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Abstract— This paper studies the optimization of observation
channels (stochastic kernels) in partially observed stochastic
control problems. In particular, existence, continuity, and con-
vexity properties are investigated. Continuity properties of the
optimal cost in channels are explored under total variation, set-
wise convergence and weak convergence. Sufficient conditions
for sequential compactness under total variation and setwise
convergence are presented. It is shown that the optimization
is concave in observation channels. This implies that the opti-
mization problem is non-convex in quantization/coding policies
for a class of networked control problems. Furthermore, the
paper explains why a class of decentralized control problems,
under the non-classical information structure, is non-convex
when signaling is present.

I. INTRODUCTION

In stochastic control, one is often concerned with the

following problem: Given a dynamical system, an obser-

vation channel (stochastic kernel), a cost function, and an

action set, when does there exist an optimal control policy,

and what is an optimal control policy? The theory for such

problems is advanced, and practically significant, spanning

a wide variety of applications in engineering, economics,

and natural sciences. In this paper, we are interested in a

dual problem with the following questions to be explored:

Given a dynamical system, a cost function, an action set,

and a set of observation channels, how can one optimize

the observation channels? What is an optimal observation

channel subject to constraints on the channel? What is the

right convergence notion for continuity in such observation

channels for optimization purposes?

We start with the probabilistic setup of the problem. Let

X ⊂ R
n, be a Borel set in which elements of a controlled

Markov process {Xt, t ∈ Z+} live. Here and throughout

the paper Z+ denotes the set of nonnegative integers and

N denotes the set of positive integers. Let Y ⊂ R
m be

a Borel set, and let an observation channel Q be defined

as a stochastic kernel (regular conditional probability) from

X to Y, such that Q( · |x) is a probability measure on

the (Borel) σ-algebra B(Y) on Y for every x ∈ X, and

Q(A| · ) : X → [0, 1] is a Borel measurable function for

every A ∈ B(Y). Let a decision maker (DM) be located

at the output an observation channel Q, with inputs Xt and

outputs Yt. Let U be a Borel subset of some Euclidean space.

An admissible policy Π is a sequence of control functions

{γt, t ∈ Z+} such that γt is measurable with respect to
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the σ-algebra generated by the information variables It =
{Y[0,t], U[0,t−1]}, t ∈ N, I0 = {Y0}, where Ut =
γt(It), t ∈ Z+, are the U-valued control actions and we

used the notation

Y[0,t] = {Ys, 0 ≤ s ≤ t}, U[0,t−1] = {Us, 0 ≤ s ≤ t− 1}.

The joint distribution of the state, control, and observation

processes is determined by the above and the following

relationships:

Pr
(

(X0, Y0) ∈ B
)

=

∫

B

P (dx0)Q(dy0|x0), B ∈ B(X × Y),

where P is the (prior) distribution of the initial state X0, and

Pr

(

(Xt, Yt) ∈ B

∣

∣

∣

∣

x[0,t−1], y[0,t−1], u[0,t−1]

)

=

∫

B

P (dxt|xt−1, ut−1)Q(dyt|xt), B ∈ B(X × Y),

where P (·|x, u) is a stochastic kernel from X × U to X.

One way of presenting the problem in a familiar setting

is the following: Consider a dynamical system described by

the discrete-time equations

Xt+1 = f(Xt, Ut, Wt),

Yt = g(Xt, Vt)

for some measurable functions f, g, with {Wt} being in-

dependent and identically distributed (i.i.d) system noise

process and {Vt} an i.i.d. disturbance process, which are

independent of X0 and each other. Here, the second equation

represents the communication channel Q, as it describes the

relation between the state and observation variables.

With the above setup, let the objective of the decision

maker be the minimization of the cost

JT (P, Q, Π) = EQ,Π
P

[ T−1
∑

t=0

c(Xt, Ut)

]

, (1)

over the set of all admissible policies P , where c : X×U →
R is a Borel measurable cost function and EQ,Π

P denotes the

expectation with initial state probability measure given by

P under policy Π ∈ P and given channel Q. We adopt

the convention that random variables are denoted by capital

letters and lowercase letters denote their realizations. Also,

given a probability measure µ the notation Z ∼ µ means

that Z is a random variable with distribution µ.

