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Abstract— Aeroelastic wing micro aerial vehicle (MAV) con-
cepts are being explored for military and civilian applications.
However, on the whole, the issues of control of MAVs are largely
unexplored. The authors seek to employ distributed parameter
modeling and control theory in an effort to achieve agile flight
potential of flexible, morphable wing MAV airframes. In this
work, two Euler-Bernoulli beams connected to a rigid mass
are used to model the heave dynamics of an aeroelastic wing
MAV. A nonlinear aerodynamic lift force acts upon this multiple
component structure. The focus of this paper is an effort to
employ tools from linear distributed parameter control theory
to gain insight into feasibly obtained wing shape, as a bridge
to examining optimal wing morphing trajectories for achieving
agile flight.

I. INTRODUCTION

Considerable work is currently underway to investigate

the aerodynamics, structural dynamics, flight mechanics, and

control associated with bio-inspired flight (see, for example,

[1], [2], [3], [4], [5]). Consequently, aeroelastic wing micro

aerial vehicle (MAV) concepts are being explored for military

and civilian applications. It is a conjecture of the United

States Air Force that the flexibility of aeroelastic wings can

be exploited to achieve greater advances in autonomous MAV

flight. As such, efforts are underway (see, for example, [6],

[7], [8], [9]) to lay the foundation required to eventually

construct high fidelity dynamics models of MAVs, which do

not currently exist, though key features of such models are

emerging. However, on the whole, the issues of control of

agile aeroelastic wing MAVs are largely unexplored. It is our

goal to use distributed parameter modeling in the context of

control design, with a specific focus on the ability of the

wings to morph into some desired state.

In this paper, the authors use two Euler-Bernoulli beams

connected to a rigid mass in an effort to model heave

dynamics of an aeroelastic wing MAV. Each beam represents
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a flexible wing, while the rigid mass represents the fuselage.

This “beam-mass-beam” model will be referred to as the

BMB model system in this paper. The authors employ Linear

Quadratic Regulator (LQR) state tracking to drive wing

shape to a specified morphed shape. For low angles of

attack, the BMB model is nearly linear, so it is reasonable

to explore the potential use of linear control strategies.

Subsequently, the authors make a more realistic assumption

that all states are not known for feedback and design an

H2 extended Kalman filter, specifically, the special case

of the Linear Quadratic Gaussian (LQG), observer-based

tracking controller to achieve a certain morphed wing shape.

A comparison of results is made for the two strategies.

The outline of the paper is as follows. Section II briefly

describes some well-known distributed parameter control

strategies utilized in the present work. Section III provides

a description of the equations governing the partial differ-

ential equation (PDE) aircraft model. The variational form

and discretization of the PDE equations are provided in

Section IV. Numerical results are presented in Section V,

while conclusions and directions for future work are given

in Section VI.

II. DISTRIBUTED PARAMETER SYSTEM (DPS)

CONTROL STRATEGIES

For low angles of attack the aerodynamic lift force in-

cluded in the BMB system is nearly linear, thereby making

the BMB system nearly linear. Therefore, it is reasonable

to consider the extent to which linear control strategies can

be effectively applied to this model. This section assumes

the existence of a DPS arising from a PDE, and control

approaches are described in the infinite dimensional setting;

theory is in place for methods considered here to guarantee

convergence of finite dimensional approximations to the PDE

controller under usual assumptions (see, for example, [10],

[11]).

The control objectives of interest in this paper include

output tracking, specifically for the purpose of morphing

each beam from equilibrium to a desired, known state. This

is done as an initial step to 1) ascertain the feasibility of

requiring wings of a distributed parameter MAV model of

realistic material specifications to transform to a specific

shape and 2) gain insight into optimal wing morphing

trajectories for achieving agile flight.

