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Abstract— High-performance robust control hinges on ex-
plicit compensation of performance-limiting system phenomena.
Hereto, such phenomena need to be described with high fidelity
by the model set. Clearly, this demands for a delicate mutual
selection of the nominal model and the uncertainty bound. Both
should have a limited complexity to enable successful controller
synthesis and implementation. The aim of this paper is to
investigate model order selection for robust-control-relevant
identification. Therefore, it is investigated how the worst-case
performance that is associated with a model set is influenced by
the complexity of the nominal model and the uncertainty bound.
It turns out that, using a judiciously selected uncertainty coor-
dinate frame, worst-case performance can be made invariant
for the order of the uncertainty bound. Nevertheless, dynamic
uncertainty modeling may still be worthwhile when accounting
for approximations that are commonly made in robust-control-
relevant identification, as is analyzed in this paper as well.

I. INTRODUCTION

Establishing the appropriate level of detail is a principal
aspect in the modeling of physical systems. Inevitably, any
model is an approximation of reality. From this perspective,
the intended application of the model determines the model
quality that is needed. Control-relevant identification, see
[12], focusses on accurate modeling of those system phenom-
ena that need to be addressed explicitly in subsequent model-
based control design. Indeed, performance is often limited
dominantly by a restricted number of system artifacts.

Even when primary system behavior is described ac-
curately, it is essential to account for remaining model
imperfections. In fact, discrepancies between model and
reality may lead to a dramatic deterioration of performance
when implementing a designed controller on the true system,
[7]. Robust control, [18], can cope with systematic model
errors, as it accounts for a set of perturbations on the
modeled behavior explicitly. Model sets for robust control
should (i) encompass true system behavior, (ii) enable high-
performance control, and (iii) have limited complexity. The
latter requirement is essential for successful synthesis and
real-time implementation of robust controllers, since the
complexity of (a) the nominal model and (b) the dynamic
uncertainty bound contributes to the complexity of the re-
sulting controller, cf. [18].

This paper concerns system identification for robust con-
trol, applied to lightly damped, flexible systems. Important
examples include [1] and [17], where a nominal model
is estimated using a weighted identification criterion that
aims to emphasize important system artifacts. This model is
extended with an additive uncertainty set that is bounded in
such a way, that true system behavior is accounted for. In [2],
a further refinement in the unification of Requirement (i) and
(ii) has been made by explicitly taking the robust control goal
into account during construction of the model set. Hereto, a
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control-relevant nominal model is constructed according to
[12], which is extended with a dual-Youla uncertainty set,
see [15]. Again, a dynamic uncertainty bound is constructed
such, that true system behavior is accounted for.

Although the selection of both the nominal model and the
uncertainty bound are understood to be essential for high-
performance robust control, their relative importance has
remained unstudied to a large extent. Yet, a fundamental
interdependence seems to exist. From an undermodeling
perspective, by increasing the complexity of the nominal
model, more and more true system artifacts can be described
accurately. Consequently, a smaller uncertainty set suffices to
encompass true system behavior by the model set. However,
refinement of the nominal model is meaningless if a very
crude uncertainty bound is constructed subsequently. In this
paper, mutual selection of the nominal model order and the
order of the uncertainty bound is analyzed, with the aim
to develop insights into order selection for robust-control-
relevant identification.

Order selection has been studied extensively within the
prediction error framework, see [5] for an overview. How-
ever, the suggested paradigms do not comply with the robust
control philosophy, since nominal modeling is considered
only. The influence of the uncertainty set has been taken into
account in the set-membership framework, where the nomi-
nal model order is chosen using the radius of information as
a selection criterion, see, e.g., [4], [8]. However, herein the
complexity of the uncertainty description itself is not taken
into account. Moreover, an additive uncertainty structure is
assumed, although [9] specifically advocates the use of the
dual-Youla uncertainty structure in identification for robust
control. This paper further expands the latter approach by
using unexplored freedom in the choice of coprime factoriza-
tions that constitute the dual-Youla structure. By judiciously
choosing these coprime factorizations, new insights in model
order selection for robust control are obtained.

