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Abstract— This paper presents a parameter varying control
of a magnetorheological (MR) damper with stiction effect
and its application to seismic protection of a model two-
story structure. This semi-active device is utilized to reduce
the vibrations of the model structure due to earthquake
excitations. A modified Bingham model is used to capture the
nonlinear hysteretic dynamics of the MR damper including
the stiction effect. The parameters of the model are identified
by solving a nonlinear optimization problem. The Bingham
model is considered because of its simple structure to be
used in linear parameter varying (LPV) controller design. The
model is verified experimentally showing an acceptable level
of accuracy. The second part of the paper addresses the LPV
controller design to command the MR damper to suppress the
structural vibrations. The LPV controller is designed for the
combined structure and MR damper based on the Bingham
model. The scheduling parameter is chosen to be damper
velocity which is obtained by measurement. An optimal passive
damping design is also obtained for comparison purposes. The
performance of the controller is compared with the optimal
passive damping case for El Centro and Northridge earthquakes
with different intensities. The experimental results show the
improved performance of the LPV controller design approach
in terms of the maximum acceleration and the RMS values of
the structure response.

I. INTRODUCTION

The semi-active vibration control employing magnetorhe-

ological (MR) dampers has been the topic of research in

a wide range of applications from smart base isolation and

damping to car suspension systems and medical prosthetic

joints [2], [16], [18]. MR dampers exhibit a highly nonlinear

hysteretic dynamics, which makes them difficult to be ac-

curately modeled and effectively controlled. Different static

and dynamic models have been presented and reviewed in

the literature such as Bingham model, LuGre friction model,

Bouc-Wen model and polynomial models [3], [6], [15]. As

the aforementioned models are mathematical models, param-

eter identification is required to determine the corresponding

values of the parameters for a given MR damper. A recursive

least square (RLS) method has been used as a common tool

to determine the parameters of the models whose dynamics

are linear in the parameters [7]. Other approaches consist

of formulating a nonlinear optimization problem and then

solving the problem to find the best match between data

and the model output. An adaptive identification algorithm

has been proposed by Terasawa et al. applied to LuGre and

Bouc-Wen models, which copes with uncertainties in the MR

damper model parameters and shows an acceptable level of

accuracy in online identification [12], [13].
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Different strategies have been investigated to control the

nonlinear hysteretic behavior of MR dampers. H2/LQG con-

trol designs are well-known in the literature integrated with

a clipped-optimal algorithm or an inverse model of the MR

damper [12], [16], [18]. The clipped-optimal controller em-

ploys a desired optimal control force that is determined using

linear optimal controllers and then switches accordingly

between zero and maximum control effort to accommodate

the required damping force [3], [17]. Semi-active control

based on state-feedback H∞ controller and bilinear H∞ design

have also been studied to suppress the structural vibration

due to external disturbances [6], [12]. Since force cannot

be directly commanded to the damper, an inverse model

of the MR damper is used to convert the control force to

the corresponding voltage. This voltage is the input to the

MR damper which produces the required damping force

to attenuate the vibrations of the structure. In a series of

recent work, semi-active suspension control based on linear

parameter varying (LPV) design was studied considering the

combined MR damper and suspension system [2], [10]. The

latter work considers a static model for damper and an LPV

design with two scheduling parameters.

In this work, we propose a modified Bingham model

to capture the dynamic behavior of an MR damper with

stiction effect. The parameters of the Bingham model are

identified by solving a nonlinear optimization problem. The

obtained model is verified experimentally for different op-

erating conditions. The identified MR damper is used to

attenuate the vibration of a two-story model structure. An

LPV controller is designed to control the combined structure

and MR damper. The Bingham model, that has a simpler

structure than other existing models, is used to capture

the nonlinear dynamics of the damper. A classical anti-

windup scheme is also considered to resolve the saturation

issue due to actuation constraints. For comparison purposes,

an optimal passive damping design is also obtained for a

constant voltage of the MR damper in response to different

intensties of El Centro earthquake. The maximum and root

mean square (RMS) structural responses due to El Centro and

Northridge earthquakes are compared for the LPV controller

and the optimal passive damping design.

