute Eqs. (2), (3),
(4), (5), (6), and (7) in software. The difficulty, as we will
see, is that we are representing the optimal control problem
in continuous time, which creates problems due to the fact
that the actual computations are in discrete time. We will
discuss this more momentarily in Section III.

C. Choreography and Hybrid Optimal Control

In [23], [8], [24] we developed an optimal control in-
terpretation of choreography. In particular, we formalize
choreography as a sequence of modes that can be pieced
together to form a script. Each mode has its own dynamics,
creating a system with dynamics

ẋ = f(x(t), u(t)) = fi(x(t), u(t)) t ∈ (τi, τi+1)

where each i corresponds to a different mode of the system.
To optimize such a system, one needs to be able to mini-
mize an objective function J with respect to the switching
times τi of the system. This derivative ∂J

∂τi
with respect to

the switching times depends on the switching time adjoint
equation

ρ̇+A(t)T ρ+
∂L

∂x
= 0 (8)

along with a boundary condition at ρ(tf) (see [15], [7], [10],
[9]). This adjoint equation only needs to be computed once to
compute all the derivatives of J . If one wants to compute the
second derivative of J , one needs the second-order switching
time optimization

Ṗ +A(t)TP + PA(t) +
∂2L

∂x2
+
∑
k

ρk
∂2fk

∂x2
= 0 (9)

along with its boundary condition P (tf) [7]. This adjoint
equation, along with a solution to Eq. (8), only needs to be
computed once to compute all the derivatives of J . Note
that the second-order switching time adjoint equation is the
same as the Riccati equation in Eq. (6) except that the Riccati
equation has an different final term. Indeed, both Eq. (8) and
Eq. (9) both only require first and second derivatives of fi
with respect to the state, so those are all that are needed
for software; hence, the choreographic optimization requires
the same software capabilities as the smooth optimization in
Section II-B.

III. DISCRETE TIME WITH SCALABILITY

As previously mentioned, the continuous representation
of dynamics found in Eq. (1) is not what we actually use
to do computations. Moreover, when there are constraints,
such as those seen in Eqs. (2) and (3), standard methods
such as Runge-Kutta methods fail to preserve the constraints.
Typically one would use solvers designed for Differential
Algebraic Equations (DAEs) that project the numerical pre-
diction onto the set of constrained solutions defined by the
constraint in Eq. (3). We have found, however, that for high-
index DAEs such as the marionette a tremendous amount of
“artificial stabilization” is required to make the simulation of
the DAE stable. This artificial stabilization—which typically

3827

takes the constraint h(q) as a reference and introduces a
feedback law that “stabilizes” the constraint—changes the
dynamics of the system, and if the feedback gain is high often
creates a multi-scale simulation problem that is incompatible
with real-time operation. As an alternative, we consider
variational integrators [13], [26], [18], [21], [20], [30], [19].

Variational integration methods use the stationary action
principle as a foundation for numerical integration that
does not involve differential equations. This approach has
several advantages–known conservation properties (such as
guarantees about conservation of momenta, the Hamiltonian,
and the constraints) as well as guaranteed convergence to
the correct trajectory as the time step converges to zero.
More importantly, variational integration techniques exactly
simulate a modified Lagrangian system where the modified
Lagrangian is a perturbation of the original Lagrangian. The
Discrete Euler-Lagrange (DEL) equations are

D1Ld(qk, qk+1, k) +D2Ld(qk−1, qk, k) = Fk (10)
h(qk+1) = 0 (11)

where Ld is a discretized form of the Lagrangian and Fk is
an external force integrated over the k time step. This forms
a root solving problem in which, given qk−1 and qk, one
solves for qk+1. Repeating this rootsolving procedure forms
the basis of simulation. Using this method, we can (using a
recursive technique similar to the one described in Section II-
A), simulate the marionette in real-time using time steps of
0.01 s without adding any sort of numerical heuristics such
as artificial stabilization.