The main contribution of this paper is to investigate
how the complexity of the nominal model and the un-
certainty bound affects the worst-case performance of the
resulting model set. After some preliminaries (Sect. II) the
problem of order selection for robust control is formalized
(Sect. III). By exploiting freedom in the choice of coprime
factorizations, cf. [11], that form the dual-Youla uncertainty
structure (Sect. IV), the contribution of the nominal model
and the uncertainty bound to worst-case performance is made
transparent (Sect. V). In fact, in the considered uncertainty
coordinate frame, worst-case performance is invariant for
the choice of the order of the uncertainty bound. However,
dynamic uncertainty modeling may still prove worthwhile, as
follows from an analysis of the implications of an iterative
identification and control design procedure (Sect. VI). In the
last part of the paper, obtained results are connected to set-
membership identification (Sect. VII-A) and illustrated on an
industrial system (Sect. VIII).

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 1224



+
++

-

r2 r1 u y

C P

Fig. 1. Standard feedback configuration.

II. PRELIMINARIES

A. H∞-norm-based control design

Definition 1. The considered performance criterion J reads:

J(P, C) := ‖W T (P, C)V ‖∞ . (1)

Here, T (P, C) maps the exogenous inputs w of the feedback
configuration depicted in Fig. 1 onto the outputs z, i.e.:

T (P, C) :

[
r2

r1

]

︸︷︷︸

w

7→

[
y
u

]

︸︷︷︸

z

=

[
P
I

]

(I + CP )−1 [C I] . (2)

Furthermore, W and V are bistable, diagonal weights.

Control goal. Design the H∞-norm optimal controller:

Copt = argmin
C

J(Po, C), (3)

where Po denotes the true system.

B. Robust-control-relevant system identification

Since Po is unknown, (3) cannot be solved explicitly.
Instead, a model set P is constructed that envelops the true
plant dynamics, i.e., Po ∈ P .

Definition 2. The worst-case performance JWC associated
with a given {P , C} is defined as:

JWC(P , C) := sup
P∈P

J(P, C) . (4)

From Def. 2, it is immediate that (stipulating Po ∈ P):

J(Po, C) ≤ JWC(P , C) . (5)

Thus, minimization of JWC provides an instrument for
performance optimization on the unknown true plant Po.

Definition 3. Given P , robust controller optimization yields:

CRP(P) := arg min
C

JWC(P , C) , (6)

Definition 4. The plant set PRP for the synthesis of CRP is
obtained by solving the dual problem:

PRP := argmin
P

JWC(P , CRP(P)) s.t. Po ∈ P . (7)

Clearly, (7) is intractable, since it requires joint optimiza-
tion of the plant set and the robust controller that is to
be synthesized on the basis of this plant set. Therefore,
CRP is approximated by Cexp that can be used to conduct
closed-loop identification experiments. The following robust-
control-relevant identification criterion results.

Definition 5. For a given experimental controller Cexp, a
robust-control-relevant model set PRCR follows from:

PRCR(Cexp) = arg min
P

JWC(P , Cexp) s.t. Po ∈ P . (8)

To tighten (5), it may be advantageous to iterate between
the identification of a robust-control-relevant model set and
the design of a new robust controller, see [2].

III. PROBLEM FORMULATION

Deriving a tight description of true plant behavior is key to
the minimization of worst-case performance in Prop. 5. The
construction of a parametric model set for robust control
constitutes (i) identification of a control-relevant nominal
model P̂ , and (ii) quantification of an uncertainty bound W∆.

Definition 6. Let P̂ (n) denote a nominal model of order n.
Let W

(o)
∆ denote a bistable uncertainty bound of order o.

The model set P takes the form:

P(n,o) =
{

P
∣
∣ P = Fu( Ĥ(P̂ (n)), ∆u) ,

‖∆u (W
(o)
∆ )−1‖∞ < 1

}

. (9)

Here, Fu denotes the upper linear fractional transformation.

