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Abstract— In this paper, a nonlinear optimal control problem
for a third order system is defined and solved. The optimal
control law is found using an inverse optimality approach to
solve the Hamilton-Jacobi-Bellman equation, where the solution
is obtained directly for the control input without needing to

assume or compute a value function first. However, the value
function can be obtained after one solves for the control input
and it is shown to be at least a local Lyapunov function. The
developed controller is applied to a path following control of a
wheeled mobile robot.

I. INTRODUCTION

Optimal control of nonlinear systems is one of the most

challenging and difficult subjects in control theory. The

control approaches can be divided into two main categories:

direct optimal and inverse optimal control. In the direct

nonlinear optimal control problem, a controller is developed

to minimize an a priori given cost function, which ultimately

results in finding a solution to a Hamilton-Jacobi-Bellman

(HJB) equation. This equation is unfortunately hard to solve

for a general nonlinear system. This obstacle motivated the

development of inverse optimal nonlinear control design

methods [1]- [10]. An interesting well known result is that

when the cost is quadratic and the dynamics are affine in

the input there is an explicit solution for the input as a

function of the derivatives of the value function. This fact

will be used in this paper together with the structure of

affine dynamics in the input to develop a method to solve

the Hamilton-Jacobi-Bellman equation for a class of third

order systems. Another well known result is that using a

control Lyapunov function (CLF), many control laws can be

calculated which globally asymptotically stabilize the system

and can be inverse optimal relative to a meaningful cost

functional not specified beforehand by the control designer.

However, the main drawback of the CLF concept, as a design

tool, is that there is no systematic way to find a control

Lyapunov function for general nonlinear systems [11].

Based on the concept of inverse optimality, a new solution

method that can determine at the same time a controller

and a sensible nonnegative cost rendering the controller

optimal was developed recently in [10]. In this method, the

analytical solution for the control input is obtained directly,

without needing to first assume or compute any coordinate

transformation, value function, or Lyapunov function. The

value function and a Lyapunov function can however be

computed once the optimal control input has been found. The

main drawback of the new method is that it is restricted to

second order systems. This paper presents an extension of the

recent method to optimal control of a third order nonlinear

system.

The motivation for this work is the fact that when design-

ers are faced with a control engineering problem and want

to formulate it in the optimal control framework, the choice

of the most appropriate cost is a difficult task. However,

quite often the following three properties are required for

the design:

1) The closed loop system should be asymptotically stable

to a desired equilibrium point

2) The system should have enough damping so that the

trajectories do not take too long to settle around the

desired equilibrium point

3) The control energy should be penalized in the cost to

avoid high control inputs that can saturate actuators

The particular functions involved in the cost are not usually

pre-defined, except possibly the requirement on the control

energy that is usually represented by a quadratic cost on the

input. This paper attempts to find a controller and a cost that

together meet the requirements 1–3 and render the controller

optimal relative to that cost. To that aim, the cost will be fixed

to be quadratic in the input and the state plus an unknown

term that shall be determined. The solution is based on the

concept of inverse optimality. One special feature of this

method, as compared to other methods in the literature, is

the fact that the solution is obtained directly for the control

input without needing to assume or compute a value function

first. However, the value function can be obtained after one

solves for the control input and it is shown to be at least a

local Lyapunov function

The paper is organized as follows. First the optimal

control problem will be defined and solved and then the

technique will be applied to a path following problem of a

Wheeled Mobile Robot (WMR) using simulations performed

in MATLAB/Simulink. Some concluding remarks will close

the paper.
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II. PROBLEM DEFINITION AND SOLUTION

Consider the following optimal control problem

Problem 1:

V (x0) = inf

∫ ∞

0

{

q1x2
1 + q2x2

2 + q3x2
3 + Q(x)+ ru2

}

dt

s.t. ẋ1(t) = f (x2)

