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Abstract— The problem of grasping force optimization (GFO)
for a multi-fingered robotic hand is considered in this paper.
The GFO problem is cast in a convex optimization problem,
considering also joint torque constraints. A new algorithmic
solution is proposed here, which is suitable to be implemented
online. The proposed formulation allows a substantial reduction
of the computational load of the problem by dynamically
decreasing the number of active torque constraints. Moreover,
differently from other approaches, the algorithm does not
require the evaluation of a new initial point at the beginning
of each optimization cycle. The effectiveness of the proposed
method has been tested in a simulation case study where the
grasping forces of a five-fingers robotic hand are modified online
to cope with time-varying external forces applied to the object.

I. INTRODUCTION

An important issue in controlling a multi-fingered robotic

hand grasping an object is the synthesis of the optimal

contact points and the evaluation of the minimal contact

forces able to guarantee the stability of the grasp and its

feasibility. This latter problem, known as grasping force

optimization (GFO) can be formulated as a constrained

optimization problem.

Due to the considerable computational time requested to

find the solution, the GFO is usually performed off-line.

However, during the execution of a manipulation task, the

position of the contact points on the object, or the wrench

(force and moment) to be balanced by the contact forces,

may change with time and cannot be planned in advance.

The contact forces must be compatible with the friction

constraints depending on the type of contact as well as with

the joint torque limits of the fingers. In these cases, suitable

algorithms for online computation of the solution of the

constrained GFO problem must be devised.

Notice that the force closure problem [1] and, more in

general, the problem of computing the optimal grasp config-

urations [2], are not considered here because it is assumed

that the contact points, which guarantees the force closure

property, are assigned by the path planner.
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The nonlinearity of the contact friction models (point

contact with friction or soft-finger contact) is one of the

main reasons of the computational complexity of GFO prob-

lem. The analysis and synthesis of frictional force-closure

grasps has been initially studied by linearizing the friction

cone constraints and then applying linear programming tech-

niques [3], [4], [5]. The corresponding problems, however,

are ill-conditioned. Nonlinear programming techniques have

been also investigated [6], but with results not suitable for

real-time applications.

The use of Lagrangian neural networks is investigated

in [7], [8]. These neural networks are capable to take into

account the nonlinearity of the friction constraints and the

joint torque limits, and asymptotically converge to a set of

optimal grasping forces. In [9], [10] a method based on the

minimization of a cost function, which gives an analytical

solution but does not ensure by itself the satisfaction of

the friction constraints is presented. An iterative correction

algorithm allows to modify this function until the internal

forces enter the friction cone, resulting in a fast sub-optimal

solution suitable for real-time applications.

The GFO problem was formulated as a convex opti-

mization problem on a Riemannian manifold with linear

constraints in [11]. A number of gradient flow type algo-

rithms have been proposed to provide solutions suitable for

real-time applications [12]; to reduce the complexity of the

matrix inversion, the computation of the solution can be split

into one on-line and one off-line phase and sparse matrix

techniques can be adopted [13].

In [14] the friction cone constraints have been formulated

in terms of linear matrix inequalities (LMIs), and the grasp-

ing optimization problem is addressed as a convex optimiza-

tion problem involving LMIs with the max–det function as

objective function. This problem can be efficiently solved

with the interior point algorithm for a small number of

fingers. Moreover, joint torque limits can be considered and

formulated in the same framework as LMIs.

A further improvement has been presented in [15], con-

sisting in a new compact semidefinite representation of the

friction cone constraints which allows a significant reduction

of the dimension of the optimization problem. Moreover, an

estimation technique and a recursion method for selecting

the step size in the gradient algorithm are proposed, together

with the proof of the quadratic convergence of the algorithm.