The first control implementation involves a Linear

Quadratic Regulator (LQR) state tracking design, where the

tracking problem reduces to a disturbance-rejection problem
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of the form

ẋ(t) =Ax(t)+Bu(t)+w(t), x(0) = x0, (1)

where x(t) = x(t, ·) = ξ (t, ·)− ξ̃ (t, ·) ∈ X , a Hilbert space,

w(t) is represented by

w(t) =Aξ̃ − ˙̃ξ 6= 0, (2)

ξ is the state of some original dynamical linear system of

interest,

ξ̇ (t) =A0ξ (t)+B0u(t)+ z, ξ (0) = ξ0, (3)

ξ̃ is the known desired state target of (3), and z is zero-

mean, Gaussian, white noise. Here, A is the linearized system

operator defined on D(A)⊆X that, by assumption, generates

an exponentially stable C0−semigroup, B is the control

operator, and u(t) is the control input, defined on a Hilbert

space U , which is taken to be IRm in this work.

The solution to the steady state tracking problem involves

solving the standard control Riccati equation

A∗Π+ΠA−ΠBR−1B∗Π+Q = 0 (4)

for Π, where Q : X → X is a state weighting operator, taken

to be C∗C in this work (see (9)) and R : U →U is a control

weighting operator taken to be of the form R = cI, with

c a scalar and I the identity operator, with both operators

corresponding to the standard LQR cost function. Then the

feedback control gain is defined as

K= R−1B∗Π. (5)

The feed forward signal u f w is

u f w = R−1B∗q, (6)

where an approximation of q can be calculated by integrating

backwards in time to obtain the steady state solution of

q̇(t) =−[A−BR−1B∗Π]q(t), (7)

with q(∞) = 0, as stated in [12]. Then the control law for

the LQR state tracking is

u(t) =−Kx(t)−u f w, (8)

which is implemented in (1).

In the second control implementation involving an H2,

specifically a Linear Quadratic Gaussian (LQG), state track-

ing design, it is assumed that an estimate of the state from

(1) exists, based on a measurement

y = Cx(t)+ v, (9)

where measurement y(t) : X → Y , with Y a Hilbert space,

is taken to be IRp in this work, v is zero-mean, Gaussian,

white noise, uncorrelated with z in (3), and the estimate,

xc(t) = xc(t, ·) ∈ X , is used in the control law (8). Again, the

state from (1) is ξ − ξ̃ . It is assumed that the desired target

of the state estimate is also ξ̃ . To provide this estimate, a

compensator is used that has the form

ẋc(t) =Acxc(t)+Fcy(t), xc(0) = xc0
(10)

and the feedback control law is written

u(t) =−Kxc(t)−u f w, (11)

where K and u f w are determined from the LQR tracking

solution. From standard theory, it is well-known that by

solving an additional filter Riccati equation

AP+PA∗−PC∗CP+BB∗ = 0, (12)

one can obtain the operators Fc, and Ac via

Fc = PC∗,
Ac = A−BK−FcC.

(13)

Under standard assumptions of stabilizability of (A,B) and

detectability of (A,C), there are guaranteed unique solutions

Π and P to (4) and (12), respectively, such that the linear

closed loop system given by

d

dt

[

x(t)
xc(t)

]

=

[

A −BK

FcC Ac

]

[

x(t)
xc(t)

]

+

[

z−u f w

Fcv

]

(14)

is stable.

The operators K, Fc, Ac as determined above for the

linearized system, are substituted into the corresponding

nonlinear system

ẋnℓ(t) =Anℓxnℓ(t)+Bunℓ(t)+Fnℓ(xnℓ(t))+G+w(t), (15)

thus producing the nonlinear observer

ẋc(t) =Acxc(t)+Fcy(t)+Fnℓ(xc(t)), (16)

with an appropriate initial condition. Then the nonlinear

closed loop system takes on the form

d

dt

[

xnℓ(t)
xc(t)

]

=

[

Anℓ −BK

FcC Ac

]

[

xnℓ(t)
xc(t)

]

+

[

z−u f w +Fnℓ(xnℓ(t))+G

Fcv+Fnℓ(xc(t))+G

]

.

(17)

III. A FLEXIBLE WING AIRCRAFT MODEL

An aeroelastic wing MAV is modeled using two Euler-

Bernoulli beams connected at a rigid mass, as shown in

Figure 1. The BMB model system was originally presented in

[13] with a point mass and has been modified and elaborated

upon in this paper. The BMB system primarily represents the

heave dynamics of a MAV, which is initially assumed to be

flying with wings straight and level and in equilibrium with

the lift balancing the weight. Now, if there is any perturbation

in the wings’ shape (caused by a sudden gust, for example),

then this perturbed wing shape causes a change in the local

angle of attack distribution over each wing and this in turn

leads to a perturbation in the lift distribution.