II. EXPERIMENTAL SETUP

In this section, the experimental setup for the MR damper

parameter identification and smart base isolation is briefly

presented. The experimental setup consists of the following

major parts: the shaking table and its driving components, a

two-story model building, the MR damper, and sensors for

displacement and acceleration measurements. The shaking
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table used in this study is the Shaker II by Quanser com-

pany. The capabilities of the table are ±7.5 cm maximum

displacement, ±83.8 cm/s peak velocity, and ±24.5 m/s2

peak acceleration with a 930 kg bearing load carrying. The

operational bandwidth of the table is 0-20 Hz.

The displacement of the base and first floors are mea-

sured by two LB-70 series laser displacement sensors by

KEYENCE company. The measurement range is 100 mm

±40 mm with fastest response time of 0.7 ms. Accelerations

of the second and the base floors are captured by MEMS

accelerometers attached to each floor by wax. The type

of accelerometer used is ADXL203EB Rev.0 by Analog

Device company. The measurement range is ±1.7 g, and the

sensitivity is 1 mg in 60 Hz satisfying the requirements of the

experiment, where g = 9.81 m/s2 is the standard gravity. The

dSPACE board DS1104 RD, with controller and communica-

tion board CLP 1104, is used as the data acquisition system.

This board is linked with Matlab/Simulink via AD and DA

converters and controls input and output signals in real-time.

Furthermore, an Agilent 6542A programmable power supply

is connected to the dSPACE board output to amplify the

voltage for the MR damper. The sampling rate is set to be

500 Hz.

The MR damper under study is a custom-made device in

the Smart Material and Structure Laboratory (SMSL) at the

University of Houston. This device is a sponge-type damper

which provides a stiction effect which should be taken into

account in parameter identification and controller design.

The damper consists of a magnetic coil, MR fluid and a

sliding bar. The coil is excited by the voltage applied to the

MR damper which increases the viscosity of MR fluid and

consequently the force exerted on the sliding bar. The amount

of force produced is proportional to the area of active MR

sponge that is exposed to the magnetic field. The MR damper

is excited by voltages up to 8V (0.55 A). The MR damper is

attached between the base and a fixed point on the table to

reduce the vibration of the structure. The damper stroke is

±2 cm and it can approximately produce a maximum force

of 10N in a voltage of 8V. Fig. 1 illustrates the experimental

setup in the lab. The structure under study is a base-isolated

Fig. 1. MR damper experimental test bed

two-story model building. The structure is supported by a

slider with low friction providing the base isolation. The base

mass consists of the slider mass and a 205.7×50.69×6.51

mm3 aluminum plate. The mass of the first and second floors

consist of the same aluminum plate and additional weights.

The side plates are aluminum beams with dimensions of

17.60×50.69×0.75 mm3. Two springs with total stiffness of

1057 N/m are symmetrically attached to the base mass to

restrict the base drift. The modal parameters of the structure

are experimentally obtained by subspace-based identification

method in a previous study at SMSL. The identified mass,

stiffness and damping matrices of the structure are as follows

M =





1.958 0 0

0 1.258 0

0 0 1.212



 [kg],

C =





1.281 −0.487 0

−0.487 1.325 −0.599

0 −0.599 0.829



 [N.s/m],

K =





2275.6 −1218.6 0

−1218.6 2716.3 −1497.7

0 −1497.7 1497.7



 [N/m]

where the natural frequencies of the system are 2.1 Hz,

5.48 Hz and 9 Hz. The stiffness and damping coefficients

corresponding to the base floor include the stiffness of the

springs attached to the base and damping effect of the slider,

respectively. A damping ratio of 1% has been assumed for all

the structural modes. The proportional damping matrix has

been obtained from C = a0M +a1K , where a0=0.1893 and

a1=0.0004.

III. PARAMETER IDENTIFICATION OF THE MR DAMPER

MR dampers are highly nonlinear devices and possess

hysteretic characteristics. The MR damper under study is a

custom-made damper showing some level of stiction effect.

