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Abstract— For a discrete–time system whose transfer matrix
function is completely general (arbitrary normal rank, strictly
proper/imprope/polynomial, with poles and zeroes on the unit
circle) we give existence conditions and constructive formulas
for the (J, J ′)–spectral factor. The computation of the spectral
factor is done by employing generalized state–space realizations
and numerically–sound algorithms based on a preliminary
unitary projection which delineates a subsystem fulfilling all
regularity assumptions. En route, we give formulas for the
J–lossless conjugation of an arbitrary discrete–time system
and the (J, J ′)–lossless factorization of a marginally stable but
otherwise general system.

Index Terms— Discrete–time systems, (J, J ′)–spectral factor-
ization, generalized systems.

I. INTRODUCTION

A rational matrix function (rmf) with complex coefficients

Θ(z) is called (J, J ′)–unitary if Θ(z)∗JΘ(z) = J ′, at every

point on the unit circle at which Θ is analytic, where J

and J ′ are two signature matrices, i.e., J = J−1 = J∗

(∗ denotes conjugate transpose). By analytic continuation,

Θ(z)#JΘ(z) = J ′, ∀z ∈ C, where Θ(z)# := Θ(1
z
)∗. If,

in addition, Θ(z)∗JΘ(z) ≤ J ′ (Θ(z)∗JΘ(z) ≥ J ′) for every

point of analyticity of Θ in the exterior of the closed unit

disk, then Θ is called (J, J ′)–lossless ((−J,−J ′)–lossless).

If J = J ′, Θ(z) is called J–unitary, J–lossless, and −J–

lossless, respectively. The normal rank of a rmf G(z) is its

rank for almost all z ∈ C.

We consider here the following extensions of three well–

known factorization problems such as to become applicable

to a general p×m rmf with complex coefficients G(z) (of

arbitrary rank, with poles/zeros on the unit circle, possibly

polynomial, strictly proper or improper):

J–lossless conjugation. Find a minimal McMillan degree

J–lossless rmf Θ(z) such that

Π(z) := Θ(z)G(z) (1)

has only marginally stable (located in the closed unit disk)

poles. This is a slightly different form of Definition 3.1 in

[17]. A similar statement with obvious modifications can be

given for the −J–lossless conjugation problem.

(J, J ′)–spectral factorization. Find a rmf Π(z) which has

full row normal rank and only marginally stable zeros such

that

G#(z)JG(z) = Π#(z)J ′Π(z), (2)
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where G(z)Π(+)(z) has no poles on the unit circle. Here

Π(+)(z) stands for the Moore–Penrose pseudoinverse of

Π(z) (see for example Definition 4 in [4]).

(J, J ′)–lossless factorization. Find a (J, J ′)–lossless rmf

Θ(z) (without poles on the unit circle) and a rmf Π(z) which

has full row normal rank and only marginally stable poles

and zeros such that

G(z) = Θ(z)Π(z). (3)

This is an extension of the definition in [17].

Due to its huge importance, the (J, J ′)–spectral factoriza-

tion and its slightest more general (J, J ′)–lossless form have

been investigated in tens of papers under various technical

hypotheses, both in the continuous or discrete–time settings.

Among the continuous–time approaches closer to the present

development we mention [1], [18], [15], [11], [4], with

the most general constructive solution in [25]. Until now

the discrete–time (J, J ′)–spectral and lossless factorization

problems have been solved either in different particular

instances or for a particular underlying system: in [22] the

unitary case (where J = I and J ′ = I) has been approached

for a completely general rmf, in [17] the (J, J ′) case is

solved for a system fulfilling several regularity assumptions

(full column rank, without poles at infinity or at zero and

without zeroes on the unit circle or at infinity), while some

of these assumptions are relaxed to include poles at zero and

at infinity in [9] and zeroes on the unit circle in [10].

The purpose of this paper is to extend the ideas in [22],

[25] such as to become applicable to the construction of the

discrete–time factors for a completely general system G(z)
that allows the whole range of possible applications, i.e.,

is a completely general rmf. In contrast to [22], the main

technical difficulty is that we need to formulate necessary

and sufficient existence conditions while in contrast to [25]

we should cater for the poles and zeroes at infinity which

are no longer on the boundary of the stability domain.