Each beam is modeled with both viscous and Kelvin-Voigt

damping, and it is assumed that the material and inertial

properties of both beams are homogeneous, uniform, and

composed of latex and carbon-graphite fiber with epoxy.

Denoting the displacement (which is a combination of both
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rigid body and flexible motions) of the left beam from its

initial equilibrium position at time t and position sL by

wL(t,sL) and the corresponding displacement of the right

beam at time t and position sR by wR(t,sR), the model is

described as follows:

ρAẅL(t,sL)+ γ1ẇL(t,sL)

+γ2Iẇ′′′′
L (t,sL)+EIw′′′′

L (t,sL)

= bL(sL)uL(t)+
mbg

ℓ1
−

0.5ρav2c

ℓ1
Cℓ,

(18)

for 0 ≤ sL ≤ ℓ1, t > 0, and

ρAẅR(t,sR)+ γ1ẇR(t,sR)

+γ2Iẇ′′′′
R (t,sR)+EIw′′′′

R (t,sR)

= bR(sR)uR(t)+
mbg

ℓ2
−

0.5ρav2c

ℓ2
Cℓ,

(19)

for ℓ1 + ℓM ≤ sR ≤ ℓ1 + ℓM + ℓ2, t > 0, and where ẇi(t,s) =
∂

∂ t
wi(t,s) and w′

i(t,s) =
∂

∂ s
wi(t,s) with i = L,R for the left

or right beam, respectively, ρ is the density of the beam

material, A is the cross-sectional area of the beam, E is

Young’s modulus, I is the area moment of inertia of the

beam, γ1 is the coefficient of viscous damping, γ2 is the

coefficient of Kelvin-Voigt damping, g is gravity, mb is the

mass of each beam, bL(s) is the control input function for

the left beam, bR(s) is the control input function for the right

beam, uL(t) is the controller for the left beam, uR(t) is the

controller for the right beam, ρa is the density of air, v is the

forward vehicle velocity, c is the chord length of each wing

(beam width), and Cℓ is the aerodynamic lift coefficient.

The aerodynamic lift coefficient employed in this model

is the same one derived in [14] for a fruit fly model. While

it was derived for a flapping flight insect, it should be

noted that its relevance also holds in this framework due

to the dimensionless property of the lift coefficient and

the flexibility of the wings of the fruit fly. Also, the lift

coefficient model can be scaled to the the size of the MAV

under consideration here by the parameters of the dynamic

pressure. It should be further noted that the model is based

upon data for angles of attack between -9 and 90 degrees,

which is appropriate for biologically inspired MAVs since

it is desired that they possess agility for performing highly

complex maneuvers. For the purposes of this paper, the BMB

model is not actually performing flapping motion and can

be viewed as an MAV in a gliding phase of flight. The lift

coefficient is given by

Cℓ =

[

k1 + k2 sin

(

k3 arctan

(

ẇ(t,s)+ k5

u

)

+ k4

)]

, (20)

where k1,k2,k3,k4 are the best fit parameters determined from

the analysis in [14]. In order to obtain real solutions and to

accommodate atmospheric conditions, it has been assumed

that k4=0, and a new parameter, k5, has been included in the

model to reflect the vertical wind velocity, thereby modeling

angle of attack with the arctangent term.

The elastic equations are subject to the following boundary

conditions:

EIw′′
L(t,0)+ γ2Iẇ′′

L(t,0) = 0,

EIw′′′
L (t,0)+ γ2Iẇ′′′

L (t,0) = 0,

EIw′′
R(t, ℓ1 + ℓM + ℓ2)+ γ2Iẇ′′

R(t, ℓ1 + ℓM + ℓ2) = 0,

EIw′′′
R (t, ℓ1 + ℓM + ℓ2)+ γ2Iẇ′′′

R (t, ℓ1 + ℓM + ℓ2) = 0,

wL(t, ℓ1)−wR(t, ℓ1 + ℓM) = 0,

w′
L(t, ℓ1)−w′

R(t, ℓ1 + ℓM) = 0,

−EIw′′
L(t, ℓ1)− γ2Iẇ′′

L(t, ℓ1)+EIw′′
R(t, ℓ1 + ℓM)

