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Abstract— In this paper we study general stability condi-
tion of distributed networked control systems with minimum
number of necessary communication links. We use the Lya-
punov direct method to find a general stability condition that
guarantees the asymptotic stability of the entire networked
control system and then use binary programming to design
a communications network with minimum number of links
that satisfies the general stability condition. Reducing the
number of communication links implies minimization of the
communications network’s cost and energy consumption. The
results apply to networks of linear time-invariant (LTI) systems.

I. INTRODUCTION
A networked control system (NCS) consists of many cou-

pled subsystems that are spatially distributed. Each subsys-
tem comprises of a plant and a controller. The interaction of
plants with each other forms the dynamics network. Control
and feedback signals are exchanged using a communications
network (information network) among controller compo-
nents (Fig. 1). The main advantages of NCSs are reduced
system wiring, scalability, simplicity of system diagnosis,
maintenance and saving resources. Specific examples of
NCS include electrical power grids, transportation networks,
factory automation and tele-operations.

NCSs lie at the intersection of control and communication
theories. Each NCS has a dynamics network including a set
of subsystem that affects each other. It is obvious that even
if each subsystem is asymptotically stable, the connected
plants may be unstable due to the interactions between them.
In such a scenario to stabilize the NCS, a communications
network carrying distributed feedback information between
different subsystems will be necessary.

In general, it is not feasible to control a large-scale
networked system with a centralized approach. In a cen-
tralized approach, the control law uses the state information
of all subsystems, which requires a very large and costly
communications network for exchanging state information.
This requirement limits the scalability of centralized ap-
proaches to networked control systems. To overcome this
limitation, there are two major different approaches, namely
decentralized and distributed control strategies [1]–[3].

In the decentralized control strategy, the control law uses
only a subsystem’s local state information to control the
given subsystem. Such local controls can be very effective
when the coupling between subsystems are weak. All de-
centralized and self triggering methods use this strategy to
stabilize the whole system [4]–[6].
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Fig. 1: A Networked Control System (NCS)

On the other hand, if subsystem’s coupling is not weak,
then we must use a distributed feedback control approach. In
distributed networked control system, each given subsystem
uses its state and the state of its neighbors that affects it.
As this method uses feedback from affecting neighbor sub-
systems, distributed control can assure asymptotic stability
with stronger subsystem coupling than decentralized control
strategy [7] [8].

For both decentralized and distributed approaches, two
tractable methods are provided in the literature: (i) using
a condition, called “quadratic invariance”, under which the
above problem may be recast as a convex optimization
problem [9] [10] and (ii) using the Lyapunov direct method
[8] [11].

The question is, given a particular dynamics network,
how can we stabilize it with minimum number of links in
the communications network? In other words, how can we
find a minimal communications network that guarantees the
stability of the NCS? This problem is the focus of this paper.

We consider the problem of multiple coupled linear time-
invariant (LTI) subsystems, each with its own controller.
The controllers may communicate with each other through
the communications network to exchange subsystem’s state
information. We find general stability condition by using the
Lyapunov direct method that guarantees asymptotic stability
of all coupled subsystems and extend the approach taken
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in [7] to include non-symmetric networked systems. We
assume that the communication cost of the links are identical.
Consequently, our problem reduces to minimize the number
of links. Then, to design a communications network that
has minimum number of links, we propose an algorithm
that minimizes the number of links in the communications
network while guaranteeing system stability.

The remainder of this paper is organized as follows.
Section II describes the distributed networked control system
under consideration. Section III derives a general stability
condition that guarantees asymptotic stability of all coupled
subsystems. In Section IV we propose an algorithm for
designing necessary communication links that satisfy the
general stability condition. In Section V we apply the results
to a numerical example. Concluding remarks are given in
Section VI.

II. NOTATION AND SYSTEM DESCRIPTION

1) Notation: Matrices and vectors are denoted by capital
and lower-case bold letters, respectively. The usual Euclidean
(l2) vector norm is represented by ‖ · ‖. When applied to a
matrix ‖ · ‖ denotes the l2 induced matrix norm, ‖ A ‖2=
λmax(AT A). By λmin(A) and λmax(A) we denote the
minimum and maximum eigenvalues of A, respectively. We
denote matrix P ∈ Rm×m being positive definite (p.d.) by
P > 0. We letN denote the set {1, 2, ..., N}. The cardinality
of a set is denoted by | · |.