Besides the more technical machinery involved, the resulting

formulas for the factors bear the same striking simplicity

and the underlying algorithm resembles in details the one

developed for the unitary case. Due to space limitations,

we will give here the solutions to the general discrete–

time J–lossless conjugation, the general (J, J ′)–spectral

factorization and the (J, J ′)–lossless factorization of a stable

but otherwise general system. Hence, we leave apart the

more hairy construction of the completely general (J, J ′)–
lossless factorization which is a combination of the J–

lossless conjugation and the (J, J ′)–spectral factorization.

The paper is organized as follows. In Section II we review

briefly a couple of definitions and notations related to matrix
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pencils, rational matrix functions and (descriptor) state–space

realizations of rational matrices. In Section III we put ground

for the main results by giving two spectral decompositions

of the pole and system pencils associated with a descriptor

realization. Section IV contains the main results. In Section

V we give a numerical example for the (J, J ′)–spectral

factorization of a polynomial rmf. We draw some conclusions

in Section VI.

II. PRELIMINARIES

A. Basic notation

We start with some notation and definitions. By D and

D1(0) we denote the open unit disk and the unit circle,

respectively, and Dc = C \ D stands for the exterior of

the closed unit disk containing the infinity. Here “overbar”

denotes closure.

If a matrix A in Cm×n is invertible, A−∗ is its conjugate

transpose inverse. A Hermitian matrix A satisfies A = A∗,

and we denote by A > 0 (A < 0) if it is in addition positive

definite (negative definite). We say A is unitary (J–unitary)

if A∗A = I (A∗JA = J). In will stand for the identity

matrix of size n× n, and we skip the dimensions whenever

they are irrelevant. By ⋆ we denote irrelevant matrix entries.

B. Matrix pencils

We review a few basic notions about matrix pencils (for

more details see Chapter 12 in [6]).

Let A and E be m×n matrices with elements in C. The

matrix polynomial A−zE is called a matrix pencil or, briefly,

pencil. The pencil is called regular if it is square (m = n)

and has a non–vanishing determinant, i.e., det(A−zE) 6≡ 0.

A singular pencil is a pencil which is not regular. The normal

rank of the pencil – denoted rankn(A − zE) – is defined

as the rank of A − zE for almost all z ∈ C (but a finite

number of points). For an n× n regular pencil A− zE the

normal rank r is equal to n. If νℓ := m − r > 0 then we

say the pencil has a (nontrivial) left singular structure. If

νr := n − r > 0 then the pencil has a (nontrivial) right

singular structure.

Two matrix pencils A−zE and Ã−zẼ, with A,E, Ã, Ẽ ∈
Cm×n, are called strictly equivalent if there are two constant

invertible matrices Q ∈ Cm×m, Z ∈ Cn×n, such that

Q(A− zE)Z = Ã− zẼ. (4)

The equivalence relation (4) induces a canonical form (see

[6]) – called the Kronecker canonical form – on the set of

m× n pencils, Q(A− zE)Z = AKR − zEKR, where Q ∈
Cm×m and Z ∈ Cn×n are two invertible matrices, and

AKR − zEKR = diag(Lǫ1 , . . . , Lǫνr
, In∞

− zE∞,

Af − zInf
, LT

η1
, . . . LT

ηνℓ
). (5)

Here Lk (k ≥ 0) denotes the bidiagonal k × (k + 1) pencil

Lk :=




z −1
. . .

. . .

z −1


 ,

Af and E∞ are two square matrices in the Jordan canonical

form, with E∞ nilpotent. The finite eigenstructure of A−zE

is determined by the eigenvalues of Af , and the dimensions

of the elementary infinite blocks of In∞
− zE∞ determine

the infinite eigenstructure of the pencil. The union of the

finite and infinite eigenstructure of the pencil completely de-

termines the regular part of the pencil and forms the spectrum

of the pencil which is denoted by Λ(A− zE). The singular

part of the pencil is defined by the right and left singular

Kronecker structure as follows. The ǫi × (ǫi + 1) blocks

Lǫi , (i = 1, ..., νr), are the right elementary Kronecker

blocks, and ǫi ≥ 0 are called the right Kronecker indices.