The method proposed in [11] has the main disadvantage

that it requires the on-line pseudo-inversion of a structurally

constrained matrix whose dimension linearly increases with

the number of fingers, of a factor that depends on the
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contact type. By adopting the frictional cone constraint

matrix representation proposed in [15], the dimension of the

problem decreases considerably so that the solution can be

computed in real time. However, if torque limits constraints

are considered, the complexity of the problem increases

more than quadratically with the number of joints, making

it unsuitable for real-time applications. Moreover, all the

proposed solutions require, at each iteration, the evaluation

of an initial point that satisfies the frictional cone constraints

and the joint torque limits. The initial point can be computed

with the method proposed in [16], but at the expense of a

significant computational effort.

The algorithm proposed here, based on the compact for-

mulation of [15] and on the solution of a convex optimization

problem as in [12], allows to consider also torque joint

constraints. These constraints are activated dynamically, with

a minimum increase of computation complexity, compatible

with real-time applications. As a further improvement, the

proposed iterative formulation does not require the evaluation

at each step of a new initial point.

The feasibility and the effectiveness of the proposed

method have been tested in a simulation case study, where the

contact forces of a five-fingers hand grasping an object are

computed online to cope with time-varying external forces

applied to the object.

II. PROBLEM FORMULATION

Consider a multi-fingered robotic hand grasping an object

with n contacts between the object and the fingertips, the

links of the fingers and the palm. Denote the contact wrench

of the grasp with c =
[

cT1 . . . cTn
]T

∈ R
nm, where

ci ∈ R
m is the wrench vector of the i-th contact with

dimension m depending from the adopted contact model.

The grasping force optimization problem (GFO) consists

in finding the set of contact wrenches balancing the general-

ized external force he ∈ R
6 acting on the object (including

object inertia and weight), which are feasible with respect to

the kinematic structure of the hand and to the corresponding

joint torque limits, and minimize the overall stress applied

the object, i.e, the internal forces. Moreover, to avoid the

slippage of the fingers on the object surface, each contact

wrench has to be confined within the friction cone.

The balance equation for the generalized forces applied to

the object can be written in the form

he = Gc, (1)

where G ∈ R
6×nm is the grasp map, which is full rank

for force-closure grasps [1]. It is assumed that the contact

point configurations ensuring the force-closure constraint are

assigned at each time by the planning system.

Although several contact models can be used, the two

usually adopted are the point contact with friction (PCWF)

model and the soft finger contact (SFC) model.

In the PCWF case, the contact wrench has three degree-of-

freedom (m = 3): the normal component ci,z to the object

surface and the two components ci,x, ci,y on the tangent

plane. The friction constraint is represented by the law

1

µ2
i

(

c2i,x + c2i,y
)

≤ c2i,z and ci,z > 0, (2)

where µi denotes the friction coefficient at the i-th contact

point.

In the SFC case, the contact wrench has an additional

degree-of-freedom ci,t (m = 4), corresponding to the tor-

sional component of the moment about the contact normal. In

this case, the friction constraint in an elliptic approximation

can be expressed in the form

1

µi

(

c2i,x + c2i,y
)

+
1

µt,i

c2i,t ≤ c2i,z and ci,z > 0, (3)

where µi and µi,t denote the tangential and the torsion

friction coefficients at the i-th contact point, respectively.

The balance equation for the torques applied to fingers

joints of the hand can be written in the form

JT(q)c+ τ e = τ , (4)

where τ e is the external torque, including gravity, Cori-

olis, centripetal and inertia effects at the fingers joints,

τ is the torque provided by the actuators, and J(q) is

the (nm × l) hand Jacobian matrix, depending on the (l-

dimensional) vector q of the joint variables, being l the total

number of the hand joints. For simplicity, it is assumed that

N (JT) = ∅, meaning the absence of structurally dependent

forces, namely, contact forces not caused by joint torques

but depending on hand mechanics (see, e.g., [1]).

To ensure that the joint actuators are able to provide

the required torques, a joint torque constraint must also be

considered

τL ≤ τ ≤ τU , (5)

where τL and τU denote the lower and upper joint torque

bound, respectively.

The simultaneous satisfaction of the force balance equa-

tion (1), with the friction constraints (2) and (3), and of the

joint torque balance equation (4) with constraint (5), implies

that the grasp is stable and feasible.