The friction phenomenon can have a major impact on the

performance of a semi-active device. It is desirable to have

an accurate model of the MR damper dynamics including

stiction to improve the closed-loop system performance of

the system in a model-based controller design. There are

different models in the literature describing the hysteretic

dynamics of the MR dampers ranging from simple Bingham

model to the more complicated modified Bouc-Wen model.

The accuracy of these models have been compared in [15].

As a rule of thumb, the more complicated models provide

more accuracy. In this section, we develop a modified Bing-

ham model to predict the frictional hysteretic behavior of the

damper. The proposed model provides an acceptable level of

accuracy with low complexity compared to other existing

models.

A. Modified Bingham Model for MR Damper

The following Bingham-based model is proposed which

considers the damping force decrease with increasing veloc-

ity.

Fmr = ( fa + fbν)sign(ẋ)+(c0ẋ+ c0vẋν)e
−( ẋ

v0
)2

(1)
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where the variables and parameters are defined as:

Fmr: Damper force when in motion (N)

ν : Input voltage (V)

fa: Coulomb frictional force (N)

fb: Coulomb frictional force influenced by voltage ν (N/V)

c0: Viscous damping coefficient (N.s/m)

c0v: Viscous damping coefficient influenced by voltage ν
(N.s/(m.V))

v0: Normalizing velocity (m/s)

In this model the viscous damping coefficient is assumed

to be linearly dependent on the input voltage ν and all the

parameters are positive. This model is valid for non-zero

velocities. Here, we are only concerned with the static force

at which the sliding bar of the damper starts moving. This

force is dependent on the voltage and has been considered in

the model (the term before the sign function). It is also noted

that when the velocity is approximately zero, the control

effort is set to zero.

The exponential term provides us with two effects: (i)

the flattening effect expected at high velocities, and (ii)

stiction effect in low forces. The first effect is physically

motivated by the change of the damping characteristics as

the velocity increases due to more lubricant being forced into

the interface [9]. The second effect is more significant in low

forces in which bumpy responses are observed in velocities

close to zero. Different dependencies of the model terms on

the exponential function were investigated which finally led

to the proposed model.

It is common in practice to identify the damper dynamics

in a separate setup and then attach it to the structure for

vibration mitigation. In our case, we perform both identifica-

tion and control experiments on the same setup which helps

reduce the experimental effort. The parameter identification

is performed by exciting the structure with a chirp signal

from 1 to 10Hz with varying amplitude for 70 seconds.

Indeed, the velocity input of the damper is the response of

the structure to the chirp signal at the base floor which is

rich enough to identify the damper dynamics. Specifically,

the excitation signal should contain the frequencies close to

natural frequencies of the structure under study, since the

MR damper is expected to operate in these frequencies. The

excitation voltage is considered to be a 2Hz sinusoidal signal

with a peak-to-peak amplitude of 5V. The length of the data

for identification should be long enough to let the structure

respond to the exciting frequencies in an appropriate amount

of time.

The MR damper force is not measured directly, but it is

calculated from the base and first floor displacement and

base acceleration readings with appropriate filtering. All the

signals are low pass filtered within 18Hz which is twice

the third natural frequency of the structure. The parame-

ters of the model are determined by solving a nonlinear

optimization problem which minimizes a quadratic error

cost function between the measured and estimated output

force. The solution of this optimization problem is dependent

on the initial values of the parameters. Here, the solution

with the minimum possible error is sought using varying

initial conditions which results in the following values of

the parameters:

fa = 0.35 N, fb = 0.05 N/V, c0 = 26.7 N.s/m, c0v = 3.1

N.s/m.V and v0 = 0.50 m/s.

The identification results for the chirp velocity input and

2 Hz sinusoidal voltage is shown around the second mode

of the system in Fig. 2 for the modified and standard

Bingham models. The identification results are considered

to be accurate enough to be used for control design. The
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Fig. 2. Identification results using chirp velocity excitation for modified
and standard Bingham models

parameters of the standard Bingham model are obtained

by least square (LS) method. We observe that the RMS

error of the modified model is about to 5% smaller than

the standard model which demonstrates the benefit of the

proposed modification.