Let’s say we start form the DEL equations and assume, by
application of the implicit function theorem, that the solution
exists and is locally unique [22]. Then, once we have made
a choice of state (we choose xk = (qk, pk) where pk is the
generalized momentum), we have an update equation of the
form

xk+1 = fk(xk, uk)

just as we would if we had started from a differential
equation. That is, the general form of the discrete time
equation we wish to optimize is no different–in principle–
in the variational case than it is in the standard ODE case.
More importantly, the fact that fk is implicitly defined by
the DEL equations does not affect whether the linearization
is implicitly defined. In fact, one can calculate an exact
linearization of the DEL equations, including constraints and
closed kinematic chains [14]. So we may wish to know what
the discrete-time analog of Eqs. (6) and (7) are. (These can
be found in [1].) The difficulty is that one cannot linearize
Eq. (1) directly because that is the infinitesimal linearization;
to get a discrete-time linearization one would nominally have
to solve the state transition matrix (STM) locally over the
time step. Approximating the STM leads to a linearization
that does not respect the constraints, leading to a local
optimal controller that essentially fights the constraints. In
contrast, taking variations directly with respect to xk yields
an algebraic calculation for the linearization and higher-
order derivatives with respect to the state. As with variational

integration, the key to linearization is to take variations with
respect to the discrete state rather than the continuous state.

For nonlinear optimal control in the discrete time setting,
we need to know if the resulting projection operator is in
fact a projection and whether it is differentiable.

! " # $ % &
!!'&

!

!'&

!
"

(

(

! " # $ % &
!"

!

"

)*+,(-./

!
#

*0!

*0"

12)*+34

Fig. 3. Projection-based variational optimization of a planar double
pendulum [29]

To see that such a projection is valuable, consider Fig. 3
[29], where a planar double pendulum trajectory is being
optimized. The initial guess for the optimal solution is
the “zero” solution, the optimal solution is the solid black
line, and the first iteration of Newton’s method using the
projection operation is the dotted line. Hence, one step of
Newton’s method almost solves the global optimization in
this case. Naturally, that will not always be the case, but
this is an indication of how much generating a differential
projection operation can help.

Let ξ = (x, u) be a desired, potentially infeasible, curve
in the space the trajectories reside in and let ξ = (x, u)
be admissible trajectories. The continuous time projection
operator is defined by ξ = P(ξ) such that

x(t0) = x(t0)

ẋ = f(x, u)

u = u−K(t)(x− x)

where the feedback gain K(t) comes from solving the
Riccati equation in Eq. (6). One can verify that P(·) is a
projection and that it is C∞ if f is C∞. What do we do if
we are using Eqs. (10) and (11) instead of Eqs. (2) and (3)?
Then the discrete projection operator Pd(·) is ξd = Pd(ξd)
such that

x0 = x0

xk+1 = fk(xk, uk) (12)
uk = uk −Kk(xk − xk)

where the discrete time feedback gain Kk comes from
solving a discrete time Riccati equation. To see that it is
a differentiable projection, we introduce the next Lemma.

Lemma 3.1: Pd(·) is a projection.
Proof: We need to show that the projection satisfies the

property Pd(ξ̄d) = Pd(Pd(ξ̄d)). First we calculate (a, b) =

3828

Pd(α, µ) and get that a1 = α1, ak = f(αk−1, µk−1),b1 =
µ1, and bk = µk + Kk(ak − αk). Now calculate (x, u) =
Pd(a, b) and find that x1 = a1, xk = f(α1, µ1) = a2,
b1 = µ1, and—the critical part—b2 + K2(x2 − a2) = b2 +
K2(a2 − a2) = b2. By induction we find Pd ◦ (α, µ) =
Pd ◦Pd ◦ (α, µ). Hence, Pd(·) is a projection operation
from discrete-time representations of curves ξd to discrete-
time representations of trajectories ξd.
Next we need to calculate the derivative of Pd(·), starting
with ξd = Pd(ξd) (we are going to drop the d from ξd for
notational convenience).