By convention, Ĥ is partitioned such that Ĥ22 = P̂ . The

remaining blocks of Ĥ contain the uncertainty structure. The
perturbations ∆u are assumed to be unstructured.

Successful robust control design and implementation re-
quires model sets of limited complexity, since n and o con-
tribute to the order of the resulting controller, [18]. Hereto,
criterion (8) is expanded with regularization functions, as is
commonly encountered in order selection procedures, cf. [5].

Definition 7. Given Cexp, robust-control-relevant identifica-
tion with regularization of the model set complexity amounts
to selection of n, o ∈ N0 according to:

min
{n,o}

JWC(P(n,o), Cexp)+ f1(n)+ f2(o) s.t. Po ∈ P(n,o).

(10)

Here, f1, f2 are positive, strictly monotonous regularization
functions that penalize model sets of high complexity.

In the construction of parametric model sets for robust
control, a fundamental trade-off exists in distributing model-
ing complexity over the nominal model and the uncertainty
overbound. On the one hand, an increase of the nominal
model order permits a more accurate characterization of
true system behavior. Consequently, a smaller uncertainty
set suffices for P to encompass true plant behavior Po.
On the other hand, if a very rough parametric description
of this set is made, the gained nominal model accuracy
will be nullified, since robust control needs to cope with
a very broad set of admissible perturbations after all. In this
paper, a paradigm is derived to trade off nominal model and
overbound complexity. Herein, the dual-Youla uncertainty
coordinate frame plays an essential role.

IV. DUAL-YOULA UNCERTAINTY STRUCTURE

Stability is a key property of control-relevant model sets.
Inherently, any control-relevant system identification ap-
proach accords to a closed-loop criterion [14]. To conduct
identification experiments, Po is stabilized. Consequently,
true feedback behavior Mo can never be represented by an
unstable model M . Such models should be excluded from
the set M to prevent conservative robust control design.

Proposition 8. [15] Given a model P̂ that is stabilized by a

controller C. Let {N̂, D̂} and {Nc, Dc} denote (any) right

coprime factorizations (RCFs) of P̂ and C, see [18, Sect.
5.4]. The set PdY of all plants that are stabilized by C is:

PdY (C) := (N̂+Dc∆u)(D̂−Nc∆u)−1, ∆u ∈ RH∞. (11)
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Lemma 9. [2] The weighted closed-loop model set M,
obtained by substitution of PdY (C) in Fig. 1, is given by:

M =
{

M : w 7→ z | M = Fu(M̂, ∆u), ∆u ∈ RH∞

}

(12)

with: M̂ =





0 (D̂ + CN̂)−1 [C I] V

W

[

Dc

−Nc

]

W

[

P̂

I

]

(I + CP̂ )−1 [C I ] V



.

The weighted true feedback loop Mo := W T (Po, C)V

is stable, hence, ∃∆o ∈ RH∞ s.t. Mo = Fu(M̂, ∆o). To
facilitate robust performance optimization, perturbations ∆u

are confined to a bounded set ∆u ⊂ RH∞. This set is
selected such that ∆o ∈ ∆u. Hereto, typical uncertainty
quantification procedures, including [10] and [16], deliver a
nonparametric characterization of the model error magnitude,
i.e., γ(ω) = σ̄(∆o(ω)). Standard H∞-norm-based controller
synthesis, however, requires a parametric uncertainty de-
scription of the form (9). For this purpose, a bistable weight
W∆ is constructed that overbounds the frequency-dependent
bound γ(ω). The following perturbation set results.

Definition 10. The perturbation set is given by:

∆u
(o) : {∆u ∈ RH∞ | ‖∆u (W

(o)
∆ )−1‖∞ < 1} s.t.