The GFO problem considered here consists in finding the

optimal grasp wrench that minimize the internal forces acting

on the object, under the above constraints. The internal forces

are contact wrenches that satisfy the friction cone constraints

and belong to the null space of the grasp matrix G. These

wrenches cint do not contribute to the balance equation (1),

being Gcint = 0, but are used to satisfy the friction cone

constraints at the contact points.

III. GRASPING CONSTRAINTS AND

SEMIDEFINITE PROGRAMMING

As shown in [15], the frictional inequalities (2) and (3)

are equivalent to the the positive definiteness of the block-

diagonal matrix

F (c) = diag (F 1(c1), . . . ,F n(cn)) > 0, (6)
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where F i(ci) is the symmetric (2× 2) matrix

F i(ci) =

[

ci,z +
ci,x
µi

ci,y
µi

ci,y
µi

ci,z −
ci,x
µi

]

(7)

in the PCWF case, while it is the Hermitian (2× 2) matrix

F i(ci) =

[

ci,z +
ci,x√
µi

ci,y√
µi

− j
ci,t√
µi,t

ci,y√
µi

+ j
ci,t√
µi,t

ci,z −
ci,x√
µi

]

, (8)

in the SFC case.

Similarly, the torque limit constraint (5), in view of the

torque balance equation (4), is equivalent to the positive

definiteness of the diagonal matrix

T (c, q, τ e) = diag (τB) > 0, (9)

where

τB =

[

τB,L

τB,H

]

=

[

JT(q)c− τL + τ e

−JT(q)c+ τH − τ e

]

(10)

contains the gaps of actuator torques from the lower (τB,L)

and upper (τB,H ) limit, respectively.

Hence, the simultaneous satisfaction of both frictional

and joint torque constraints is equivalent to the positive

definiteness of the linearly constrained block-diagonal matrix

P = diag (F ,T ) > 0. (11)

Notice that the elements of the matrices F and T are linearly

dependent, because both depend on c. Moreover, the force

balance equation (1) and the torque balance equation (4)

corresponds to linear constraints imposed on matrix P .

By denoting with c(F ) the contact wrench vector ex-

tracted from the frictional constraint matrix, with τB(T ) the

vector composed by the diagonal elements of T , and defining

vector ξ(P ) =
[

c(F )T, τB(T )T
]T

, the linear constraints on

matrix P imposed by (1) and (4) can be represented in the

following affine general form

Aξ(P ) = b (12)

with

A =

[

G 06×2l

Aτ

]

, b =





he

τL − τ e

τH − τ e



 , (13)

where Aτ is a (2l × nm+ 2l) matrix defined as follows

Aτ =

[

J(q)T −Il 0l

J(q)T 0l Il

]

, (14)

being 0× the null matrix and I× the identity matrix of the

indicated dimensions.

The optimization procedure is based on the minimization

of the cost function Φ(P ) : P(r) → R, being P(r) the set

of positive definite symmetric r × r matrices P = PT > 0,

defined as

Φ(P ) = tr
(

W pP +W bP
−1

)

, (15)

where tr(·) denotes the trace operator, W p and W b are

symmetric positive definite matrices. Notice that Φ is a

strictly convex twice continuously differentiable function on

P(r) and Φ(P ) → +∞ for P → ∂P(r), being ∂P(r) the

boundary of P(r).
By noting that the sum of the elements of T (i.e. of

τB) is constant for each c, because the sum of the two

joint torque constraints for the i-th joint is constant and

equal to τH,i − τL,i, the diagonal weighting matrix W p =
diag(wpI6, 02l), with wp > 0, is considered. In this way,

the term W pP weights only the normal forces ci,z at

each contact point, i.e. the pressure forces on the object.

If required, different weights can be used allowing higher

contact forces for strongest fingers.

The second term W bP
−1 represents a barrier func-

tion, which goes to infinity when P tends to a singu-

larity, i.e. when friction or torque limits are approached.