We are interested in the following problems:

PROBLEM P1. CONTINUITY ON THE SPACE OF CHANNELS

(STOCHASTIC KERNELS) Suppose {Qn, n ∈ N} is a
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sequence of communication channels converging in some

sense to a channel Q. When does Qn → Q imply

inf
Π∈P

JT (P, Qn, Π) → inf
Π∈P

JT (P, Q, Π)?

PROBLEM P2. CONCAVITY ON THE SPACE OF CHANNELS

Is the optimization problem

JT (P, Q) := inf
Π

EQ,Π
P

[ T−1
∑

t=0

c(Xt, Ut)

]

convex/concave on the space of channels?

PROBLEM P3: EXISTENCE OF OPTIMAL CHANNELS Let Q
be a set of communication channels. When do there exist

minimizing and maximizing channels for the problems

inf
Q∈Q

JT (P, Q), sup
Q∈Q

JT (P, Q).

If solutions to these problems exist, are they unique?

The answers may help solve problems in application areas

such as the following: (1) For a partially observed stochas-

tic control problem, sometimes we have control over the

observation channels by encoding/quantization. When does

there exist an optimal quantizer for such a setup? (Optimal

quantization). (2) Given an uncertainty set for the observation

channels, and tools available for learning the channel, can

one identify a worst element/best element? (Robust control).

(3) When we do not know the channel, but have statistical

tools and empirical measurements to learn, typically under

mild technical conditions, the empirical distributions con-

verge to the actual distribution, in some sense. Does this

imply that we could design the optimal control policies based

on empirical estimates, and does the optimal cost converge

to the correct limit as the number of measurements grows?

(Consistency of empirical controllers). (4) Can one compare

information channels with regard to the costs they induce?

(Value of information channels). (5) Why are decentralized

control problems, when there is an incentive for signaling,

difficult? (Signaling and decentralized control).

In the following, we will address problems P1-P3 and

introduce conditions under which we can provide affirmative/

conclusive answers. Proofs not given here can be found

in [13].

A. Relevant literature

The problems stated are related to three main areas of

research: Robust control, optimal quantizer design and design

of experiments. References [2], [3], [4] have considered

both optimal control and estimation and the related problem

of optimal control design when the channel is unknown.

Similarly, there are connections with robust detection, such

as those studied by Poor [7], when the source distribution to

be detected belongs to some set. Recently, [10] considered

continuity and other functional properties of minimum mean

square estimation problems under Gaussian channels.

We will observe that the optimal cost is concave in the

space of observation channels. This is related to statistics in

the context of comparison of experiments as discussed by

Blackwell [1].

In most of the paper we consider the single-stage (

T = 1) case. We will also briefly consider the technically

more complex multi-stage case where further conditions on

the controlled Markov chain must be imposed. The full

development of this general setup is the subject of future

work.

II. SOME TOPOLOGIES ON THE SPACE OF CHANNELS

One question that we wish address is the choice of

an appropriate notion of convergence for a sequence of

observation channels. Toward this end, we first review three

notions of convergence for probability measures.

Let P(RN) denote the family of all probability measure

on (X,B(RN)) for some N ∈ N. Let {µn, n ∈ N} be a

sequence in P(RN). Recall that {µn} is said to converge

to µ ∈ P(RN ) weakly if
∫

RN c(x)µn(dx) →
∫

RN c(x)µ(dx)
for every continuous and bounded function c : R

N → R.

On the other hand, {µn} is said to converge to µ ∈ P(RN )
setwise if µn(A) → µ(A), for all A ∈ B(RN ) (an equiv-

alent condition is that
∫

RN c(x)µn(dx) →
∫

RN c(x)µ(dx)
for every measurable and bounded c). Finally, the total

variation metric on P(RN) is given by ‖µ − ν‖TV :=
2 supB∈B(RN ) |µ(B) − ν(B)|. A sequence {µn} is said to

converge to µ ∈ P(RN ) in total variation if ‖µn −µ‖TV →
0.

Note that these three convergence notions are in increasing

order of strength: convergence in total variation implies set-

wise convergence, which in turn implies weak convergence.