The (ηj + 1) × ηj blocks LT
ηj
, (j = 1, ..., νℓ), are the left

elementary Kronecker blocks, and ηj ≥ 0 are called the left

Kronecker indices. Notice that ǫi and ηj can be zero.

C. Rational matrices

We give now a short overview of some of the structural

invariants of a general p × m rmf: poles, zeros and their

partial multiplicities. For more details see [19].

Lemma 2.1: Let G(z) be a p×m rmf having normal rank

r and fix z0 ∈ C. Then there exist two square rmf U and

V , analytic and invertible at z0, such that

U(z)G(z)V (z) =

[
D(z) 0r×(m−r)

0(p−r)×r 0(p−r)×(m−r)

]
, (6)

D(z) := diag{(z − z0)
k1 , (z − z0)

k2 , . . . , (z − z0)
kr}, (7)

where k1 ≤ k2 ≤ . . . ≤ kr are integers called the indices

of the local Smith–McMillan form at z0, the matrix in the

right–hand side of (6) is called the local Smith–McMillan

form at z0, and is unique.

A point z0 ∈ C is called a pole (zero) of G(z) if at

least one of the indices ki in (7) is negative (positive). In

this case the set of absolute values of the negative ki’s (the

set of positive ki’s) are the partial pole (zero) multiplicities

of G(z) at z0. The total pole (zero) multiplicity of G(z) at

z0 is the sum of the partial pole (zero) multiplicities. By

definition, z = ∞ is a pole (zero) of G(z) provided z = 0 is

a pole (zero) of G(1
z
). In this case the partial and total pole

(zero) multiplicities of G(z) at ∞ are the partial and total

pole (zero) multiplicities at z = 0 of G(1
z
). The McMillan

degree of G(z), denoted δ(G(z)), is the sum of the total

multiplicities of all poles (finite and infinite) of G(z).

D. Realization theory for rational matrices

For any rmf G(z) in Cp×m (even improper or polynomial)

one can write down a descriptor realization of the form (see

for example [27], [28])

G(z) = D + C(zE −A)−1B =:

[
A− zE B

C D

]
, (8)

where A,E ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m,

and A−zE is a regular pencil. The dimension n of the square

matrices A and E is called the order of the realization (8).

With any realization (8) we associate two matrix pencils that

play an important role in the sequel: the pole pencil P(z) =
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A − zE and the system pencil S(z) =

[
A− zE B

C D

]
.

The descriptor realization (8) of G(z) is called irreducible

if it satisfies the following conditions (see [28]):

(i) rank
[
A− zE B

]
= n, ∀z ∈ C,

(ii) rank
[
E B

]
= n,

(iii) rank

[
A− zE

C

]
= n, ∀z ∈ C,

(iv) rank

[
E

C

]
= n.

(9)

The conditions (9) are usually known as finite and infinite

controllability, and finite and infinite observability, respec-

tively. In contrast to standard realizations, irreducibility of a

descriptor realizations does not automatically imply its min-

imality since some simple blocks of dimension 1 at infinity

(so called non–dynamic modes) which are both controllable

and observable might increase indefinitely the dimension of

the realization while keeping its irreducibility. Starting from

an arbitrary realization (8), one can compute an irreducible

realization by using solely unitary transformations.

The following result taken from [17] (see Theorem 2.4)

is modified to cope with proper (J, J ′)–unitary rational

matrices having a descriptor realization.

Lemma 2.2: Let G(z) be a proper rational matrix given

by the minimal realization

G(z) :=

[
A− zE B

C D

]
. (10)

G(z) is (J, J ′)–unitary ((J, J ′)–lossless) if and only if there

is a (semipositive) hermitian matrix X such that

A∗

xXAx − E∗

xXEx + C∗

xJCx = 0, (11a)

D∗

xJCx +B∗

xXAx = 0, (11b)

D∗

xJDx +B∗

xXsBx = J ′. (11c)

III. SPECTRAL DECOMPOSITIONS

In this section we introduce two particular spectral decom-

positions of the pole and system pencils with respect to the

partition C = D ∪ Dc. The decompositions can be achieved

by unitary transformations and will play a capital role in

expressing our main results in the next section.