δξ = DPd(ξ̄) ◦ δξ̄
So, by Eq. (12), we get

δxk0 = δx̄k0

δxk+1 =
∂fk
∂xk

δxk +
∂fk
∂uk

δuk = Dfk ◦ δξk

δuk = δūk −Kk(δxk − δx̄k).

where ∂fk
∂xk

is shorthand for ∂fk∂x (xk, uk, k). (The same applies
to ∂fk

∂uk
and Dfk.) As in the continuous case, the discrete

projection is a discrete linear system. The second derivative
is also straightforward (here we let δξ̄1 and δξ̄2 be two
independent perturbations to ξ̄).

δ2ξ = D2P(ξ̄) ◦ (δξ̄1, δξ̄2)

which implies, again by Eq. (12), that

δ2xk0 = 0

δ2xk+1 = D2fk ◦ (δξ1k, δξ
2
k) +Dfk ◦ δ2ξk

=
∂fk
∂xk

δ2xk +
∂fk
∂uk

δ2uk +D2fk ◦ (δξ1k, δξ
2
k)

δ2uk = −Kkδ
2xk.

Rewriting the second derivative, we get:

δ2xk+1 =
∂fk
∂xk

δ2xk +
∂fk
∂uk

δ2uk +D2fk ◦ (δξ1k, δξ
2
k)

=

[
∂fk
∂xk
− ∂fk
∂uk

Kk

]
δ2xk +D2fk ◦ (δξ1k, δξ

2
k).

This is a discrete affine system, equivalent to a discrete linear
system with an input:

δ2xk+1 = Âkδ
2xk + B̂k

Âk =

[
∂fk
∂xk
− ∂fk
∂uk

Kk

]
B̂k = D2fk ◦ (δξ1k, δξ

2
k).

Hence, the projection operation Pd is second differentiable
with derivatives that are represented by discrete-time linear
difference equations, allowing us to apply Newton’s method
to optimal control problems.

IV. EXAMPLES

At the current stage of development, we have tested
some low-dimensional examples to ensure that we get the
same answers in trep1 as we do using standard software

1The simulation portion of trep—written in Python and C—is already
available at http://trep.sourceforge.net, but the optimal control techniques
discussed here are not yet available in the distribution of the software.

(a) (b)
Fig. 4. Successful optimizations include automatic optimization of the
cart-pendulum problem in (a) and the marionette waving arm in (b). The
cart-pendulum example can track the desired, infeasible trajectory given
by the blue pendulum to an inverted configuration and back, starting from
the hanging equilibrium. The marionette waving arm example can lift the
arm (through a kinematic singularity), wave, and drop it back down. These
calculations produce both the optimal trajectories as well as the feedback
laws that stabilize them, and do so using only the graph description of the
mechanical system.

implementations in Mathematica. These two cases are seen
in Fig. 4. The underactuated cart-pendulum problem is one
that has been well-studied as a nonlinear control problem.
The key thing is that we can, by specifying the two node
graph that describes the relationship between the two rigid
bodies and their inertial characteristics, compute an optimal
control law that swings the pendulum up to an inverted
configuration. The simple marionette arm waving example
is something we computed before in Mathematica [23], but
here we only specify the constrained optimization problem
in terms of the graph and obtain the optimal solution. Hence,
at least for simple graphs, all the optimal control calculations
that we wish to be able to do are feasible.