IV. CONTROLLER DESIGN FOR MR DAMPER ACTUATION

In this section, the dynamic equations of the structure

including the MR damper are firstly presented and an optimal

passive damping is obtained for different intensities of the

El Centro earthquake. Subsequently, an LPV controller based

on the modified Bingham model is introduced and designed

for the combined structure and MR damper.

A. Dynamic Equations of the Structure with MR Damper

The dynamic equations of motion for the structure includ-

ing the MR damper is expressed as follows:

M q̈+C q̇+K q = ΓFmr −M Λẍg (2)

where q = [xb x1 x2]
T , Λ = [1 1 1]T and Γ = [−1 0 0]T .

Here, xb, x1 and x2 denote the displacement of the base, 1st

floor and 2nd floor, respectively. The matrix Γ identifies the

place in which the MR damper is attached, and ẍg is the

ground acceleration acting on the structure as an external

disturbance. By assuming ξ = [q q̇]T , this equation can be
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written in state-space form as follows:

ξ̇ =

[

0 I

−M−1K −M−1C

]

ξ +

[

0

−Λ

]

ẍg

+

[

0

M−1Γ

]

Fmr (3)

where Fmr is the control input acting on the structure.

B. Passive Damping Design

The performance of the MR damper for constant voltages

in four intensities of the El Centro earthquake is examined to

obtain a baseline for comparison purposes [17]. The structure

is excited with 0.2g, 0.4g, 0.6g and 0.8g El Centro earth-

quakes and the maximum absolute acceleration of the second

floor of the structure is determined for constant actuating

voltages from 0 to 8 volts. Fig. 3 shows the experimental

results for different intensities of El Centro earthquake. It
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Fig. 3. Optimal passive damping for (a) 0.2 g, (b) 0.4 g, (c) 0.6 g and (d)
0.8 g El Centro earthquakes

is observed that for moderate earthquakes (0.4 g and 0.6

g) the passive damping is optimal at ν = 4V . For lighter

earthquakes this value is obtained to be 2V. However, for a

destructive 0.8 g earthquake the optimal value shifts to 8V.

In sum, we choose ν = 4V as the optimal passive damping

which works optimally for a wider range of intensities. In

reality, there is no information about such an optimal value

but in experiments this value is determined for a reasonable

comparison.

C. LPV Systems and Modeling

In this section, we present a basic formulation for LPV

systems to be used in this paper. An LPV system can be

described in the following state-space form [11]

ẋ = A(ρ)x+B1(ρ)w+B2(ρ)u
z = C1(ρ)x+D11(ρ)w+D12(ρ)u
y = C2(ρ)x+D21(ρ)w

(4)

where x, w and u represent the state vector, the exogenous

input vector, and the control input vector, respectively; z and

y represent the controlled output and system measurement,

respectively. The LPV parameter vector ρ(t) is assumed to

be an arbitrary vector ρ(t) ∈ F ν
P

, which is not known a

priori but can be measured in real-time. F ν
P

is the set of

allowable parameter trajectories defined as

F
ν
P � {ρ ∈C(ℜ,ℜs) : ρ(t) ∈ P, | ρ̇i(t) |≤ νi,

i = 1,2, . . . ,s,∀t ∈ ℜ+}

where P is a compact subset of ℜs, and {νi}
s
i=1

are nonnegative numbers. It is also assumed that

A ∈ ℜn×n
,B1 ∈ ℜn×nw

,B2 ∈ ℜn×nu
,C1 ∈ ℜnz×n

,D11 ∈
ℜnz×nw

,D12 ∈ ℜnz×nu
,C2 ∈ ℜny×n and D21 ∈ ℜny×nw .

The LPV representation of the plant is obtained by de-

scribing the system dynamics in a quasi-LPV form. This is

achieved by defining new time-varying parameters, which

are then regarded as scheduling variables. Since some of the

time-varying parameters usually depend on the states, these

descriptions are called quasi-LPV [11].