A. Convergence of information (observation) channels

Here X = R
n and Y = R

m, and Q denotes the set of all

observation channels (stochastic kernels) with input space X

and output space Y. For P ∈ P(X) and Q ∈ Q we let PQ
denote the joint distribution induced on (X × Y,B(X × Y))
by channel Q with input distribution P :

PQ(A) =

∫

A

Q(dy|x)P (dx), A ∈ B(X × Y).

Definition 2.1 (Convergence of Channels): A sequence

of channels {Qn} converges to a channel Q at input P
weakly (resp. setwise, resp. in total variation) if PQn → PQ
weakly (resp. setwise, resp. in total variation).

If we introduce the equivalence relation Q ≡ Q′ if and

only if PQ = PQ′, Q, Q′ ∈ Q, then the convergence notions

in Definition 2.1 only induce the corresponding topologies

(resp. metrics) on the resulting equivalence classes in Q,

instead of Q. Since in most of the development the input

distribution P is fixed, there should be no confusion when

(somewhat incorrectly) we talk about the induced topologies

(resp. metrics) on Q.

B. Classes of assumptions

Throughout the paper the following classes of assumptions

will be adopted for the cost function c and the (Borel) set

U ⊂ R
k in different contexts:

ASSUMPTIONS.

A1. The function c : X × U → R is non-negative, bounded,

and continuous on X × U.
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A2. The function function c : X × U → R is non-negative,

measurable, and bounded.

A3. The function c : X × U → R is non-negative, measur-

able, bounded, and continuous on U for every x ∈ X.

A4. U is a compact set.

A5. U is a convex set.

III. PROBLEM P1: CONTINUITY OF THE OPTIMAL COST

IN CHANNELS

In this section, we consider continuity properties. We

consider the single-stage case T = 1, and thus investigate

the continuity of the functional

J(P, Q) := J1(P, Q) = inf
γ∈G

∫

X×Y

c(x, γ(y))Q(dy|x)P (dx)

in the channel Q, where G is the collection of all Borel

measurable functions mapping Y into U. Note that by our

previous notation, Π = γ is an admissible first-stage control

policy. As before, in this section Q denotes the set of all

channels with input space X and output space Y. Before

proceeding further, however, we look for conditions under

which an optimal control policy exists; i.e, when the infimum

in infγ EQ,γ
P [c(X, U)] is a minimum.

Theorem 3.1: Suppose assumptions A3 and A4 hold.

Then, there exists an optimal control policy for any channel

Q.

REMARK. The assumptions that c is bounded and U is

compact can be weakened in the preceding theorem. One

may assume that U = R
k, lim‖u‖→∞ c(x, u) = ∞ for all x,

c(x, u) is lower semi-continuous on U for every x, and there

exists u0 such that
∫

c(x, u0)P (dx) < ∞.

A. Weak convergence

1) Absence of continuity under weak convergence: The

following counterexample demonstrates that J(P, Q) may

not be sequentially continuous under weak convergence of

channels even for continuous cost functions and compact X,

Y, and U. Note that the absence of continuity here is also

implied by a less elementary counterexample for setwise

convergence in Section III-B.2. Let X = Y = U = [a, b]
for some a, b ∈ R, a < b. Suppose the cost is given

as c(x, u) = (x − u)2 and assume that P is a discrete

distribution with two atoms:P = 1
2δa + 1

2δb, where δa is

the delta measure at point a, that is, δa(A) = 1{a∈A} for

every Borel set A, where 1E denotes the indicator function

of event E. Let {Qn} be a sequence of channels given by

Qn( · |x) =

{

δa+ 1

n

if x ≥ a + 1
n
,

δa if x < a + 1
n
.

(2)

One can verify that Qn → Q weakly at input P ,

J(P, Qn) → 0, and J(P, Q) > 0, so the optimal cost is

not continuous.

2) Upper semi-continuity under weak convergence:

Theorem 3.2: Suppose assumptions A1 and A5 hold. If

{Qn} is a sequence of channels converging weakly at input

P to a channel Q, then lim supn→∞ J(P, Qn) ≤ J(P, Q),
that is, J(P, Q) is upper semi-continuous on Q under weak

convergence.