For the full marionette we have not yet completed optimal
control calculations, but—to indicate the real-time feasibility
of the algorithms we discussed in the previous sections—we
now provide some timing data for trep. For the marionette
simulation in Fig. 2 we have a system that has 22 dynamic
degrees-of-freedom and 18 kinematic degrees of freedom
(corresponding to the actuation of the strings). The total num-
ber of constraints due to the strings is 6 and the total number
of force inputs is 12. To evaluate the continuous dynamics
that would be used in a standard integrator, one evaluation
of f(x, u) requires 2.7 ms, while the first derivative with
respect to the state (i.e., the linearization) requires 24 ms
and the second derivative with respect to the state requires
400 ms. Note that this does not say anything about how long
it will take to simulate a particular length of time because the
time step is not included here because we are not working in
discrete time. With the variational integrator from Eqs. (10)
and (11) with a time step of 0.01 (no other parameters
are needed when using variational integrators, even with
the degeneracies and constraints the strings introduce), the
update step requires 5.53 ms while the first derivative with
respect to the state (i.e., the exact discrete linearization) takes
2.4 ms and the second derivative derivative with respect to
the state takes 130 ms. This means that, at minimum, we can
simulate and evaluate controllability in real-time.

We have used these software techniques for the tendon-
articulated hand in Fig. 5 and can compute linearizations

3829

Fig. 5. The graph-based approach to calculating linearizations scales to
complex mechanical systems like this dynamic model of a tendon-articulated
human hand holding an object. The linearization at this configuration shows
that the system is locally controllable.

and local LQR controllers for the hand. (This simulation
capability is now being used with prosthetic control in a
collaboration with the Rehabilitation Institute of Chicago.)

V. CONCLUSIONS

We have been using the robotic marionette project as an
example system that forces us to make software that can
both simulate and control “complex” mechanical systems.
The marionettes play a vital role in driving the system
development—they have mechanical degeneracies, closed
kinematic chains, and are high dimensional, but we know
that puppeteers successfully control them. Therefore, they
make a good testbed for understanding whether or not our
software is producing reasonable results.

The techniques we use provide both optimal trajectories
and control laws that stabilize those trajectories. Moreover,
because we formulate the optimal control problem using
a differentiable projection, we can analytically guarantee
quadratic convergence locally around the optimal trajectory.

Moreover, puppeteers use the marionettes in dynamic,
expressive ways, so we know that extremely conservative
motions based on a “quasi-static” approach or an inverse-
kinematics approach is very unlikely to produce interesting,
artistic motions. Although we can now produce an optimal
“imitation” of a human motion in the case of waving (seen in
Fig. 4) we will not really understand if marionette imitation
can be understood as an optimization problem until we can
do the calculations for the full marionette. We are in the
midst of doing so now.

REFERENCES

[1] B.D.O. Anderson and J.B. Moore. Linear Optimal Control. Prentice
Hall, Inc, 1971.

[2] D. Baraff. Non-penetrating rigid body simulation. In State of the Art
Reports, 1993.

[3] D. Baraff. Fast contact force computation for nonpenetrating rigid
bodies. In SIGGRAPH, 1994.

[4] D. Baraff. Linear-time dynamics using Lagrange multipliers. In
SIGGRAPH, pages 137–146, 1996.

[5] F. Bullo and A.D. Lewis. Geometric Control of Mechanical Systems.
Number 49 in Texts in Applied Mathematics. Springer-Verlag, 2004.

[6] F. Bullo and A.D. Lewis. Low-order controllability and kinematic
reductions for affine connection control systems. SIAM Journal on
Control and Optimization, 44(3):885–908, 2005.

[7] T. Caldwell and T. D. Murphey. Switching mode generation and
optimal estimation with application to skid-steering. Automatica, 2010.
In Press.

[8] M. Egerstedt, T. D. Murphey, and J. Ludwig. Hybrid Systems:
Computation and Control, volume TBD of Lecture Notes in Computer
Science, chapter Motion Programs for Puppet Choreography and
Control, pages 190–202. Springer-Verlag, 2007. Eds. A. Bemporad,
A. Bicchi, and G. C. Buttazzo.