ẋ2(t) = d f (x2)+ x3

ẋ3(t) = bu

x(0) = x0 ,u ∈ U

(1)

where it is assumed that q1 ≥ 0,q2 ≥ 0,q3 > 0,b �= 0, r > 0,

x(t) =
[

x1 x2 x3

]T
∈ R

3 and u ∈ R. The set U represents

the allowable inputs, which are considered to be Lebesgue

integrable functions. The function f with bounded derivative

f ′(x2) is assumed to be measurable, bounded on any compact

set with f (0) = 0 and with a finite or at most a countable

set of zeros. The term

L(x1,x2,x3,u) = q1x2
1 + q2x2

2 + q3x2
3 + Q(x)+ ru2 (2)

is called the running cost.The problem is to find if possible

a control u⋆, and a cost L of the form (2) such that u⋆

will be the optimal solution of (1) with finite cost and

(2) is nonnegative and has a minimum at x1 = x2 = x3 =
u = 0. If the function f is linear then from the Linear

Quadratic Regulator theory [12] we know that a solution of

the form u =−k1x1−k2x2−k3x3 exists for the case Q(x) = 0.

Motivated by this result, we will search for solutions of the

form u(x) = −k1x1 −k2x2 −k3x3 −kg(x2) where, for reasons

that will become apparent in the proof of the main result,

g(x2) = f (x2). We start by presenting necessary conditions

that the value function V must verify for such a solution to

exist.

Theorem 1: Assume that a control solution of the form

u(x) = −k1x1 − k2x2 − k3x3 − k f (x2) (3)

exists for problem (1) and that a class C1 function V exists

that verifies the corresponding HJB equation

inf
u

H(x1,x2,x3,u,Vx1
,Vx2

,Vx3
) = 0 (4)

where

H =q1x2
1 + q2x2

2 + q3x2
3 + Q(x)+ ru2

+Vx1
f (x2)+Vx2

(d f (x2)+ x3)+Vx3
(bu)

(5)

and

Vxi
=

∂V

∂xi

, for i = 1,2,3. (6)

and with boundary condition V (0) = 0. Then V must be of

the form

V (x)= 2rb−1

(

k1x1x3 + k2x2x3 + k3

x2
3

2
+ kx3 f (x2)

)

+h(x1,x2)

(7)

where h(x1,x2) is an arbitrary integration function of class

C1 with

h(0,0) = 0 (8)

Proof: Consider the HJB equation (4) associated with

(1). The necessary condition on u to be a minimizer is

∂V

∂x3
= −2rb−1u(x) (9)

and therefore

V (x) = −2rb−1
∫

u(x)dx3 + h(x1,x2) (10)

where h(x1,x2) is an arbitrary integration function of x1 and

x2. Searching for a solution of the form u = u1(x1,x2) +
u2(x3), expression (10) becomes

V (x) = −2rb−1x3u1(x1,x2)−2rb−1

∫

u2(x3)dx3 + h(x1,x2)

(11)

Replacing

u1(x1,x2) = −k1x1 − k2x2 − k f (x2) (12)

u2(x3) = −k3x3 (13)

yields (7) after integration. From the boundary condition

V (0) = 0 one obtains the constraint (8).

Remark 1: It is important that the value function has cross

terms or otherwise, from (9), the controller will only depend

on x3, which will considerably limit the class of systems for

which a solution can be found.

The main result is now stated in the next theorem.

Theorem 2: If q1 ≥ 0, q2 ≥ 0, q3 > 0, b �= 0, r > 0,

Q(x) = r(k2
32 −2b−1k f ′(x2))x

2
3 + 2rk1k2x1x2 + 2rk1k31x1x3

+ 2rk2k31x2x3 + rk(k−2k32d + 2b−1d2 f ′(x2)) f 2

(14)

and if the gains

k1 = ±

√

q1

r
(15)

k2 = ±

√

q2

r
(16)

k3 = ±

√

q3

r
+ b−1

√

q2

q3

(17)

k = b−1

(
√

q1

q3

+ d

√

q2

q3

)

(18)

verify

(k2
32 −2b−1k f ′(x2))x

2
3 + k(k−2k32d + 2b−1d2 f ′(x2)) f 2 ≥ 0

(19)

with

k31 = ±

√

q3

r
, k32 = b−1

√

q2

q3

(20)
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then the control input (3) is a solution of the HJB equation