σ̄(W
(o)
∆ (ω)) ≥ γ(ω) ∀ ω. (13)

Commonly, dynamic uncertainty bounds W
(o)
∆ are consid-

ered in literature, see, e.g., [1],[3], [17]. However, at present,
the role of the overbound order o in worst-case performance
optimization is not well-understood.

V. ORDER SELECTION FOR ROBUST CONTROL

In this section, it is investigated how the worst-case
performance associated with a model set is affected by the
choice for the model order of the nominal model and the
uncertainty bound. As it turns out, the particular coprime
factorization that is chosen plays an important role herein.

A. Generic coprime factorizations

For generic coprime factorizations in the dual-Youla struc-
ture, the following bound on JWC holds.

Lemma 11. The worst-case performance associated with
PdY , see Prop. 8, is upper bounded by:

JWC(P
(n,o)
dY , Cexp) = sup

∆u∈∆
(o)
u

‖Fu(M̂(P̂ (n)), ∆u)‖∞

≤ J(P̂ (n), C) + sup
∆u∈∆u

(o)

‖M̂21∆uM̂12‖∞. (14)

Proof : By virtue of (12), M̂11 = 0. Hence:

Fu(M̂, ∆u) = M̂22 + M̂21∆uM̂12. (15)

Application of the triangle inequality and observing that

‖M̂22‖∞ = J(P̂ , C) yields the desired result. �

This result has also been observed in, e.g., [2], [9]. There,
it has motivated the use of a dynamic uncertainty overbound
in modeling for robust control, although clear guidelines for
the selection of such overbound are lacking. Yet, the follow-
ing proposition confirms that within this coordinate frame,
dynamic uncertainty bouding is worthwhile in general.

Proposition 12. Let the robust-control-relevant identification
problem in Def. 5 be posed using the dual-Youla uncertainty
structure in Prop. 8 with arbitrary coprime factorizations

{N̂, D̂} and {Nc, Dc}. Then, selection of the model set
complexity {n, o} according to (10) using the bound (14)
generally yields o > 0.

Proof : Consider a nominal model P̂ (n) of order n. Let

γ(n)(ω) = σ̄(∆
(n)
o (ω)) denote the corresponding model error

magnitude. The smallest perturbation set required to ensure
that Mo ∈ M is given by:

∆min := {∆u ∈ RH∞ | σ̄(∆u(ω)) ≤ γ(n)(ω) ∀ ω}. (16)

Dynamic uncertainty modeling requires selection of W
(o)
∆

such that ∆min ⊂ ∆
(o)
u ∀ o, see Def. 10. This embedding

needs to be tight at ω WC in order to minimize the upper
bound (14) on JWC, where:

ω WC := arg max
ω

sup
∆∈∆min

σ̄(M̂21(ω)∆(ω)M̂12(ω)) . (17)

In general, ω WC 6= arg max
ω

γ(ω). Hence, (10) typically

yields an overbound order o > 0. �

In conclusion, the dynamic overbound should be selected
in such a way, that it accounts for the deformation of the

uncertainty set ∆min that is caused by M̂21 and M̂12. Next, it
is shown that by judiciously selecting the coprime factoriza-
tions that constitute the dual-Youla uncertainty structure, the
significance of such deformations is eliminated. This enables
a more transparent selection of the uncertainty bound.

B. Robust-control-relevant coprime factors

The coprime factorizations of P̂ and C in (11) are non-
unique. This may be exploited to create a transparent inter-
connection between nominal and uncertainty modeling.

Definition 13. [11] Given P̂ , C and V = diag(V2, V1). Let

{Ñe, D̃e} be a left coprime factorization (LCF) of [CV2 V1]
with co-inner numerator, where Ñe = [Ñe,2 Ñe,1]. Robust-

control-relevant plant coprime factors {N̂, D̂} are defined as:
[
N̂

D̂

]

=

[

P̂
I

]

(D̃e + Ñe,2V
−1
2 P̂ )−1 . (18)

Definition 14. [11] Given C and W = diag(Wy, Wu).
A (Wy, Wu)-normalized controller coprime factorization
{Nc, Dc} of C is defined to satisfy:

[WyDc − WuNc] [WyDc − WuNc]
H

= I. (19)

By making use of the above-defined choices for {N̂ , D̂}
and {Nc, Dc}, it is possible to simplify the bound on the
worst-case performance as derived in Lemma 11.