Proof: Let µ be an arbitrary probability measure on

(X × Y,B(X × Y)) and let µY be its second marginal, i.e.,

µY(A) = µ(X×A) for A ∈ B(Y). By a slight generalization

of Lusin’s theorem [9, Thm. 2.24] for any g ∈ G and ǫ > 0
there is a continuous function f : Y → U such that µY{y :
f(y) 6= g(y)} < ǫ. Then we have

∫

∣

∣c(x, g(y)) − c(x, f(y))
∣

∣µ(dx, dy) ≤ ǫ sup
x,u

c(x, u).

Since c is bounded by assumption A1 and ǫ > 0 is arbitrary,

we obtain

inf
f∈C

∫

c(x, f(y))µ(dx, dy) = inf
γ∈G

∫

c(x, γ(y))µ(dx, dy)

where C denotes the set of continuous functions from Y into

U. Applying the above first to PQn and then to PQ, we

obtain

lim sup
n→∞

inf
γ∈G

∫

c(x, γ(y))PQn(dx, dy)

= lim sup
n→∞

inf
f∈C

∫

c(x, f(y))PQn(dx, dy)

≤ inf
f∈C

lim sup
n→∞

∫

c(x, f(y))PQn(dx, dy)

= inf
f∈C

∫

c(x, f(y))PQ(dx, dy)

= inf
γ∈G

∫

c(x, γ(y))PQ(dx, dy)

where the next to last equality holds since PQn converges

weakly to PQ.

B. Continuity properties under setwise convergence

1) Upper semi-continuity under setwise convergence:

Theorem 3.3: Under assumption A2 the optimal cost

J(P, Q) := inf
γ

EQ,γ
P [c(X, U)]

is sequentially upper semi-continuous on the set of commu-

nication channels Q under setwise convergence.

Proof: Let {Qn} → Q setwise at P . Then

lim sup
n→∞

inf
γ∈G

∫

c(x, γ(y))PQn(dx, dy)

≤ inf
γ∈G

lim sup
n→∞

∫

c(x, γ(y))PQn(dx, dy)

= inf
γ∈G

∫

c(x, γ(y))PQ(dx, dy),

where the equality holds since c is bounded.
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2) Absence of continuity under setwise convergence:

J(P, Q) may not be sequentially continuous under setwise

convergence of channels even for continuous cost functions

and compact X, Y, and U, as we observe in the following.

Let X = Y = U = [0, 1]. Assume that X has distribution

P = 1
2δ0 + 1

2δ1. Let Q( · |x) = U([0, 1]) for all x, so that

if (X, Y ) ∼ PQ, then Y is independent of X and has the

uniform distribution on [0, 1]. Let c(x, u) = (x − u)2.

By independence, E[X |Y ] = E[X ] = 1/2, so

J(P, Q) = min
γ∈G

E[(X − γ(Y ))2] = E[(X − E[X |Y ])2]

=
1

2

(

1 −
1

2

)2

+
1

2

(

0 −
1

2

)2

=
1

4
.

For n ∈ N and k = 1, . . . , n consider the intervals

Lnk =

[

2k − 2

2n
,
2k − 1

2n

)

, Rnk =

[

2k − 1

2n
,
2k

2n

)

(3)

and define the “square wave” function hn(t) =
∑n

k=1

(

1{t∈Lnk} − 1{t∈Rnk}

)

. Since
∫ 1

0
hn(t) dt = 0

and |hn(t)| ≤ 1, the function

fn(t) =
(

1 + hn(t)
)

1{t∈[0,1]}

is a probability density function. Furthermore, the proof of

the Riemann-Lebesgue lemma can be used almost verbatim

to show that the sequence of probability measures induced

by the sequence {fn} converges setwise to U([0, 1]).

Now, for every n, define a channel as

Qn( · |x) =

{

U([0, 1]), x = 0

∼ fn, x = 1.

Then Qn(·|x) → Q setwise for x = 0 and x = 1, and thus

PQn → PU([0, 1]) setwise. However, letting (X, Yn) ∼
PQn, the optimal policy for PQn is

γn(y) = E[X |Yn = y] =

{

0, y ∈
⋃n

k=1 Rnk

2
3 , y ∈

⋃n
k=1 Lnk

and therefore for every n ∈ N

J(P, Qn) = min
γ∈G

E[(X − γ(Yn))2]

=
1

2

(
∫ 1

0

(γn(y))2dy +

∫ 1

0

(1 − γn(y))2fn(y)dy

)

=
1

6
.