+γ2Iẇ′′
R(t, ℓ1 + ℓM) = Izẅ

′
L(t, ℓ1),

EIw′′′
L (t, ℓ1)+ γ2Iẇ′′′

L (t, ℓ1)−EIw′′′
R (t, ℓ1 + ℓM)

−γ2Iẇ′′′
R (t, ℓ1 + ℓM) = mẅL(t, ℓ1),

(21)

where m is the mass of the rigid connection between the

beams and Iz is the mass moment of inertia of the rigid

mass. A graphical representation of the BMB model system

can be seen in Figure 1. Since one goal of this project is to

Fig. 1. MAV model system.

gain insight into optimal morphing trajectory, it is assumed

that the controllers act over the entire beam structure with

constant control input functions of the form

bL(sL) = bR(sR) = 30, (22)

for 0 ≤ sL ≤ ℓ1 and ℓ1 + ℓM ≤ sR ≤ ℓ1 + ℓM + ℓ2, and

observations of the form

y(t) = 15w(t,s), (23)

for 0 ≤ sL ≤ ℓ1 and ℓ1 + ℓM ≤ sR ≤ ℓ1 + ℓM + ℓ2.

IV. VARIATIONAL FORM AND DISCRETIZATION

OF THE BMB SYSTEM

A. Variational Form

Now consider the variational form of the BMB system

in order to develop a Galerkin finite element approximation

of the problem. Multiplying (18) and (19) by test functions

φL(sL) and φR(sR), respectively, yields
∫ ℓ1

0

[

ρAẅL(t,sL)+ γ1ẇL(t,sL)+ γ2Iẇ′′′′
L (t,sL)

+EIw′′′′
L (t,sL)

]

φL(sL) dsL =
∫ ℓ1

0
[bL(sL)uL(t)

+
mbg

ℓ1
−

0.5ρav2c

ℓ1
Cℓ

]

φL(sL) dsL,

(24)
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and

∫ ℓ1+ℓM+ℓ2

ℓ1+ℓM

[

ρAẅR(t,sR)+ γ1ẇR(t,sR)+ γ2Iẇ′′′′
R (t,sR)

+EIw′′′′
R (t,sR)

]

φR(sR) dsR =
∫ ℓ1+ℓM+ℓ2

ℓ1+ℓM

[bR(sR)uR(t)

+
mbg

ℓ2
−

0.5ρav2c

ℓ2
Cℓ

]

φR(sR) dsR.

(25)

Next (24) and (25) are integrated by parts, resulting equa-

tions are summed, and prescribed boundary conditions

from (21) are applied. The result is a desired solution

[wL(t,sL), wR(t,sR)]
T ∈V ⊆ S = H2[0, ℓ1]×H2[ℓ1 +ℓM, ℓ1 +

ℓM + ℓ2] such that

∫ ℓ1

0
[ρAẅL(t,sL)φL(sL)+ γ1ẇL(t,sL)φL(sL)

+γ2Iẇ′′
L(t,sL)φ

′′
L (sL)+EIw′′

L(t,sL)φ
′′
L (sL)

]

dsL

+
∫ ℓ1+ℓM+ℓ2

ℓ1+ℓM

[ρAẅR(t,sR)φR(sR)+ γ1ẇR(t,sR)φR(sR)

+γ2Iẇ′′
R(t,sR)φ

′′
R(sR)+EIw′′

R(t,sR)φ
′′
R(sR)

]

dsR

+mẅL(t, ℓ1)φL(ℓ1)+ Izẅ
′(t, ℓ1)φ

′
L(ℓ1)

=
∫ ℓ1

0

[

bL(sL)uL(t)+
mbg

ℓ1
−

0.5ρav2c

ℓ1
Cℓ

]

φL(sL) dsL

+
∫ ℓ1+ℓM+ℓ2

ℓ1+ℓM

[

bR(sR)uR(t)+
mbg

ℓ2
−

0.5ρav2c

ℓ2
Cℓ

]

φR(sR) dsR

(26)

for all [φL(sL), φR(sR)]
T ∈V = {[φL(·), φR(·)]

T ∈ S : φL(ℓ1)=
φR(ℓ1 + ℓM),φ ′

L(ℓ1) = φ ′
R(ℓ1 + ℓM)}. Eqn (26) is then formu-

lated in the context presented in Section II; however, these

details are not included here due to space constraints.