D. Quasi-LPV Modeling of Structure with MR Damper

To proceed with the quasi-LPV modelling of the system,

we replace the MR damper force with the modified Bingham

model in (1). Therefore, the equation of the motion for the

base mass will be rewritten as follows:

mbẍb + c1(ẋb − ẋ1)+ cbẋb + c0ẋbe
−(

ẋb
v0

)2

+ k1(xb − x1)+ kbxb =

− fasign(ẋb)+(− fbsign(ẋb)− c0vẋbe
−(

ẋb
v0

)2

)ν −mbẍg

Thus, we can rewrite (2) considering the voltage as the input

instead of the damper force.

M ẍ+Cmẋ+K x = Γmν −M Λẍg (5)

where the modified matrices Cm and Γm are defined as

follows:

Cm =







c11 + fasign(ẋb)
ẋb

+ c0e
−(

ẋb
v0

)2

c12 0

c12 c22 c23

0 c23 c33






,

Γm =







− fbsign(ẋb)− c0vẋbe
−(

ẋb
v0

)2

0

0







where ci j’s are the elements of the system damping matrix

C . In order to prevent division by zero in (1,1) element of

the matrix Cm, we consider
sign(ẋb)

ẋb
= 1

|ẋb|+ε , where ε is a

positive small value. By substituting the above matrices in (3)

and considering the base velocity ρ = ẋb as the scheduling

parameter the following quasi-LPV representation of the

system is obtained.

ξ̇ =

[

0 I

−M−1K −M−1Cm(ρ)

]

ξ +

[

0

−M−1Λ

]

w

+

[

0

M−1Γm(ρ)

]

ν (6)

It is noted that the base velocity is obtained by low-pass

filtering and differentiating the base displacement.
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E. LPV Controller Design

The objective of the gain-scheduled output-feedback con-

trol problem is to design a dynamic LPV controller with the

following state-space representation:

ẋK = AK(ρ)xK +BK(ρ)y

u = CK(ρ)xK +DK(ρ)y, (7)

that ensures the internal stability and a guaranteed induced

L2-gain bound γ on the closed-loop system from exogenous

input vector w to the controlled output vector z. The LPV

controller (7) is designed via the basic characterization

theorem presented in [1]. In our design, we assume that

the matrices ÂK , B̂K , ĈK , DK and X are constant, and the

matrix Y is set to be linearly dependent on the scheduling

parameter Y = Y0 +ρY1. The scheduling parameter is chosen

to be the damper velocity ρ = ẋb for which ρ ∈ [−0.3,0.3]
m/s and ρ̇ ∈ [−5,5] m/s2. The corresponding synthesis LMIs

are solved by gridding the parameter space for ρ over its

range of variation following the procedure described in [1].

The LPV controller is designed based on a mixed-

sensitivity approach. The design objective is to develop

a control strategy to minimize the induced L2 norm of

the closed-loop system transfer functions from the external

disturbance to the controlled outputs selected appropriately.

Since we have a regulation problem tracking is not an

issue and therefore it makes sense to shape the closed-loop

transfer functions S and KS [14]. We recall that S is the

transfer function between the disturbance w = ẍg and the

output, and KS the transfer function between w and the

control signal. The controlled output vector is assumed to

be z = [z1,z2]
T = [Wsy,−Wuu]T .

The absolute acceleration of the second floor is set to be

the measured output y =−(ẍ2 + ẍg). The dynamic weights for

LPV design are chosen to be Wu= 1.2×10−4s
s+40

and Ws=
1

s2+s+10
,

where Wu is the weight on the control signal (desired

damping force) and selected to be a high pass filter. On the

other hand, Ws is the weight on y. This weight begins rolling

off before the first natural frequency of the system which is

about 13 rad/s. The system matrices in (4) are determined

correspondingly for the augmented plant with the dynamic

weights, where A and B2 are the only matrices dependent on

the scheduling parameter.

For practical reasons, a saturation limit of Vmax=8V is

considered for the MR damper device. Therefore, the com-

manded force and the force produced by the applied voltage

may not be the same due to saturation constraint. It is known

that saturation can deteriorate the closed-loop performance

of the system [8]. In order to overcome this problem the LPV

controller is combined with a classical anti-windup scheme

[4] to alleviate the saturation effect.