Thus, the optimal cost value is not continuous under setwise

convergence. ⋄

C. Continuity under total variation

We have the following theorem, the proof of which is

omitted [13].

Theorem 3.4: Under assumption A2 the optimal cost

J(P, Q) is continuous on the set of communication channels

Q under the topology of total variation.

IV. PROBLEM P2: CONCAVITY ON THE SPACE OF

CHANNELS

The following is a result which has important conse-

quences in decentralized stochastic control problems as will

be elaborated on later.

Theorem 4.1: The expression J(P, Q) =
infγ EQ,γ

P [c(X, U)] is a concave function of Q.

Proof of Theorem 4.1. For α ∈ [0, 1] and Q′, Q′′ ∈ Q, let

Q = αQ′ + (1 − α)Q′′ ∈ Q, i.e.,

Q(A|x) = αQ′(A|x) + (1 − α)Q′′(A|x)

for all A ∈ B(Y) and x ∈ X. Noting that PQ = αPQ′ +
(1 − α)PQ′′, we have

J(P, Q) = J(P, αQ′ + (1 − α)Q′′)

= inf
γ

EQ,γ
P [c(X, U)] = inf

γ∈G

∫

c(x, γ(y))PQ∗(dx, dy)

= inf
γ∈G

(

α

∫

c(x, γ(y))PQ′(dx, dy)

+(1 − α)

∫

c(x, γ(y))PQ′′(dx, dy)

)

≥ inf
γ∈G

(

α

∫

c(x, γ(y))PQ′(dx, dy)

)

+ inf
γ∈G

(

(1 − α)

∫

c(x, γ(y))PQ′′(dx, dy)

)

= αJ(P, Q′) + (1 − α)J(P, Q′′) (4)

proving that J(P, Q) is concave in Q. ⋄

A. Concavity and connection with comparison of experi-

ments

The following is a folk theorem in statistical decision

theory whose proof is similar to that of Theorem 4.1.

Proposition 4.1: The function

V (P ) := inf
u∈U

∫

P (dx)c(x, u),

is concave in P , under assumption A2.

We will use the above observation to revisit a classical

result in statistical decision theory and comparison of ex-

periments [1]. In a single decision maker setup, we refer to

the probability space induced on X × Y as an information

structure.

Definition 4.1: An information structure induced by some

channel Q2 is weakly stochastically degraded with respect

to another one, Q1, if there exists a channel Q′ on Y × Y

such that

Q2(B|x) =

∫

Y

Q′(B|y)Q1(dy|x), B ∈ B(Y), x ∈ X.

In view of Proposition 4.1, we obtain the following.

Theorem 4.2 (Blackwell [1]): If Q1 is weakly stochas-

tically degraded with respect to Q1, then the information

structure induced by channel Q1 is more informative with

respect to the one induced by channel Q2 in the sense that

inf
γ

EQ2,γ
P [c(X, U)] ≥ inf

γ
EQ1,γ

P [c(X, U)],
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for all cost functions c satisfying assumption A2.

Sketch of Proof. Let (X, Y1) ∼ PQ1 and let Y2 be

such that Pr(Y2 ∈ B|X = x, Y1 = y1) = Q2(B|x)
for all B ∈ B(Y), y1 ∈ Y, and x ∈ X. Then X , Y1,

and Y2 form a Markov chain in this order and therefore

P (dy2|y1, x) = P (dy2|y1) and P (x|dy2, y1) = P (x|y1).
(Note that we used the somewhat sloppy notation where,

for example, P (dy2|y1, x) means PY2|Y1,X(dy2|y1, x) ).

Thus we have

J(P, Q2) =

∫

V
(

P ( · |y2)
)

P (dy2)

=

∫

V

(
∫

P ( · |y1)P (dy1|y2)

)

P (dy2)

≥

∫
(

∫

P (dy1|y2)V
(

P ( · |y1)
)

)

P (dy2) (5)

=

∫

V
(

P ( · |y1)
)

(
∫

P (dy1|y2)P (dy2)

)

=

∫

V
(

P ( · |y1)
)

P (dy1) = J(P, Q1)

where we used Proposition 4.1 and Jensen’s inequality in

(5). ⋄

V. PROBLEM P3: EXISTENCE OF OPTIMAL CHANNELS

Here we study characterizations of compactness (or se-

quential compactness) which will be useful in obtaining ex-

istence results. The discussion on weak convergence showed

us that weak convergence does not induce a strong enough

topology, i.e., under which useful continuity properties can

be obtained. In the following, we will obtain conditions

for sequential compactness for the other two convergence

notions, that is, for setwise convergence and total variation.