B. Discretization

A basis {ei}
N
i is chosen for the approximating space

V N ⊆ V , where N corresponds to the number of basis

functions used in the finite element approximation. Cubic

Hermite interpolating polynomials are used to approximate

the displacements of the left and right beams. The basis

vectors take the form:

eN
i =

[

bN
L,i(sL)

bN
R,i(sR)

]

, for i = 1, . . . ,N. (27)

That is, the state will be approximated as

[

wL(t,sL)
wR(t,sR)

]

≈

[

wN
L (t,sL)

wN
R (t,sR)

]

=











N

∑
i=1

αN
i (t)bL,i(sL)

N

∑
i=1

β N
i (t)bR,i(sR)











.

(28)

Substituting the state approximation (28) into (26) yields the

matrix equation

MLα̈(t)+MRβ̈ (t)+DLα̇(t)+DRβ̇ (t)

+KLα(t)+KRβ (t) = BLuL(t)+BRuR(t)

+GL +GR +FL +FR,

(29)

where

[ML]i, j =
∫ ℓ1

0
ρAbL,i(sL)bL, j(sL) dsL

+mbL,i(ℓ1)bL, j(ℓ1)+ Izb
′
L,i(ℓ1)b

′
L, j(ℓ1)

[MR]i, j =
∫ ℓ1+ℓM+ℓ2

ℓ1+ℓM

ρAbR,i(sR)bR, j(sR) dsR

[DL]i, j =
∫ ℓ1

0
γ1bL,i(sL)bL, j(sL) dsL

+
∫ ℓ1

0
γ2Ib′′L,i(sL)b

′′
L, j(sL) dsL

[DR]i, j =
∫ ℓ1+ℓM+ℓ2

ℓ1+ℓM

γ1bR,i(sR)bR, j(sR) dsR

+
∫ ℓ1+ℓM+ℓ2

ℓ1+ℓM

γ2Ib′′R,i(sR)b
′′
R, j(sR) dsR

[KL]i, j =
∫ ℓ1

0
EIb′′L,i(sL)b

′′
L, j(sL) dsL

[KR]i, j =
∫ ℓ1+ℓM+ℓ2

ℓ1+ℓM

EIb′′R,i(sR)b
′′
R, j(sR) dsR

[BL] j =
∫ ℓ1

0
bL(sL)uL(t)bL, j(sL) dsL

[BR] j =
∫ ℓ1+ℓM+ℓ2

ℓ1+ℓM

bR(sR)uR(t)bR, j(sR) dsR

[GL] j =
∫ ℓ1

0

mbg

ℓ1
bL, j(sL) dsL

[GR] j =
∫ ℓ1+ℓM+ℓ2

ℓ1+ℓM

mbg

ℓ2
bR, j(sR) dsR

[FL] j =
∫ ℓ1

0
−

0.5ρav2c

ℓ1
CℓbL, j(sL) dsL

[FR] j =
∫ ℓ1+ℓM+ℓ2

ℓ1+ℓM

−
0.5ρav2c

ℓ2
CℓbR, j(sR) dsR,

(30)

which can be re-written as

c̈(t) = M−1(−Dċ(t)−Kc(t)+ B̄+ Ḡ+ F̄), (31)

1786



where

M =

[

ML 0

0 MR

]

, D =

[

DL 0

0 DR

]

,

K =

[

KL 0

0 KR

]

, B̄ =

[

BL

BR

]

,

Ḡ =

[

GL

GR

]

, F̄ =

[

FL

FR

]

.

(32)

Converting (31) into a first order system results in

ẋ(t) = Ax(t)+Bu(t)+G+F(x), (33)

where

x(t) =

[

c(t)
ċ(t)

]

, A =

[

0 I

−M−1K −M−1D

]

B =

[

0

M−1B̄

]

, G =

[

0

M−1Ḡ

]

,

F =

[

0

M−1F̄(x)

]

.