Without restricting generality, we may assume that G(z)
is given by an irreducible realization of the form

G(z) =

[
A− zE B

C D

]
=



Ab − zEb Abg − zEbg Bb

0 Ag − zEg Bg

Cb Cg D


,

(12)

where Ab − zEb contains the nb poles of G(z) in Dc,

rank
[
Eb Ebg

]
= nb and Ag − zEg contains all poles of

G(z) in D and the nondynamic modes. In particular, notice

that Ab and Ab−Eb are invertible. Starting from an arbitrary

realization (8) it is always possible to get (12) by employing

unitary equivalence transformations only [20].

We give next the unitary decomposition of the system

pencil which has been previously used to get the solutions

in the unitary case (see [22]).

Lemma 3.1: Let G(z) be a p × m real rational matrix

given by a controllable realization (12), i.e., fulfilling (i) and

(ii) in (9). Then there exist two constant unitary matrices U

and Z such that[
U 0
0 I

] [
A− zE B

C D

]
Z

=




Arg − zErg ⋆ ⋆ ⋆

0 Abℓ − zEbℓ Bbℓ Bℓn − zEℓn

0 0 0 Bn

0 Cbℓ Dbℓ Dn


 ,

(13)

where:

(I) The pencil Arg−zErg has full row rank in Dc and Erg

has full row rank.

(II) Ebℓ and Bn are invertible, the pencil
[

Abℓ − zEbℓ Bbℓ

Cbℓ Dbℓ

]
(14)

has full column rank in D, the pencil Abℓ−zEbℓ is reg-

ular, and the pair
[
Abℓ − zEbℓ Bbℓ

]
is controllable.

See [22] for a numerically stable algorithm to compute the

matrices U and Z .

The above lemma constructs a projection of the original

system (8)

Gp(z) =

[
Abℓ − zEbℓ Bbℓ

Cbℓ Dbℓ

]
, (15)

which fulfills all standard assumptions in the literature [16]

(is proper, has full column normal rank, and has no zeros

on the unit circle). In the next section we will see that it is

enough to solve the factorization problems for Gp(z) to get

the solution to the corresponding factorization for G(z).

IV. MAIN RESULTS

Once the spectral decompositions obtained, we have the

coefficients of two equations, a Stein and a Riccati, whose

solutions (when they exists) can be used directly to write

down state–space formulas for the factors Π(z) and Θ(z)
solving the factorization problems under investigation. Due

to space limitation the proofs are only sketched.

A. J–lossless conjugation

Lemma 4.1: Let G(z) be a general rmf given by an

irreducible realization (12). The J–lossless (−J–lossless)

conjugation (1) has a solution if and only if the Stein

equation

E∗

bY Eb −A∗

bY Ab + C∗

b JCb = 0 (16)

has an invertible solution Ys < 0 (Ys > 0). The class

of solutions to the J–lossless (−J–lossless) conjugation

problem is given by

Π(z) :=




Ãb − zẼb Ãbg − zẼbg B̃b

0 Ag − zEg Bg

WCb WCg WD̃


 , (17)
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Θ(z) :=




Ab − zEb K(1− z) 0
0 I I

WCb 0 W


 , (18)

where W is any constant J–unitary matrix,

K := Y −1
s (Eb −Ab)

−∗C∗

b J, (19)

and Ãb = Ab +KCb, Ẽb = Eb +KCb, Ãbg = Abg +KCg,

Ẽbg = Ebg + KCg , B̃b = Bb − Y −1A−∗

b C∗

bD, D̃ = [I −
Cb(Ab − Eb)

−1Y −1A−∗

b C∗

b ]D.

Proof: The proof follows with minor modifications

from the proof of Theorem 6.2 in [20].

Since Λ(Ab−zEb) ⊂ Dc, Ab is invertible. Moreover, (16)

has a unique solution and can be converted into a standard

Stein equation which can be solved by any numerically–

sound algorithm. If (16) has an invertible solution Ys, the

pencil Ab+KCb−z(Eb+KCb) is regular with the spectrum

located in the unit disk, where K is given by (19). Lemma

4.1 is an extension to the case of an arbitrary rmf of the

J–conjugation introduced in [17] for the case of a proper

rmf (compare to (3.4), (3.5) and (3.7) in [17]). Even in the

standard proper case, our method is more efficient since we

solve a Stein equation – rather than a Riccati one –, and

the dimension of the Stein equation is smaller than that of

the Riccati equation in [17] whenever G(z) has marginally

stable poles.