2) System Description: The system under study is a
collection of N coupled linear time-invariant subsystems.
The local state of the ith plant that may be affected by all
other subsystems is a function xi(t) : R→ Rni where ni is
the local state space dimension and i ∈ N as follows

ẋi(t) = Aixi(t) + Biui(t) +
∑

j∈N−{i}

Hijxj(t) (1)

xi(0) = xi0

where xi0 ∈ Rni is the initial state.
The signal ui(t) : R → Rmi is the local control signal

generated by the ith controller where mi is the dimension
of the control set. Ai ∈ Rni×ni , Bi ∈ Rni×mi and Hij ∈
Rni×nj are matrices with appropriate dimensions. Assume
that for each i ∈ N the pair (Ai,Bi) are fully controllable,
which means that there exists Ki ∈ Rmi×ni for which the
decoupled subsystem

ẋi(t) = Aixi(t) + Biui(t) (2)

with state feedback law ui(t) = Kixi(t) is asymptotically
stable. In other words, there exists a control Lyapunov func-
tion Vi(xi) = xT

i Pixi for system (2) where Pi ∈ Rni×ni is
unique, symmetric and p.d. solution of Lyapunov equation

(Ai + BiKi)T Pi + Pi(Ai + BiKi) = −Qi (3)

for any symmetric, p.d. Qi ∈ Rni×ni .
We are looking for distributed control laws which means

having feedback from (potentially) all other subsystems.

Therefore, the modified state feedback law is

ui(t) = Kixi(t) +
∑

j∈N−{i}

Lijxj(t) (4)

where Ki is the state feedback gain satisfying Lyapunov
equation (3), Lij ∈ Rmi×nj is a set of gains and xj(t)
is the state of subsystem j at time t. To design a minimal
communications network, we seek a set of Lij that guarantee
stability, with minimum number of non-zero Lij’s.

III. GENERAL STABILITY CONDITION

In this section we derive a condition that assures the entire
connected subsystems is asymptotically stable. To do this, we
will employ a methodology similar to that of [7]. Consider
the Lyapunov function for each subsystem i as

Vi(xi) = xT
i Pixi (5)

where Pi satisfies the Lyapunov equation (3). Then, a good
candidate Lyapunov function for the entire system, V :
R

∑
i ni → R, is

V (x1,x2, ...,xN ) =
∑
i∈N

Vi(xi) =
∑
i∈N

xT
i Pixi (6)

We use this Lyapunov function in Theorem 1 to establish a
general stability condition.

Theorem 1: Consider the system in (1) where
1) the control input ui is the distributed control in (4)
2) Pi,Ki and Qi satisfy the Lyapunov equation (3)
Then, the networked system (1) is asymptotically stable,

if there exists positive real constants δji such that∑
j∈N−{i}

‖ Pj(BjLji + Hji) ‖2

δji
+

∑
j∈N−{i}

δij < λmin(Qi)

(7)

for all i ∈ N .
Proof : Substituting control input from (4) into (1), the

closed loop system is

ẋi(t) = (Ai + BiKi)xi(t) +
∑

j∈N−{i}

(BiLij + Hij)xj(t)

(8)

taking derivative of the Lyapunov function (5) along the
trajectories of system (8) and defining AKi

, Ai + BiKi,
we have

V̇i(xi) =
∂Vi

∂xi
ẋi = ẋT

i Pixi + xT
i Piẋi

= xT
i (AT

Ki
Pi + PiAKi

)︸ ︷︷ ︸
−Qi

xi

+ 2
∑

j∈N−{i}

xT
i Pi(BiLij + Hij)xj (9)

using the following inequality [7]

‖ δz−Ry ‖2≥ 0⇒ 2zT Ry ≤ δ ‖ z ‖2 +
‖ Ry ‖2

δ
(10)
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where z ∈ Rn, y ∈ Rm, R ∈ Rn×m and δ is any positive
real constant, then (9) can be upper-bounded as

V̇i(xi) ≤ −xT
i Qixi

+
∑

j∈N−{i}

[
δij ‖ xi ‖2 +

‖ Pi(BiLij + Hij)xj ‖2

δij

]