(34)

Note that in this approximation of the BMB system, the A

matrix sees free boundary conditions for displacement and

slope at the free end of each beam, resulting in two zero

eigenvalues for the system. While mathematically these free

end conditions exist, physically, there are two external loads,

lift and gravity, acting in equal and opposite directions across

each beam. In some sense, these forces completely support

the structure over the spatial domain. Consequently, it is

necessary to communicate some existence of these external

loads to the A matrix for control design. This is accomplished

through a linearization of the original nonlinear PDE system.

V. NUMERICAL RESULTS

After linearizing (18) and (19), a Galerkin finite element

approximation is obtained, and control design is imple-

mented on the resulting system. The control objective is to

morph each beam from equilibrium to the desired position

w(t,s) =
5s(s− ℓ)(2s− ℓ)2

8wpeak

, (35)

and slope

w′(t,s) =
5(2s− ℓ)(8s2 −8sℓ+ ℓ2)

8wpeak

, (36)

where wpeak = 0.0762 m. The desired target shape is rep-

resented graphically in Figure 2, and is inspired from that

which can be often seen in bird flight, for example.

To obtain a solution to the system of the form in (33),

initial conditions are chosen as follows: x(0) = [0;0;−2;0]
(of the form [displacement; slope; velocity; angular ve-

locity]). For the coupled state and state estimate system,

the initial condition xc(0) = 0.75 ∗ x(0) is used. It should

also be noted that the balancing lift and gravity forces are

modeled in the state estimate system as well. A convergent
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Fig. 2. Desired State Target: Position (left), Slope (right)

TABLE I

SYSTEM PARAMETERS

Parameter Value Units

ℓ1,2 0.6096 m

ℓM 0.0508 m

ρ 980 kg/m3

ŵ, width 0.127 m

h, height 0.0254 m

a = ŵh 0.032 m2

E 2.0×106 N/m2

I = (ŵh3)/12 1.734×10−7 m4

m 1.927 kg

mb 1.927 kg

γ1 0.025 kg/(m sec)

γ2 1×102 kg/(m5 sec)

finite element approximation using Hermite interpolating

cubic polynomials of order N = 30 nodes for the spatial

discretization of the BMB system is used to simulate (33),

and the parameter values for the BMB system are provided

in Table I.

For reference, the uncontrolled state plots for position

and slope of the nonlinear system are given in Figure 3.

Controlled results are presented in Figure 4, excluding noise.

The corresponding controller plots are shown in Figure 5. To

obtain stabilizing solutions to the algebraic Riccati equations,

a Newton-Kleinman algorithm was used. For the results

presented here, it is assumed that measurements are available

for the position and slope states. Numerical instabilities in

solving finite dimensional approximations to the algebraic

Riccati equations occurred when it was assumed that only

velocity and angular velocity were available for measure-

ment. As expected, the full state feedback LQR results

outperform those of the LQG-controlled system. Still, both

controlled systems track well to the desired morphed wing

shape. Simulations were also run for a traditional linear

compensator with similar control and observation weights

and forcing functions included. These results also showed

good tracking, but with more initial overshoot, and are not

presented here due to space constraints.
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Fig. 3. Uncontrolled System: Position (left), Slope (right)

Fig. 4. Controlled System: LQR Position (top left), LQR Slope (top right),
LQG Position (bottom left), LQG Slope (bottom right)

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, the BMB system (18), (19), (21) is ap-

proximated by Hermite interpolating cubic polynomials with

two displacement and two slope degrees of freedom for

each beam element. Steady state linear quadratic tracking

control was applied by obtaining a linear approximation of

the nonlinear lift function, employing control design, and

applying the control matrices to the nonlinear system. This

resulted in a nonlinear controller for the BMB system.

B. Future Works

The authors are interested in applying realistic actuation

and investigating optimal morphing trajectory for the BMB
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Fig. 5. Control Effort: LQG (left), LQR (right)

system. Consequently, analyzing the system’s performance

under various time-varying, morphing paths is of interest.

The authors also seek to explore nonlinear control options

to compare to the robustness of linear control techniques.

Theoretical analysis results, including model well-posedness

and semigroup analysis, are forthcoming.
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