B. (J,J’)–spectral and lossless factorizations

Theorem 4.2: Let G(z) be a general rmf given by a

controllable realization (8), and let U and Z be two constant

unitary matrices such that (13) holds.

(I) The (J, J ′)–spectral factorization problem (2) has a

solution if and only if the following conditions are fulfilled:

1) The Riccati equation

A∗

bℓXAbℓ − E∗

bℓXEbℓ − (A∗

bℓXBbℓ + C∗

bℓJDbℓ)
×(D∗

bℓJDbℓ +B∗

bℓXBbℓ)
−1(B∗

bℓXAbℓ +D∗

bℓJCbℓ)
+C∗

bℓJCbℓ = 0
(20)

has an invertible stabilizing solution Xs, i.e., Λ(Abℓ+
BbℓF − zEbℓ) ⊂ D, F := −(D∗

bℓJDbℓ +
BbℓXsBbℓ)

−1(B∗

bℓXsAbℓ +D∗

bℓJCbℓ).
2)

D∗

bℓJDbℓ +B∗

bℓXsBbℓ = V ∗J
′

V (21)

for an appropriate constant invertible matrix V ;

(II) Assume in addition G(z) is marginally stable. The

(J, J ′)–lossless factorization problem (3) has a solution if

and only if conditions 1) and 2) at (I) are fulfilled for Xs ≥ 0.

(III) In both factorizations Π(z) is given by

Π(z) :=

[
A− zE B

C̃ D̃

]
,
[
C̃ D̃

]
:= V

[
0−F I 0

]
Z∗,

(22)

while for the (J, J ′)–lossless factorization

Θ(z) :=

[
Abℓ +BbℓF − zEbℓ BbℓV

−1

Cbℓ +DbℓF DbℓV
−1

]
. (23)

Proof: We show first the sufficiency of conditions 1)

and 2) simultaneously with proving that (22) together with

(23) form a solution to the (J, J ′)–lossless factorization (3)

of a marginally stable G(z). Incidentally, it will follow that

(22) is a solution to the (J, J ′)–spectral factorization (2) of

a general G(z).

We check first G(z) = Θ(z)Π(z). Let

[
Ĉ D̂

]
:= V −1

[
C̃ D̃

]
(22)
=

[
0 −F I 0

]
Z∗.

(24)

Using (22) and (23) we have

Θ(z)Π(z) =




Abℓ +BbℓF − zEbℓ BbℓĈ BbℓD̂

0 A− zE B

Cbℓ +DbℓF DbℓĈ DbℓD̂




=




Abℓ +BbℓF − zEbℓ 0 BbℓD̂ −X1B

0 A− zE B

Cbℓ +DbℓF Ce DbℓD̂




(25)

=

[
A− zE B

Ce DbℓD̂

]
(26)

where Ce := DbℓĈ + (Cbℓ +DbℓF )X2, X1 and X2 are two

matrices such that

[
X1 −Bbℓ

][A− zE B

Ĉ D̂

]
= (Abℓ +BbℓF − zEbℓ)

[
X2 0

]
.

(27)

The existence of matrices X1 and X2 results from the

following identity which can be checked directly

[
0 I X13 −Bbℓ

]
×



Arg − zErg B1 − zF1 B2 − zF2 B3 − zF3

0 Abℓ − zEbℓ Bbℓ Bℓn − zFℓn

0 0 0 Bn

0 −F I 0




= (Abℓ +BbℓF − zEbℓ)
[
0 I 0 E−1

bℓ Fℓn

]
(28)

where X13 := [−Bℓn+(Abℓ+BbℓF )E−1
bℓ Fℓn]B

−1
n . Indeed,

multiplying (28) to the right with Z∗ and using (13), (22)

and (24) we get (27) for X1 :=
[
0 I X13

]
U and

[
X2 0

]
=

[
0 I 0 E−1

bℓ Fℓn

]
Z∗. (29)