We first discuss setwise convergence. A set of probability

measures M on some measurable space is said to be setwise

sequentially precompact if every sequence in M has a

subsequence converging setwise to a probability measure

(not necessarily in M). For two finite measures ν and µ
defined on the same measurable space we write ν ≤ µ if

ν(A) ≤ µ(A) for all measurable A.

As before, PQ ∈ P(X × Y) denotes the joint probability

measure induced by input P and channel Q, where X = R
n

and Y = R
m. The following is a simple consequence of a

majorization criterion for setwise sequential precompactness

of a family of probability measures (see, e.g., [5], p. 305-306

or [6], p. 7).

Lemma 5.1: Let ν be a finite measure on B(X×Y) and

let P be a probability measure on B(X). Suppose Q is a set

of channels such that

PQ ≤ ν, for all Q ∈ Q.

Then Q is setwise sequentially precompact at input P in the

sense that any sequence in Q has a subsequence {Qn} such

that Qn → Q setwise at input P for some channel Q.

Lemma 5.2: Let Q be a set of channels such that {PQ :
Q ∈ Q} is a precompact set of probability measures under

total variation. Then Q is precompact under total variation

at input P .

We can combine the preceding results with the following

theorem to obtain sufficient conditions for the existence of

best and worst channels when the given family of channels

Q is closed under the appropriate convergence notion.

Theorem 5.1: Recall problem P2.

(i) There exist a worst channel in Q, that is, a solution for

the maximization problem

sup
Q∈Q

J(P, Q) = sup
Q∈Q

inf
γ

EQ,γ
P E[c(X, U)]

when the set Q is weakly sequentially compact and

assumptions A1, A4, and A5 hold.

(ii) There exist a worst channel in Q when the set Q is

setwise sequentially compact and assumption A2 holds.

(iii) There exist best and worst channels in Q, that is, solu-

tions for the minimization problem infQ∈Q J(P, Q) and

the maximization problem supQ∈Q J(P, Q) when the

set Q is compact under total variation and assumption

A2 holds.

Proof: Under the stated conditions, we have sequential

upper semi-continuity or continuity (Theorems 3.2, 3.3,

and 3.4) under the corresponding topologies. By sequential

compactness, the existence of the cost maximizing (worst)

channel follows when J(P, Q) is upper-semicontinuous,

while the existence of the cost minimizing (best) channel

follows when J(P, Q) is continuous in Q.

VI. REVISITING NON-CLASSICAL TEAM DECISION

PROBLEMS: THE OPTIMAL SIGNALING PROBLEM IS

NON-CONVEX

In a dynamic decentralized control system, multiple con-

trollers are present. We say that the information structure

in such a decentralized control system is non-classical if

one decision maker DMk can affect the information of DMj

through his actions, but DMj cannot have access to the in-

formation available to DMk. When the information structure

is non-classical, it is known that there may be an incentive

for signaling: Signaling is the action of communication of

the decision makers via their control actions. That is, under

signaling, the decision makers apply their actions to affect the

information available at the other decision makers actively

[12]. It is an implication of Theorem 4.1 that the stochastic

control problems are difficult when signaling is present.

In this case, the problem becomes partly a communication

problem; and as we observed; this problem is non-convex.

The property on concavity in Theorem 4.1 is the reason why

even linear-quadratic-Gaussian (LQG) type control problems

lose their convexity properties, when signaling or communi-

cation/quantization is involved. For example, the well-known

Witsenhausen’s counterexample is non-convex due to such

an effect. To make this important issue more explicit, let us

consider the following example, taken from [12]. Consider

a two-controller system evolving in R
n with the following

description:

Xt+1 = AXt + B1U1
t + B2U2

t + Wt,

Y 1
t = C1Xt + V 1

t , Y 2
t = C2Xt + V 2

t ,
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with W, V 1, V 2 zero-mean, i.i.d. disturbances, and

A, B1, B2, C1, C2 matrices of appropriate dimensions.