≤ −

λmin(Qi)−
∑

j∈N−{i}

δij

 ‖ xi ‖2

+
∑

j∈N−{i}

‖ Pi(BiLij + Hij) ‖2‖ xj ‖2

δij
(11)

and for the entire system we have

V̇ (x1,x2, ...,xN ) =
∑
i∈N

V̇i(xi) ≤

−
∑
i∈N

λmin(Qi)−
∑

j∈N−{i}

δij

 ‖ xi ‖2

+
∑
i∈N

∑
j∈N−{i}

‖ Pi(BiLij + Hij) ‖2‖ xj ‖2

δij
(12)

using the following reorganization of the terms∑
i∈N

∑
j∈N−{i}

‖ Pi(BiLij + Hij) ‖2‖ xj ‖2

δij
=

∑
i∈N

∑
j∈N−{i}

‖ Pj(BjLji + Hji) ‖2‖ xi ‖2

δji
(13)

(12) can be written as

V̇ (x1,x2, ...,xN ) ≤
∑
i∈N
‖ xi ‖2 ×λmin(Qi)−

∑
j∈N−{i}

δij −
∑

j∈N−{i}

‖ Pj(BjLji + Hji) ‖2

δji


(14)

and V̇ < 0 will be forced, if we have∑
j∈N−{i}

‖ Pj(BjLji + Hji) ‖2

δji
+

∑
j∈N−{i}

δij < λmin(Qi)

(15)

for all i ∈ N . This is a sufficient condition that guarantees
asymptotic stability of equilibrium point of (1). �

Remark 1: To satisfy (15), we should try to minimize
Euclidian norm on the left side of this equation, by designing
Lji. This suggests that our aim is to decouple each link Hji

using the link Lji, as much as possible (in Euclidian norm
sense). Note that if the matching condition BjLji +Hji = 0
can be satisfied, the link is completely decoupled.

Remark 2: One trivial case is when Hji = 0. In this
case by choosing Lji = 0 the matching condition will be
satisfied. Note that Hji = 0 means that there is no coupling
dynamics link. Thus, we do not need the corresponding
communication link. This means that the communications
network will always be a subset of the dynamics network.

By defining Ni ⊂ N −{i} as the set of neighbors that affect
subsystem i (Hij 6= 0, j ∈ Ni) and N ′i ⊂ N − {i} as the
set of neighbors that are affected by subsystem i (Hji 6= 0,
j ∈ N ′i ), we can reformulate the general stability condition
(15) as∑

j∈N ′
i

‖ Pj(BjLji + Hji) ‖2

δji
+
∑
j∈Ni

δij < λmin(Qi) (16)

Note that in general, Ni 6= N ′i , which means that neighbor-
hoods is not necessarily a symmetric relation.

Remark 3: If it is possible to choose the decoupling gains
Lji to satisfy the matching condition BjLji = −Hji for all
links, our general stability condition (16) reduces to∑

j∈Ni

δij < λmin(Qi) (17)

Subsequently, we can choose all δij equal to δi and find the
δi for each subsystem as

δi <
λmin(Qi)
| Ni |

(18)

which means that a communications network identical to the
dynamics network will stabilize the system, though it may
not be minimal.

IV. MINIMAL COMMUNICATIONS NETWORK DESIGN

In this section we design a communications network with
minimum number of necessary links that satisfies general
stability condition (16). Assuming that the communication
cost for each link is the same, the problem reduces to one
of minimizing the number of links.

One way to interpret (16) is choosing control gains Ki

such that the decoupled subsystem (2) has desired closed
loop eigenvalues or use linear optimal control (LQR) with
specific cost function then, solve Lyapunov equation (3) with
Qi = I (λmin(Qi) = 1) where I ∈ Rni×ni is the identity
matrix. This gives the largest convergence rate estimate for
each subsystem i (Ch. 3 in [12]). By defining coupling
coefficients as

cji ,‖ Pj(BjLji + Hji) ‖2 (19)

general stability condition (16) reduces to∑
j∈N ′

i

cji

δji
+
∑
j∈Ni

δij < 1 (20)

note that the coupling coefficients cji are functions of
decoupled gains Lji. Then, if we set δji = √cji, (20) is
reduced to ∑

j∈N ′
i

√
cji +

∑
j∈Ni

√
cij < 1 (21)