(4) associated with (1) with value function

V (x) = r

(

√

k1(k−dk32)x1 +
√

k2k32x2 +
√

b−1k31x3

)2

+

+ rb−1k32x2
3 + 2rb−1kx3 f (x2)+

− rb−1kd f 2(x2)+ (2rkk32)
∫

f (x2)dx2 + α

(21)

where α is an integration constant verifying

α = −(2rkk32)

[

∫

f (x2)dx2

]

x2=0

(22)

The function V is also a local Lyapunov function pro-

vided it is locally positive definite in a region around the

origin. Moreover, if V is globally positive definite and

radially unbounded then it is a Lyapunov function. Finally,

the trajectories will converge to one of the minimizers of

L(x1,x2,x3,u(x1,x2,x3)), i.e, to a point (x1,x2,x3) such that

L(x1,x2,x3,u(x1,x2,x3)) = 0. If L(x1,x2,x3,u(x1,x2,x3)) is

convex, then the trajectories will converge to the origin for

all initial conditions.

Proof: Using the results of theorem 1 and replacing

k3 = k31 + k32 (23)

the HJB equation (4) yields after rearranging

0 = (q1 − rk2
1)x

2
1 +(q2 − rk2

2)x
2
2 +(q3 − rk2

31 − rk2
32 + 2rb−1k2

−2rk31k32 + 2rb−1k f ′)x2
3 + Q(x)−2rk1k2x1x2

−2rk1k31x1x3 −2rk1k32x1x3 −2rk2k31x2x3 −2rk2k32x2x3

− rk2 f 2 −2rkk31x3 f −2rkk32x3 f + 2rb−1k1x3 f

−2rkk1x1 f −2rkk2x2 f +
∂h

∂x1

f +
∂h

∂x2

x3 + 2rb−1dk2x3 f

+ 2rb−1dk f ′ f x3 +
∂h

∂x2

d f

(24)

where the arguments of the functions were omitted for

simplicity. Making

∂h

∂x2
= 2rk1k32x1 + 2rk2k32x2 + 2rkk32 f (x2)−2rb−1dk f ′ f

(25)

and using (25) together with (15)− (18) and (20) in (24)

and noting that (18) and (20) can also be expressed as

kk31 −b−1k1 −b−1dk2 = 0

b−1k2 − k31k32 = 0
(26)

then the expression (24) can be written as

0 = (−rk2
32 + 2rb−1k f ′)x2

3 + Q(x)−2rk1k2x1x2 −2rk1k31x1x3

−2rk2k31x2x3 − rk2 f 2 −2rkk1x1 f −2rkk2x2 f +
∂h

∂x1

f

+ 2rk2k32dx2 f + 2rk1k32dx1 f + 2rkk32d f 2

−2rb−1kd2 f ′ f 2

(27)

Finally, adding and subtracting 2rk1k32x2 f (x2) to the right

hand side of the above expression, making

∂h

∂x1

= 2rk1(k− k32d)x1 + 2rk1k32x2 (28)

and choosing Q as (14), one finds that all terms in (27)

vanish and therefore the HJB equation is verified. This is a

sufficient condition for the control input (3) to be a solution

that minimizes the cost of problem (1) because the second

derivative of the Hamiltonian (5) with respect to u is equal

to 2r > 0. The running cost is a sensible cost because from

(2), (15)− (18) and (20) it is given by

L = r(k1x1 + k2x2 + k31x3)
2 + r(k2

32 −2b−1k f ′(x2))x
2
3

+ rk(k−2k32d + 2b−1d2 f ′(x2)) f 2 + ru2
(29)

and it is non-negative with a minimun at x1 = x2 = x3 = u = 0

under the assumption (19). Replacing (12)− (13), (23) and

the integral of resulting expressions from (25) and (28) in

(11) yields the value function (21) after integration, consid-

ering (26). Furthermore, the boundary condition V (x(∞)) = 0

yields (22). Observe that

V (x(0)) =

∫ ∞

0
L(x1,x2,x3,u

⋆)dt = −[V (x(∞))−V (x(0))]

= −

∫ ∞

0
V̇ (x)dt

(30)

so when the optimal control law is used, L and −V̇ coincide.

