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Abstract— The idea of a learning strategy extension for
nonlinear system identification with local polynomial model
networks is presented in this paper. Usually the polynomial
model tree (POLYMOT) algorithm utilizes a one-step-ahead
optimal learning strategy. A demonstration example shows that
this greedy behavior is not the best choice to reach a satisfying
global model. Thus this strategy should be enlarged to a multi-
step-ahead optimal learning. Therefore, it is possible to find the
optimal global model in a special case.

I. INTRODUCTION

The output ŷ of a local model network, also known as local

neuro-fuzzy network, with p inputs u = [u1 u2 · · · up]
T can

be calculated as the interpolation of M local model outputs

ŷi, i = 1, . . . ,M

ŷ =

M∑

i=1

ŷi(u)Φi(u), (1)

where the Φi(·) are called interpolation or validity or

weighting functions [4]. These validity functions describe

the regions where the local models are valid; they describe

the contribution of each local model to the output. Because

a smooth transition (no switching) between the local models

is desired here, the validity functions are smooth functions

between 0 and 1. For a reasonable interpretation of local

model networks it is furthermore necessary that the validity

functions form a partition of unity:

M∑

i=1

Φi(u) = 1 . (2)

Thus, everywhere in the input space the contributions of

all local models sum up to 100%.

In principle, the local models can be chosen of arbitrary

type. If their parameters are to be estimated from data,

however, it is extremely beneficial to choose a linearly

parameterized model class. The most common choice are

polynomials. Polynomials of degree 0 (constants) yield a

neuro-fuzzy system with singletons or a normalized radial

basis function (NRBF) network. Polynomials of degree 1

(linear) generate local linear model structures, which is by

far the most popular choice. As the degree of the polynomials

increases, the number of local models required for a certain

accuracy decreases. Thus, by increasing the local models’

complexity, at some point a polynomial of high degree with
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just one local model (M = 1) is obtained, which is in fact

equivalent with a global polynomial model (Φ1(·) = 1):

ŷi(u) =wi,0 + wi,1u1 + wi,2u
2

1 + wi,3u2 + . . .

wi,4u1u2 + wi,5u
2

2
+ . . .+ wi,nxu

l
p.

(3)

The number of parameters/inputs of the consequents nx

of this local model is

nx =
(p+ l)!

p!l!
, (4)

where p is the number of inputs and l is the polynomial

degree.

For many applications the complexity steps to local models

with higher degree polynomials [2], [5] do pay off. The

higher degree dependency of the number of local polynomial

parameters on input space dimensionality p is compensated

by the smaller number of required neurons.

This article is organized as follows. Section II gives an

overview on the basics of the POLYMOT algorithm. The

disadvantage of a one-step-ahead optimal learning strategy

is demonstrated with an example in Sect. III. The idea and

the motivation for a multi-step-ahead optimal strategy for

learning local model networks are proposed in Sect. IV. This

paper ends by summarizing the important conclusion.

II. POLYNOMIAL MODEL TREE ALGORITHM

The partitioning strategy of the polynomial model tree

(POLYMOT) algorithm [1] is strongly motivated by the local

linear model tree (LOLIMOT) algorithm and depends on

an incremental tree-construction that divides the input space

by orthogonal splits. In each iteration a new local model

is added or the number of parameters of the local worst

one is increased. Thus, POLYMOT belongs to the class of

incremental or growing algorithms and can be seen as a

one-step-ahead optimal strategy, i.e., only the improvement

from one iteration to the next iteration is considered. In

each iteration of the algorithm the validity functions which

correspond to the actual partitioning of the input space

are computed and the corresponding rule consequents are

optimized by a local weighted subset selection technique.

III. DEMONSTRATION EXAMPLE

The disadvantage of an one-step-ahead optimal learning

strategy for the POLYMOT algorithm becomes apparent

with a polynomial approximation problem. Therefore, in the

following the below function is modeled with a local model
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Fig. 1. Approximation with a local model network and a penalty factor
C = 0.85. Figure a) shows the function to be approximated (light) and
their approximation (solid). In Fig. b) the absolute model error e = y − ŷ
is illustrated. Figure c) shows the validity functions which demonstrate
the partitioning. In Fig. d) the partitioning in 8 local models is presented.
This figure demonstrates also the sequence of generating new local models
beginning with local model number 1 up to local model number 8.

network, see Fig. 1:

y = 1− (u1 − 0.5)2 − (u2 − 0.5)2. (5)

For the approximation 900 equally distributed, noise-free

data samples are generated. This function shall be approxi-

mated with a normalized root mean squared error (NRMSE)

of less than 10%. The algorithm can generate local models

at most of 3rd polynomial degree. In each iteration 2 new

nominal parameters nnom (1 for every input dimension) were

added for the stepwise regression. The parameter for the

local model offset is always estimated. The setting of the

POLYMOT algorithm and the results for this approximation

problem are summarized in table I and Fig. 2.

TABLE I

RESULTS OF THE DEMONSTRATION EXAMPLE USING DIFFERENT

PENALTY FACTORS

Penalty Local models Parameters NRMSE
factor overall

0.85 8 35 0.084
0.90 1 7 0.000

IV. MULTI-STEP-AHEAD OPTIMAL LEARNING

STRATEGY

The polynomial model tree algorithm utilizes a one-

step-ahead optimal learning strategy. This means that the

algorithm decides between splitting or using a higher degree

polynomial which tends in each iteration to the lowest global

model error. Hence, the POLYMOT algorithm belongs also

to the class of greedy algorithms. Genetic programming

offers an alternative since it performs a global search for

the optimal partition tree and is therefore able to backtrack
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Fig. 2. Convergence behavior (global model error) for a 2-dimensional
approximation problem with penalty factor C = 0.85 (8 local models) and
penalty factor C = 0.90 (1 global model).

in case of sub-optimal intermediate split decisions [3]. The

demonstration example shows that a splitting is not a good

choice to model a polynomial function. After the first split

one half of the input space is modeled perfectly with only one

local model (number 2), see Fig. 1. Since the other half of the

input space is splitted perpetually, the combination of many

local models reduces the global model error only slowly and

a lot of local model parameters are necessary. At this time

the only way to achieve different model architectures is a

modification of the penalty factor, but the algorithm is still a

greedy algorithm. On that account the POLYMOT algorithm

should be enlarged which a multi-step-ahead optimal learn-

ing strategy. This means that the algorithm does not only

check all possible splits and higher degree polynomials for

one-step (k = 1), but also for k-steps.

V. CONCLUSION

The idea and the motivation of an extension from an one-

step-ahead to a multi-step-ahead optimal learning strategy for

the POLYMOT algorithm has been presented. The computa-

tional demand will grow approximately exponentially (curse

of dimensionality), because the global model error of all

combinations of splits and higher degree polynomials for k-

steps must be calculated. Since the training of medium sized

problems with an one-step-ahead strategy on modern com-

puters still is a matter of seconds or a couple of minutes, the

multi-step-ahead strategy for POLYMOT will be a feasible

solution to reduce the global model error. Furthermore it will

be possible to find the optimal global model, if the number

of steps of the multi-step-ahead optimal strategy is equal to

the number of iterations during the learning phase.
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