[9] M. Egerstedt, Y. Wardi, and H. Axelsson. Optimal control of switching
times in hybrid systems. In IEEE Methods and Models in Automation
and Robotics, Miedzyzdroje, Poland, Aug. 2003.

[10] M. Egerstedt, Y. Wardi, and F. Delmotte. Optimal control of switching
times in switched dynamical systems. In IEEE Conference on Decision
and Control, Maui, Hawaii, Dec. 2003.

[11] R. Featherstone. Robot Dynamics Algorithms. Kluwer Academic
Publishers, 1987.

[12] J. Hauser. A projection operator approach to optimization of trajectory
functionals. In IFAC World Congress, Barcelona, Spain, 2002.

[13] E. Johnson and T. D. Murphey. Scalable variational integrators for
constrained mechanical systems in generalized coordinates. IEEE
Transactions on Robotics, 25(6):1249–1261, 2009.

[14] E. Johnson and T. D. Murphey. Linearizations for mechanical systems
in generalized coordinates. In American Controls Conf. (ACC), pages
629–633, 2010.

[15] E. Johnson and T. D. Murphey. Second-order switching time optimiza-
tion for nonlinear time-varying dynamic systems. IEEE Transactions
on Automatic Control, 2010. Accepted for Publication.

[16] E. R. Johnson and T. D. Murphey. Scalable variational integrators
for constrained mechanical systems in generalized coordinates. IEEE
Transactions on Robotics, 2010.

[17] E.R. Johnson and T.D. Murphey. Dynamic modeling and motion
planning for marionettes: Rigid bodies articulated by massless strings.
In International Conference on Robotics and Automation, Rome, Italy,
2007.

[18] L. Kharevych, W. Yang, Y. Tong, E. Kanso, J. E. Marsden, P. Schroder,
and M. Desbrun. Geometric, variational integrators for computer
animation. Eurographics/ACM SIGGRAPH Symposium on Computer
Animation, 2006.

[19] A. Lew, J. E. Marsden, M. Ortiz, and M. West. Asynchronous
variational integrators. Arch. Rational Mech. Anal., 167:85–146, 2003.

[20] A. Lew, J. E. Marsden, M. Ortiz, and M. West. An overview of
variational integrators. In Finite Element Methods: 1970’s and Beyond,
pages 98–115, 2004.

[21] A. Lew, J. E. Marsden, M. Ortiz, and M. West. Variational time
integrators. Int. J. Numer. Methods Engrg, 60:153–212, 2004.

[22] J. E. Marsen and M. West. Discrete mechanics and variational
integrators. Acta Numerica, pages 357–514, 2001.

[23] P. Martin, E. Johnson, T. D. Murphey, and M. Egerstedt. Constructing
and implementing motion programs for robotic marionettes. IEEE
Transactions on Automatic Control, 2010. Accepted for Publication.

[24] T. D. Murphey and M. E. Egerstedt. Choreography for marionettes:
Imitation, planning, and control. In IEEE Int. Conf. on Intelligent
Robots and Systems Workshop on Art and Robotics, 2007. 6 pages.

[25] Y. Nakamura and K. Yamane. Dynamics computation of structure-
varying kinematic chains and its application to human figures. IEEE
Transactions on Robotics and Automation, 16(2), 2000.

[26] K. Nichols and T. D. Murphey. Variational integrators for constrained
cables. In IEEE Int. Conf. on Automation Science and Engineering
(CASE), pages 802–807, 2008.

[27] R. Smith. Dynamics Simulation: A whirlwind tour (current state, and
new frontiers), 2004. http://ode.org/slides/parc/dynamics.pdf.

[28] R. Smith. Open Dynamics Engine, 2008. http://www.ode.org.
[29] K. Snyder and T. D. Murphey. Second-order DMOC using projections.

In IEEE Int. Conf. on Decision and Control (CDC), 2010.
[30] M. West. Variational integrators. California Institute of Technology

Thesis, 2004.

3830