Hence,

V̇ = −L(x1,x2,x3,u
⋆) ≤ 0 (31)

which makes V a local Lyapunov function for the system

if it is positive definite in a region around the origin. If V

is globally positive definite and radially unbounded then it

is a Lyapunov function. Finally, since the optimal cost (21)

is finite for all initial conditions, then the trajectories will

converge to one of the minimizers of L(x1,x2,x3,u(x1,x2,x3))
because L ≥ 0 and limt→∞ L = 0 for integrability. If L is

convex, then the trajectories must converge to the origin

because the origin is the only minimizer of L. This finishes

the proof.

Remark 2: It is interesting that the square of the nonlin-

earity comes naturally as a term in the cost, although this

would be difficult to predict based on a general tendency to

always construct costs that have only quadratic terms on the

state.

III. EXAMPLE: PATH FOLLOWING OF A WMR

In this section, the developed controller is applied to a

path following problem of a WMR.

A. Dynamic Model

Fig. 1 shows a schematic of the WMR, which is assumed

to be rigid and to be driven by a torque T to control the

heading angle ψ which is measured from the positive x-

axis in the inertial frame. The forward velocity V0 = 1m/s is

assumed to be already made constant by the proper design
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ψ

castor

C

x

Fig. 1. Schematic of the Wheeled Mobile Robot (WMR)

of a cruise controller. The dynamic model of the WMR

is composed of two parts: kinematics and dynamics. The

kinematics equations are

ẏ = V0 sinψ

ψ̇ = R
(32)

and the dynamics equation is

Ṙ =
1

I
T (33)

where T is the input torque generated by the DC motors. The

moment of inertia of the WMR with respect to the center of

mass is I = 1kg.m2. It is desired that the WMR follows the

path y = 0.

B. Controller Design and Simulation Results

The differential equations (32) and (33) are cast in the

form of Problem 1 with f (x2) = sin(x2), b = 1, where the

states are defined by x1 = y, x2 = ψ and x3 = R. If q1 = q3 =
r = 1 and q2 = 4, then the optimal controller is

u = −x1 −2x2 −3x3 − sin(x2) (34)

the running cost is

L = (x1 +2x2 +x3)
2 +(4−2cos(x2))x

2
3 + sin2(x2)+u2 (35)

and the value function is

V (x) = (x1 + 2x2 + x3)
2 + 2x2

3 + 2x3 sin(x2)−4cos(x2)+ 4

(36)

Moreover, the derivative of the value function

V̇ = −(4−2cos(x2))x
2
3 − (x1 + 2x2 + x3)

2 − sin2(x2)

− (x1 + 2x2 + 3x3 + sin(x2))
2

(37)

is negative definite for x2 ∈ (−π ,π). Therefore, the value

function is a local Lyapunov function in the largest invariant

set contained in
{

(x1,x2,x3)∈R
3 | |x2|< π

}

∩
{

(x1,x2,x3) ∈
R

3|V > 0} where > 0 stands for positive definite. Note that
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Fig. 2. Trajectories of WMR following path y = 0
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Fig. 3. Position y

one cannot guarantee convergence to the origin from any

initial condition because L is not convex. Simulations were

performed using the optimal controller (34) for the following

different initial conditions:

case (a): x0 = 0,y0 = 5, ψ0 = − π
2

and R0 = 0

case (b): x0 = 2,y0 = −6, ψ0 = − π
2

and R0 = 0

case (c): x0 = 5,y0 = 7, ψ0 = π
6

and R0 = 0

Convergence to the desired path is clearly seen in Figure

2. Moreover, Figures 3− 5 show the time variations of the

position, heading angle and angular velocity. The input signal

is depicted in Figure 6.

IV. CONCLUSIONS

The solution to a third order nonlinear optimal control

problem has been presented in this paper extending an

inverse optimality method originally developed for second

order systems. The important feature of this approach is

that the analytical solution for the control input is obtained

directly without needing to assume or compute a coordinate

transformation, value function or Lyapunov function. The

value function and a Lyapunov function can however be

computed after the control input has been found. The con-
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Fig. 4. Heading angle ψ
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Fig. 5. Angular Velocity

troller was applied to a path following problem of a Wheeled

Mobile Robot (WMR). The simulation results verified the

effectiveness of the method.
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