Proposition 15. [11] Using the robust-control-relevant
plant coprime factorization in Def. 13 and the (Wy, Wu)-
normalized controller coprime factorization in Def. 14, the
worst-case performance associated with PdY , see Prop. 8,
satisfies the upper bound:

JWC(P
(n,o)
dY , Cexp) ≤ J(P̂ (n), C)+ sup

∆u∈∆u
(o)

‖∆u‖∞. (20)
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The proof in [11] hinges on the fact that M̂21 is inner

and M̂12 co-inner for the specified choice of coprime fac-
torizations. In this case, the general result (14) simplifies,
since the H∞-norm of a transfer function is invariant for pre-
multiplication with an inner matrix and post-multiplication
with a co-inner matrix, cf. [18, Sect. 13.6].

The importance of Prop. 15 lies in the fact that the worst-
case performance associated with a model set is transparently
connected to the selected nominal model and uncertainty
bound. In contrast to the result in Lemma 11, the size of
the admissible set of perturbations directly affects worst-case
performance now, i.e., deformations of the perturbation set

by M̂21 and M̂12 no longer play a role. By using this novel
uncertainty coordinate frame, important new insights in order
selection for robust control are acquired, which provide the
main result of this paper: Prop. 16.

Proposition 16. Let the robust-control-relevant identification
problem in Def. 5 be posed using the dual-Youla uncer-
tainty structure in Prop. 8, where the robust-control-relevant
plant coprime factorization in Def. 13 and the (Wy, Wu)-
normalized controller coprime factorization in Def. 14 are
chosen. Then, selection of the model set complexity {n, o}
according to (10) using the bound (20) yields o = 0.

Proof : From Def. 10, it follows that for any order o:

sup
∆u∈∆u

(o)

‖∆u‖∞ = ‖W
(o)
∆ ‖∞ ≥ max

ω
γ(ω) . (21)

The latter bound is tight for the zeroth order overbound

W
(0)
∆ = max

ω
γ(ω). Hence, (20) simplifies to:

JWC(P
(n,o)
dY , Cexp) ≤ J(P̂ (n), C) + max

ω
γ(ω), (22)

which is independent of the overbound order o. Since the
order selection criterion of Def. 7 includes the regularization

function f2, the overbound W
(0)
∆ is selected indeed. �

Proposition 16 reveals that dynamic uncertainty modeling
does not contribute to minimization of bound (20) on the
worst-case performance that is associated with the robust-
control-relevant model set in Def. 5. Indeed, intuitively,
bringing the worst-case performance of the model set closer
to the achieved performance J(Po, C), see (5), requires a
fundamental reduction of the worst model errors, which
can be accomplished through refinement of the nominal
model only. Judicious selection of the uncertainty coordinates
prevents degradation of worst-case performance without the
need for dynamic uncertainty bounding. Nevertheless, there

are reasons to consider dynamic uncertainty weights W
(o)
∆ ,

as discussed in the next section.

VI. ITERATIVE IDENTIFICATION AND CONTROL DESIGN

In this section, implications of pursuing an iterative identi-
fication and robust control design procedure are investigated.
During construction of the model set PRCR in Def. 5, a
different feedback controller Cexp needs to be used than the
robust controller that is designed subsequently on the basis of
this model set. As a consequence, to evaluate the worst-case
performance that is actually achieved, a different closed-loop
model set needs to be used than the set defined in Lemma 9.