V. EXPERIMENTAL RESULTS OF MR DAMPER CONTROL

As discussed earlier, a shaking table is used to simulate the

earthquake and excite the structure. El Centro and Northridge

earthquakes with two different intensities are chosen for

structural response comparisons. There is always a tradeoff

in designing the base isolation system between decreasing

the structure acceleration and base drift. However, the main

concern is about structure acceleration and base drift should

not exceed some limits of displacement to prevent colliding

with the base foundation. The structural responses for 0V

passive damper and LPV control, and the control input are

illustrated in Fig. 4. The structural responses due to 0.6 g El
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Fig. 4. Northridge 0.7 g ground excitation, the structural responses for 0V
damper and LPV control, LPV voltage and its parameter variations

Centro earthquake corresponding to the LPV controller and

“without damper” case are also shown in Fig. 5. The “without

damper” case represents the response of the base-isolated

structure without any additional damping system. Tables 1
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Fig. 5. El Centro 0.6 g ground excitation, LPV control voltage and
the second floor acceleration responses for without damper case and LPV
controller
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TABLE I

MAXIMUM EXPERIMENTAL RESPONSES DUE TO SIMULATED

EARTHQUAKES

El Centro El Centro Northridge Northridge
(0.2 g) (0.6 g) (0.3 g) (0.7 g)

Ground acceleration (cm/s2)

196.2 590.5 295.3 688.7

Second floor acceleration (cm/s2)

Without damper 250.5 838.7 312.3 840.3
Passive damping 193.8 510.3 204.6 500.1
LPV control 137.5 464.7 180.2 454.9

Base drift (cm)

Without damper 0.4309 1.282 0.6089 1.531
Passive damping 0.2285 0.9130 0.3639 1.1857
LPV control 0.3040 0.9277 0.4182 1.016

TABLE II

ROOT MEAN SQUARE (RMS) VALUE OF EXPERIMENTAL RESPONSES DUE

TO SIMULATED EARTHQUAKES

El Centro El Centro Northridge Northridge
(0.2 g) (0.6 g) (0.3 g) (0.7 g)

Ground acceleration (cm/s2)

26.22 78.68 35.33 82.67

Second floor acceleration (cm/s2)

Without damper 44.39 176.1 78.29 215.82
Passive damping 32.56 76.48 31.68 73.95
LPV control 23.79 76.41 28.63 72.41

Base drift (cm)

Without damper 0.0940 0.3933 0.2048 0.5702
Passive damping 0.0242 0.1054 0.0367 0.1295
LPV control 0.0337 0.1250 0.0466 0.1377

and 2 present the maximum and RMS experimental struc-

tural responses due to simulated earthquakes with different

intensities. In case of the second floor absolute acceleration,

the LPV controller shows up to 30% smaller peaks for

weak earthquakes and up to 10% smaller peaks for strong

earthquakes compared to the passive damping. In the case

of base drift the passive damping shows improved results.

However, this control scenario is not realistic and practically

a constant actuating voltage cannot be optimal for all types

of earthquakes with varying intensities as mentioned before.

Considering all the maximum and RMS results, the LPV

controller is determined to be an optimal realistic control

strategy compared to passive damping.

VI. CONCLUSION

Parameter identification and LPV control of an MR

damper with stiction effect was studied in this paper. A

modified Bingham model was introduced to capture the

stiction effect and velocity-dependent damping of the MR

damper. Both identification and control were performed on

the same setup which reduced the required experimental

effort. After identifying the parameters, an LPV controller

based on the modified Bingham model was designed to

directly command the MR damper voltage. The quasi-LPV

model of the combined structure and damper was presented

by selecting the damper velocity as the scheduling parameter.

The LPV controller was obtained by solving a set of LMIs

over the range of the variations of the parameter. For practical

reasons, a saturation limit of 8V was assumed to actuate

the MR damper. Therefore, a classical anti-windup scheme

was employed to eliminate the effect of saturation and keep

the output voltage within the saturation bound. An optimal

passive damping was also obtained for El Centro earth-

quake with different intensities for comparison purposes.

The performance of the LPV controller was investigated

experimentally for El Centro and Northridge earthquakes

with different intensities. The experimental results showed

the improved performance of our controller design approach

in terms of maximum acceleration and RMS values for the

structure response.
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