Define

coji ,‖ PjHji ‖2 (22)

and

ccji , min
Lji

cji =‖ Pj(BjLji + Hji) ‖2 (23)
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Coupling coefficient with superscript “o” represents the case
where we do not use a communication link from subsystem
j to i and coupling coefficient with superscript “c” represents
the case where we do use a communication link from subsys-
tem j to subsystem i, that minimizes cji. The minimization
problem (23) is a matrix spectral norm (maximum singular
value) minimization problem. To solve it, let us define matrix
M(lmn,ji) , Pj(BjLji + Hji) where M(·) ∈ Rnj×ni and
lmn,ji are elements of matrix Lji. Let us write matrix Bj as
its column,

Bnj×mj

j =
[

bnj×1
1,j bnj×1

2,j · · · bnj×1
mj ,j

]
(24)

and the matrix Lji as its elements, lmn,ji,

Lmj×ni

ji =


l11,ji · · · l1ni,ji

...
. . .

...
lmj1,ji · · · lmjni,ji

 (25)

then, we can write M(lmn,ji) as

M(lmn,ji) = M0,ji +
mj∑

m=1

nj∑
n=1

lmn,jiMmn,ji (26)

where

Mnj×ni

0,ji = Pnj×nj

j Hnj×ni

ji

Mnj×ni

11,ji = Pnj×nj

j

[
bnj×1

1,j 0nj×1 · · · 0nj×1
]nj×ni

Mnj×ni

12,ji = Pnj×nj

j

[
0nj×1 bnj×1

1,j · · · 0nj×1
]nj×ni

...

Mnj×ni

1ni,ji = Pnj×nj

j

[
0nj×1 0nj×1 · · · bnj×1

1,j

]nj×ni

...

Mnj×ni

mjni,ji = Pnj×nj

j

[
0nj×1 0nj×1 · · · bnj×1

mj ,j

]nj×ni

(27)

since ‖ M(lmn,ji) ‖ is an affine function of lmn,ji (26),
this is a convex optimization problem. Using the fact that
‖M(·) ‖< s if and only if M(·)T M(·) < s2I (and s ≥ 0),
we can express the problem in the form

min s

subject to MT (lmn,ji)M(lmn,ji) ≤ s2I (28)

with variables lmn,ji and s.
We can also formulate the problem using a single linear

matrix inequality of size (nj +ni)× (nj +ni) using the fact
that

MT M ≤ t2I (and t ≥ 0)⇔

[
tI M

MT tI

]
≥ 0 (29)

this results in the semi-definite program (SDP)

min t

subject to

[
tI M(lmn,ji)

MT (lmn,ji) tI

]
≥ 0 (30)

with variables lmn,ji and t (see Ch. 4 in [13]).
By rearranging the constraint in (30) as

F(lmn,ji, t) ,

[
tI M(lmn,ji)

MT (lmn,ji) tI

]

= tI +

[
0 M0,ji

MT
0,ji 0

]

+
mj∑

m=1

nj∑
n=1

lmn,ji

[
0 Mmn,ji

MT
mn,ji 0

]
(31)

we can transform (30) to the following eigenvalue problem
(EVP)

min t

subject to F(lmn,ji, t) ≥ 0 (32)

where F(·, ·) ∈ R(nj+ni)×(nj+ni) is affine. This is a standard
and tractable feasibility problem. One simple and efficient
approaches to solve (32) is the ellipsoid algorithm which
converges in polynomial-time (see Ch. 2 in [14]).

Now, given coji and ccji, we are looking to find the
minimum number of communication links such that general
stability condition (21) holds. In other words, to design a
communications network, we need to know which links are
necessary to satisfy equation (21). To find a solution for this
problem, first we define binary parameter αji ∈ {0, 1}. Then
(21) can be written as∑

j∈N ′
i

[αji

√
coji + (1− αji)

√
ccji]+∑

j∈Ni

[αij

√
coij + (1− αij)

√
ccij ] < 1 (33)

If αji = 1 we only have coupling coefficients with su-
perscript “o” in (33) which implies that we do not need a
communication link from subsystem j to i and if αji = 0
we have just coupling coefficients with superscript “c” in
(33) which suggests that we need a communication link
from subsystem j to subsystem i. By defining ∆cji ,√
coji −