Lemma 17. [2] Consider an experimental controller Cexp =
NcD

−1
c . Let PdY(Cexp) be a robust-control-relevant model

set according to Def. 5, which incorporates the dual-Youla
uncertainty structure in Prop. 8. Let CRP(PdY(Cexp)) be a
robust controller that is synthesized on the basis of this model
set. The new weighted closed-loop model set M̄, obtained
by substitution of PdY (Cexp) and CRP in Fig. 1, is given by:

M̄ =
{
M̄ : w 7→ z | M = Fu(M̄, ∆u), ∆u ∈ RH∞

}
(23)

where M̄ =

[
M̄11 M̄12

M̄21 M̄22

]

, with:

M̄11 = − (D̂ + CRPN̂)−1(CRP − Cexp)Dc, (24)

M̄12 = (D̂ + CRPN̂)−1 [CRPV1 V2] , (25)

M̄21 =

[
Wy

−WuCRP

]

(I + P̂CRP)
−1(I + P̂Cexp)Dc , (26)

M̄22 = W

[

P̂
I

]

(I + CRPP̂ )−1 [CRP I] V. (27)

It turns out that the order of the uncertainty overbound
does have an influence on the worst-case performance
achieved by the newly designed robust controller.

Proposition 18. Let P
(n,o)
dY be a robust-control-relevant

model set that is defined using a dynamic uncertainty bound

W
(o)
∆ of order o, see (9). Let CRP(P

(n,o)
dY ) be a robust

controller that is synthesized on the basis of this model set.
Then, in general, for o > 0:

JWC(P
(n,o)
dY , CRP(P

(n,o)
dY )) < JWC(P

(n,0)
dY , CRP(P

(n,0)
dY )). (28)

Proof : Consider a nominal model P̂ (n) of order n. As
in (16), let ∆min be the smallest uncertainty set that ensures
Mo ∈ M. In analogy with Def. 6, define the corresponding

smallest set of plant models P
(n)
min as:

P
(n)
min =

{

P
∣
∣P = Fu( Ĥ(P̂ (n)), ∆u) , ∆u ∈ ∆min

}

. (29)

Note that actual construction of P
(n)
min demands for an exact

description of γ(n)(ω) by the dynamic uncertainty bound
W∆, cf. Def. 10, which would be of infinite order in general.

Since ∆min ⊂ ∆
(o)
u ∀ o, see Def. 10, P

(n)
min ⊂ P

(n,o)
dY . Hence:

JWC(P
(n)
min , CRP(P

(n)
min )) ≤ JWC(P

(n,o)
dY , CRP(P

(n,o)
dY )) ∀ o.

(30)
By virtue of Lemma 17:

JWC(P
(n)
min , CRP) = sup

∆u∈∆min

‖Fu(M̄, ∆u)‖∞ (31)

≤ J(P̂ (n), CRP)+ sup
∆u∈∆min

‖M̄21∆u(I−M̄11∆u)−1M̄12‖∞.

The difference between J(P̂ (n), CRP) and JWC(P
(n)
min , CRP)

due to considered uncertainties is largest at:

ω RC := arg max
ω

sup
∆∈∆min

σ̄(δ(ω)) , where (32)

δ(ω) := M̄21(ω)∆u(ω)(I − M̄11(ω)∆u(ω))−1M̄12(ω) .
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Typically, ω RC 6= arg max
ω

γ(n)(ω), cf. (16). Hence, in gen-

eral, the bound (30) can be made more tight by constructing

an overbound W
(o)
∆ of order o > 0, which yields (28). �

In Sect. VIII, it is illustrated that indeed, dynamic un-
certainty modeling might prove to be advantageous during
iterative identification and control design. First, however, the
insights that have been obtained in this paper are related to
results in set-membership (SM) identification.

VII. INFORMATIVENESS OF THE MODEL SET

An increased confidence in the description of true system
dynamics provides opportunities for performance enhance-
ment through robust control, as less uncertainty needs to be
accounted for. In fact, since all M ∈ M are indistinguishable
representations of Mo in robust control design, the size of the
candidate closed-loop model set M is a measure of conveyed
information, see also [13]. An appropriate measure for the
size of H∞-norm-bounded model sets is the radius.