We check that G(z) = Θ(z)Π(z) by showing that the two

system pencils associated with the realizations (8) and (26)

are related by a transformation to the left that leaves the

transfer function invariant, i.e.,

[
I 0

Û I

][
A− zE B

C D

]
=

[
A− zE B

DbℓĈ + (Cbℓ +DbℓF )X2 DbℓD̂

]

(see for example [26]). Indeed, multiplying this to the left

with

[
U 0
0 I

]
and to the right with Z , using (13), (24),
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(29) and the partition ÛU∗ :=
[
U11 U12 U13

]
, we get







I 0 0 0
0 I 0 0
0 0 I 0

U11 U12 U13 I






×







Arg − zErg B1 − zF1 B2 − zF2 B3 − zF3

0 Abℓ − zEbℓ Bbℓ Bℓn − zFℓn

0 0 0 Bn

0 Cbℓ Dbℓ Dn







=







Arg − zErg B1 − zF1 B2 − zF2 B3 − zF3

0 Abℓ − zEbℓ Bbℓ Bℓn − zFℓn

0 0 0 Bn

0 Cbℓ Dbℓ (Cbℓ +DbℓF )E−1

bℓ Fℓn






.

(30)

But (30) is clearly satisfied for U11 = 0, U12 = 0 and

U13 := [−Bℓn + (Cbℓ + DbℓF )E−1
bℓ Fℓn]B

−1
n which proves

the existence of Û and ends the proof of G(z) = Θ(z)Π(z).
Further, we show that Π(z) has full row normal rank and

the zeros in D, while Θ(z) is (J, J ′)–unitary (or (J, J ′)–
lossless if in addition Xs ≥ 0). Indeed, we have

[
U 0
0 V −1

] [
A− zE B

C̃ D̃

]
Z

(13)(22)
=




Arg − zErg B1 − zF1 B2 − zF2 B3 − zF3

0 Abℓ − zEbℓ Bbℓ Bℓn − zFℓn

0 0 0 Bn

0 −F I 0


 ,

in which Arg − zErg has full row rank in Dc and[
Abℓ − zEbℓ Bbℓ

−F I

]
is square, has full normal rank, and

its zeros are located in D. Θ(z) is (J, J ′)–unitary (or (J, J ′)–
lossless) as follows directly by using its expression (23) and

(20) in Lemma 2.2. Hence, provided G(z) is marginally

stable, (3) is indeed a (J, J ′)–lossless factorization. Finally,

if G(z) is arbitrary, some tedious but otherwise elementary

algebraic manipulations show that G(z)Π(+)(z) has no poles

on the unit disk, concluding in this way that (2) is a (J, J ′)–
spectral factorization. This ends the whole sufficiency part.

We sketch now the necessity of conditions 1) and 2).

Notice first in complete analogy with [25] that if G(z) has

a (J, J ′)–lossless factorization then there is an invertible

factor R(z) which cancels in the product R(z)G(z) all left

minimal indices and the unstable zeros of G(z), and R(z)
is in particular (−J)–lossless. Such an invertible factor has

the form (deduced from [23] with minor modifications)

R−1(z) =

[
Abℓ − zEbℓ +BbℓFx BxD

−1
x

Cbℓ +DbℓFx D−1
x

]
, (31)

where Fx is such that Λ(Abℓ − zEbℓ + BbℓFx) ⊂ D ∪
D1(0), Dx is any invertible matrix and Bx is such that

Bbℓ −BxDbℓ = 0. If we add on (31) the conditions (11) of

being additionally J–unitary we get straightforwardly (20)

and (21). Similar arguments apply for the (J, J ′)–spectral

case. This ends the whole proof.

In particular, the above result may be applied to a polyno-

mial matrix G(z), and provides a numerically sound state–

space construction of the (J, J ′)–spectral factor (see [18],

[1]). Theorem 4.2 is also an extension of the (J, J ′)–lossless

factorization to the case of an improper marginally stable

rmf having arbitrary normal rank, with poles and zeros on

the unit circle (compare with Theorem 4.2 in [17]).

The existence of the stabilizing solution to the Riccati

equation (20) can be checked and the equation solved by

using any existing numerical algorithm that copes with

indefinite sign matrix coefficients (see for example [14] and

the references therein).