√
ccji ≥ 0 we can rewrite general stability condition

(21) as∑
j∈N ′

i

∆cjiαji +
∑
j∈Ni

∆cijαij < 1−
∑

j∈N ′
i

√
ccji −

∑
j∈Ni

√
ccij

(34)

for all i ∈ N . Minimizing the number of communication
links is equivalent to maximizing the number of αji = 1, or
in other words, maximizing the summation of all αji. For
each i ∈ N the number of αji in each inequality (34) is∑

j∈N ′
i

αji +
∑
j∈Ni

αij (35)

and for all subsystems we have∑
i∈N

∑
j∈N ′

i

αji +
∑
i∈N

∑
j∈Ni

αij = 2
∑
i∈N

∑
j∈N ′

i

αji (36)

518



Finally, our problem reduces to the following binary program

max
∑
i∈N

∑
j∈N ′

i

αji

subject to
∑

j∈N ′
i

∆cjiαji +
∑
j∈Ni

∆cijαij <

1−
∑

j∈N ′
i

√
ccji −

∑
j∈Ni

√
ccij (37)

To solve problem (37), we use the branch and bound tech-
nique which is based on dividing the problem into a number
of smaller problems. In the worst case, we have a complete
binary tree to depth n where n is the number of binary
parameter αji, which requires 2n iterations. When the tree
is large, one can also use sub-optimal methods (see Ch. 12
in [15]).

V. NUMERICAL RESULTS

This section presents numerical results demonstrating dis-
tributed networked control systems under minimum com-
munication link. The system under study is a collection of
three subsystems that are coupled together with the following
interpretation

A1 = A3 =

[
0 1
15
4 0

]

A2 =

[
0 1
10
4 0

]

B1 = B2 = B3 =

[
0
1
4

]
(38)

Hij , are given by

H12 = H21 =

[
0 1

6
5
6 0

]

H23 = H32 =

[
0 1

3
5
3 0

]
H13 = H31 = 0 (39)

The control gains Ki are chosen to obtain the decoupled
subsystems’ poles at −1 and −2. This results in

K1 = K3 =
[
−23 −12

]
K2 =

[
−18 −12

]
(40)

Now we solve the Lyapunov equation (3): Setting Qi = I
where I is 2× 2 identity matrix, for all i we get

Pi =
1
4

[
5 1
1 1

]
(41)

The matching condition cannot be satisfied since there is
no

Lji =
[
l1 l2

]
(42)

such that BjLji +Hji = 0. Based on the coupling structure,
this is a symmetric network with

N1 = N ′1 = {2}
N2 = N ′2 = {1, 3}
N3 = N ′3 = {2} (43)

The coupling coefficients without communication links are

co12 = co21 = 0.12207
co23 = co32 = 0.48827 (44)

To find the coupling coefficients with communication links,
we should solve matrix Euclidian norm minimization (23) to
find Lji. Since in this example Pj(BjLji + Hji) is 2 × 2
matrix, we can find the solution for this matrix Euclidian
norm minimization analytically, by taking partial derivative
of

λmax[(BjLji + Hji)T P2
j (BjLji + Hji)] (45)

respect to l1 and l2, and setting them equal to zero, which
yields

L12 = L21 =
[
−10
3 −2

]
L23 = L32 =

[
−20
3 −4

]
(46)

and

cc12 = cc21 =
1
72

cc23 = cc32 =
1
18

(47)

To find the minimum necessary links, we solve the following
binary program

max α12 + α21 + α23 + α32

subject to α12 + α21 < 3.3011
α12 + α21 + 2α23 + 2α32 < 1.2650
α23 + α32 < 1.1415 (48)

The solution to above binary program is either α23 = α32 =
α12 = 0 and α21 = 1 or α23 = α32 = α21 = 0 and α12 = 1.
This means that we need three links: L23, L32 and one of
L12 or L21, with values given in (46).

VI. CONCLUSION

We have presented a general stability condition of dis-
tributed networked control systems including multiple cou-
pled LTI subsystems under minimum number of necessary
communication links from immediate neighbors. First using
the Lyapunov direct method we have found a general stability
condition that guarantees the asymptotic stability of the entire
networked control system. We showed that in the case where
matching condition cannot be satisfied, designing commu-
nications network is challenging as there is no analytical
solution for matrix spectral norm minimization. We thus
formulate it as a convex optimization problem into standard
LMI format, which reduces to a standard SDP, and use
numerical algorithm to minimize the coupling coefficients

519



that is the key step of designing communications network.
Finally, we formulate the communications network design
problem with minimum number of communication links as
a binary program.
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