For ρ1, ρ2 > 0, let the goal be the minimization of

J = E

[( T−1
∑

t=0

‖Xt‖
2 + ρ1‖U

1
t ‖

2 + ρ2‖U
2
t ‖

2

)

+ ‖X2‖
2

]

over the control policies of the form:

ui
t = µi

t(y
i
[0,t]), i = 1, 2; t = 0, 1.

It was observed by Radner [8] that a static LQG team

problem (for T = 1) with a non-nested information structure

admits an optimal solution which is linear. The proof for

this result follows from the observation that the team cost

is convex in the joint strategies of the DMs, and it suffices

to find the unique fixed point (under a verification of dif-

ferentiability). This, in turn, is satisfied by a linear set of

solutions for each DM. For a two-stage problem (T = 2),

however, the cost is in general no-longer convex in the policy

of the controllers acting in the first stage t = 0, by Corollary

4.1 or Theorem 4.1. This is because the actions might affect

the estimation quality of the other controller in the second

stage, if one DM can signal information to the other DM

in one stage. We note that this condition is equivalent to

C1AlB2 6= 0 or C2AlB1 6= 0 ([11], Lemma 3.1), with l +1
denoting the delay in signaling with l = 0 in the problem

considered. In particular, if the controller is allowed to apply

a randomized policy, this induces a conditional probability

measure (channel) from the external variables and the initial

state of the system to the observation variables at the other

decision maker. The optimization problem, as such, is not

jointly convex in such policies, and finding a fixed point does

not lead to the conclusion that such policies are optimal.

VII. MULTI-STAGE CASE

We consider the general case T ∈ N. It should be observed

that the effects of a control policy applied any given time-

stage presents itself in two ways, in both the cost occurred at

the given time-stage and the effect on the process distribution

at future time-stages, which is known as the dual effect

of control. The next theorem shows the continuity of the

optimal cost in the observation channel under some regularity

conditions. Note that the existence of best and worst channels

follows under an appropriate compactness condition as in

Theorem 5.1 (iii). We need the following definition.

Definition 7.1: A sequence of channels {Qn} converges

to a channel Q uniformly in total variation if

lim
n→∞

sup
x∈X

∥

∥Qn( · |x) − Q( · |x)
∥

∥

TV
= 0.

Theorem 7.1: Consider the cost function (1) with arbi-

trary T ∈ N. Suppose assumption A2 holds. Then, the

optimization problem P1 is continuous in the observation

channel in the sense that if {Qn} is a sequence of channels

converging to Q uniformly in total variation, then

lim
n→∞

JT (P, Qn) = JT (P, Q).

We obtained the continuity of the optimal cost on the

space of channels equipped with a more stringent notion

for convergence in total variation. This result and its proof

indicate that further technical complications emerge in multi-

stage problems. Likewise, upper semi-continuity under weak

convergence and setwise convergence require more stringent

uniformity assumptions, which we leave for future research.

On the other hand, the concavity property applies directly

to the multi-stage case. That is, the optimization problem P1

is concave in the space of channels. The proof of this fact

follows that of Theorem 4.1.

VIII. CONCLUDING REMARKS AND EXTENSIONS

This paper studied the structural and topological properties

of some optimization problems in stochastic control in the

space of observation channels. The main problem we consid-

ered is how to approach appropriate notions of convergence

and distance while studying communication channels in the

context of stochastic control problems. It was observed that

the optimization problem is concave in such channels. One

implication of this observation is that in a decentralized

control problem, if signaling is present, the original convex

problem (which may be convex under a nested, partially

nested or a stochastically nested information structure) loses

its convexity.

The restriction to Euclidean state spaces is not essential

and many (but not all) of the results can be extended to the

case where X, Y, and U are Polish spaces. In particular, all

the results (except for Theorem 3.2) in Sections III and IV

carry through without change.
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[11] S. Yüksel and T. Başar, “Optimal signaling policies for decentralized

multi-controller stabilizability over communication channels”, IEEE

Trans. Automatic Control, vol. 52, pp. 1969–1974, Oct. 2007.
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