Definition 19. [13] Consider a set of stable closed-loop
models M ⊂ RH∞. The radius of the set is defined by:

r(M) := inf
X ∈RH∞

sup
M ∈M

‖X − M‖∞ . (33)

The robust-control-relevant model set structure in Sect. V-
B establishes a one-to-one connection between the radius of
the closed-loop model set and the size of the perturbation set.

Importantly, each closed-loop model Fu(M̂, ∆u) is formed
by an affine mapping in ∆u, cf. (15). This has important
geometrical consequences. It is well-known that under an
affine mapping, circular sets, like the norm-bounded pertur-

bation set ∆
(o)
u in Def. 10, undergo a translation, rotation

and scaling only. Consequently, M is circular. Moreover, its
center coincides with ∆u = 0. Hence, the weighted nominal

feedback loop M̂22, see (12), constitutes the (Chebyshev)
center of M, which is exploited next.

Proposition 20. Consider the model set in Lemma 9, where
the robust-control-relevant plant coprime factorization in
Def. 13 and the (Wy , Wu)-normalized controller coprime
factorization in Def. 14 are selected. Moreover, perturbations

are restricted to the set ∆
(o)
u in Def. 10. The radius (Def. 19)

of this model set is given by:

r(M) = sup
M ∈M

‖M̂22 − M‖∞ = sup
∆u∈∆

(o)
u

‖M̂21∆uM̂12‖∞

= ‖W
(0)
∆ ‖∞ = max

ω
γ(ω). (34)

Proof : The minimum in (33) is attained when the center of
the set is substituted for X . Moreover, use is made of the
fact that M̂21 and M̂12 are norm-preserving, cf. Prop. 15.
Finally, the main result in Prop. 16 is exploited. �

Remark: whereas conventional uncertainty descriptions like,
e.g., the additive perturbation structure [18], provide an affine
parametrization of the open-loop model set P , see Def. 6,
it is the affine parametrization of the closed-loop model set
M that enables transparent modeling for robust control.

A. Geometry of the model set

Proposition 20 can be interpreted by bounding JWC in
terms of J(Po, C). Iterative identification and robust control
strives to make the gap between the two small (recall (5)).

Proposition 21. Let P
(n,o)
dY (Cexp) be a robust-control-

relevant model set as considered in Prop. 15. The gap

between worst-case performance JWC(P
(n,o)
dY , Cexp) and true

system performance J(Po, Cexp) can be expressed in terms
of the nominal model-reality mismatch Jnom:

JWC(P
(n,o)
dY , Cexp) ≤ J(Po, Cexp) + 2 Jnom(n) , (35)

where: J (n)
nom := ‖W (T (Po, Cexp) − T (P̂ (n), Cexp))V ‖∞.

Proof : By making use of Def. 1, it follows from (12) that:

J (n)
nom = max

ω
σ̄(Mo(ω) − M̂22(ω)) . (36)

The weighted true feedback loop Mo is stable. Hence, using

(15), ∃∆o ∈ RH∞ s.t. Mo = M̂22 + M̂21∆oM̂12 . Since
M̂21 and M̂12 are norm-preserving, cf. Prop. 15:

σ̄(Mo − M̂22) = σ̄(M̂21∆oM̂12) = σ̄(∆o) := γ(n) . (37)

As a consequence:
max

ω
γ(n)(ω) = J (n)

nom. (38)

The result in (35) is obtained by using (38) together with the
triangle inequality:

J(P̂ (n), C) ≤ J(Po, C) + J (n)
nom (39)

�

From (34) and (38), it is concluded that the radius of the
model set is given by the nominal model-reality mismatch,
due to usage of the proposed uncertainty coordinate frame.
The obtained bound (35) on JWC is understood from Fig. 2,
in which the distance between the true (weighted) feedback
loop Mo and its worst representation in the model set is de-
picted for one single frequency. Indeed, the nominal model-
reality mismatch is encountered twice. (Here, it should be
kept in mind that the overbound W is tight at argmax

ω
γ(ω).)