V. NUMERICAL EXAMPLE

We exemplify the proposed approach on a simple but

relevant polynomial system. For illustrative simplicity we

use nonunitary transformations as well. Let J =

[
1 0
0 J ′

]
,

J ′ =

[
1 0
0 −1

]
,

G(z) =




3z4 − 6z3 − 3z + 6
3z5 + 3z4 − 3z3 − 3z2 + 12z + 11

6z5 + 6z3 + 3z2 + 3z + 28

z4 − 2z3 − z + 2
z5 + z4 − z3 − z2 + 4z + 5
2z5 + 2z3 + z2 + z + 12

2z4 − 4z3 − 2z + 4
2z5 + 2z4 − 2z3 − 2z2 + 8z + 10

4z5 + 4z3 + 2z2 + 2z + 24




G(z) has a realization (12) given by

[
A− zE B

C D

]
=




1 0 0 0 0−z 0 0 0
−z 1 0 0 0 0 0 0 0
0 −z 1 0 0 0 0 0 0
0 0 −z 1 0 0 0 0 0
0 0 0 −z 1 0 0 0 0
0 0 0 0 0 1 −1− 1

3 −
2
3

−3 0 −6 3 0 1 5 5
3

10
3

12 −3−3 3 3 0 11 5 10
3 3 6 0 6 0 28 12 24




.

The structural elements of G(z) are: one pole at ∞ with

multiplicity 5, one zero at 2 with multiplicity 1, one zeros

at 1 with multiplicity 1, one zero at ∞ with multiplicity 1,

one left minimal index equal to 2, one right minimal index

equal to 0 and normal rank r = 2. With

U =




0 1 0 0 0
0−1 0 0 1
0−1 1 0 0
0−1 0 1 0
1−1 0 0 0



Z =




0 4 0 0 0 −1 0 0 0
0 4 1 0 −2−3 0 0 0
0 4 0 1 0 0 0 0 0
0 4 0 2 −2 0 0 0 0
0 4 1−1−5−4 12 −3 0
0 4 0 0 1 1 0 0 1
0 27 0 0 0 0 9 0 0

−18−69 0 0 3 3 −27 0 0
9 0 0 0 0 0 0 0 0




we get the decomposition (13) in the form



Arg − zErg B1 − zF1 B2 − zF2 B3 − zF3

0 Abℓ − zEbℓ Bbℓ Bℓn − zFℓn

0 0 0 Bn

0 Cbℓ Dbℓ Dn


 =
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


0 4− 4z 1 0 −2 −3 + z 0 0 0

0 0 0 −1− 2z −3 + 2z −1− z 12 −3 0
0 0 −1− z 1 2 + 2z 3 + 2z 0 0 0
0 0 −1 2− z 0 3− z 0 0 0
0 0 −1 0 2− z 2− 2z 0 0 −z

0 0 0 0 0 0 0 0 1

0 0 0 0 0 9 0 0 1
0 0 0 0 0 0 0 −9 0
0 0 9 0 0 0 0 −18 0




.

The Riccati equation (20) has a stabilizing positive solution

Xs =




167.138438763306 −38.78460969082739
−38.784609690827 226.4922678357841
−161.138438763306−81.74613391789126
5.999999999999 17.999999999999

−161.138438763306 5.999999999999
−81.746133917891 17.999999999999
301.492267835785 −11.999999999999
−11.999999999999 47.999999999999


.

With V =

[
−157.62843059519536.603010518552
27.906754558497 8.861965366188

]
which

fulfils (21) we get Π(z) as in (32). A direct check shows that

Π(z) fulfils (2), has full row rank, the same poles as G(z),
zeros at 0, 1, 12 ,−0.267949259275 and −0.267949125586,

each with multiplicity 1, and one right minimal index equal

to 0.

VI. CONCLUSIONS

We have solved several essential factorization problems

formulated for a completely general discrete–time system:

J–lossless conjugation, (J, J ′)–spectral factorization and

(J, J ′)–lossless factorization (for a marginally stable sys-

tem). The results coping with the (J, J ′)–lossless factor-

ization of a completely general discrete–time system (not

necessarily marginally stable) can be readily obtained and

will be reported elsewhere.
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