B. Connection to set-membership identification

The work that is presented in this paper connects to
SM identification, see, e.g., [4], [8], and [9], although a
fundamental difference in philosophy exists. In SM identifi-
cation, the size of the uncertainty set is determined using a
pessimistic (worst-case) interpretation of prior assumptions
and available measurement data. An alternative approach is
to explicitly quantify the nominal-model reality mismatch on
the basis of periodic validation experiments, see, e.g., [16]

∝W∆(ω)

∝γ(ω)

Real

Im
a
g

and [10]. Since this enables an effective elimination of dis-

Fig. 2. Single frequency validation plot of M̂22 = J(P̂ , C) (×), which is
extended with the minimum required uncertainty set (dashed) to cover Mo

(O). Robust control requires a parametric overbound (solid), which gives
rise to the worst-case representation (� ) of true feedback behavior in M.
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turbance phenomena through averaging, as confirmed in the
zoomed are in Fig. 2, an accurate characterization of the min-
imum uncertainty set needed to explain previously observed
system phenomena can be made indeed. In general, this leads
to a model set of which the radius is smaller than the radius
of information needed to cover the pessimistic set of allowed
perturbations that is assumed in SM identification. Hence,
a more informative description of true system behavior is
available, which allows for enhanced robust performance.

VIII. EXAMPLE

This section illustrates the main result of this paper on
an industrial high-precision positioning device, see [6] for
details. As motivated in Prop. 21, control-relevant nominal
modeling, cf. [11], is at the heart of tight modeling for
robust control. Table I confirms that the H∞ model-reality
mismatch Jnom decreases monotonically with an increase of
the nominal model order n, as is also observed in, e.g., [4].

TABLE I

MODEL-REALITY MISMATCH OBSERVED DURING IDENTIFICATION.

Nominal order n 5 7 9 11 13

Jnom 2.214 0.168 0.114 0.106 0.105

Next, the 11th order model is validated, see Fig. 3. Note
that, since a different linearization of a nonlinear artifact is

observed around 200 Hz, maxω γ(11)(ω) 6= J
(11)
nom , which

contradicts (38). Two uncertainty overbounds are shown,
which both achieve JWC < 3.58 by virtue of the main result
in Prop. 16. Hence, from a robust-control-relevant identifi-
cation perspective, dynamic overbounding is insignificant.
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Fig. 3. Validated 11th order model-reality mismatch γ (dotted), with 0th

order (light shaded) and 10th order (light shaded) overbound W∆.

Nevertheless, the dynamic uncertainty bound establishes a
high-fidelity description of resonance phenomena above 600
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Hz in the corresponding plant set, see Fig. 4, which allows
for explicit compensation in the robust control synthesis step.

Fig. 4. Identified frequency response function estimate of Po (dotted), 11th

order control-relevant nominal model P̂ (solid), and the candidate plant

set PdY using the validation-based static uncertainty bound W
(0)
∆ (dark

shaded) and 10th order dynamic uncertainty bound W
(10)
∆ (light shaded).

IX. CONCLUSIONS

In this paper, new insights on model order selection for
robust control have been presented. It has been shown that
by exploiting freedom in the coprime factorizations that con-
stitute the dual-Youla uncertainty structure, worst-case per-
formance optimization through robust-control-relevant iden-
tification becomes invariant for the order of the uncertainty
bound. In fact, then, reduction of the radius of the model sets
hinges on refinement of the nominal model solely. Through
explicit characterization of remaining model errors on the ba-
sis of validation experiments, it is possible to obtain a smaller
model set radius than the radius of information as obtained
by applying set-membership identification techniques, which
facilitates enhanced robust performance. Although dynamic
overbounding is irrelevant in a single robust-control-relevant
identification step, this paper has motivated its potential in
iterative identification and robust control design. Current
research is focussed on development of paradigms for the
selection of dynamic overbounds.
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