The barrier weight matrix is also chosen diagonal W b =
diag(W b,F ,W b,T ), with

W b,F = wb,F diag (µ1, . . . , µn)

W b,T = wb,T diag (τH,1 − τL,1, . . . , τH,l − τL,l,

τH,1 − τL,1, . . . , τH,l − τL,l) ,

(16)

being wb,F > 0 and wb,T > 0.

Hence, the minimization of the cost function (15) with

the linear constraint (12), corresponds to the minimization

of the normal contact wrench components applied to the

object while satisfying the friction and torque constraints.

This problem can be solved using the linearly constrained

gradient flow approach on the smooth manifold of positive

definite matrices presented in [17], and applied in [11] to a

GFO problem. In particular, it is possible to prove that Φ(P )
presents a unique minimum that can be reached through the

linear constrained exponentially convergent gradient flow

ξ(Ṗ ) = Qξ(P−1W bP
−1 −W p), (17)

where Q = (I−A†A) is the linear projection operator onto

the tangent space of A, and A† = AT(AAT) is the pseudo-

inverse of A. Consequently, AQ = 0 and Aξ(Ṗ ) = 0;

hence, if the solution satisfies the constraint (12) at t = 0, it

will satisfy the constraint for all t > 0.

A discrete-time version of (17) based on the Euler numer-

ical integration algorithm is

ξ(P k+1) = ξ(P k) + αkQξ(P−1

k W bP
−1

k −W p), (18)

where the step-size αk is chosen to ensure down hill steps.

Notice that the choice of αk strongly affects the performance

of the optimization algorithm. A wrong choice could deter-

mine a very slow convergence or the break of the barrier.

Several strategies have been proposed for the self-tuning of

αk at each iteration (see [16] for details). The sensitivity to

the step-size choice can be reduced by adopting a Dikin-type

recursive algorithm [12], [18], that leads to the discrete flow

ξ(P k+1) = ξ(P k)−αkQ
ξ(P−1

k W bP
−1

k −W p)

‖P−1

k W bP
−1

k −W p‖P k

, (19)

where ‖X‖Y = tr(Y −1XY −1X), and 0 ≤ αk ≤ 1 can be

evaluated with a bounded line search minimizing Φ(P k+1).
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IV. ALGORITMIC IMPROVEMENTS

The online implementation of the proposed algorithm

presents the disadvantage of requiring the inversion of a

(6 + 2l) square matrix AAT needed for the evaluation of

A† at each iteration, also when the grasping configuration is

unchanged, i.e. when G is constant, due to the variation of

J(q). Moreover, at each iteration, the evaluation of a valid

initial point is required for the correct initialization of the

gradient flow algorithm.

In the following, some improvements are proposed to

cope with the previous issues for an efficient recursive

implementation of the proposed algorithm.

A. Affine Constraint Decomposition

Starting from the discrete version of the gradient flow (18),

the following new formulation can be derived

ck+1 = ck + αkQ̄ξ(P−1(ck)W bP
−1(ck)−W p), (20)

where Q̄ = (I −G†G)[Inm02l](I−A†
τAτ ) is the result of

the projection onto the tangent space of matrix Aτ in (14),

which guarantees the coherence of the elements of matrix P ,

and of the subsequent projection onto the tangent space of

the grasp matrix, ensuring the force balance constraint (1).

Therefore, the evaluation of the inverse of a 6+2l matrix is

decomposed into the evaluation of the inverse of two matrices

of lower dimensions (6 and 2l, respectively). Moreover, if

the grasp configuration remains unchanged, the projector

depending on G can be evaluated off-line.

A similar decomposition can be easily achieved for the

gradient flow (19).

B. Dynamic Joint-Torque Constraints

In the reasonable hypothesis that the solutions of the

recursive algorithm evaluated at successive sampling times

are quite close, the above problem can be further simplified

observing that not all the joint torque constraints can be

effective simultaneously. For example, if, for the current

solution, the actuator of joint i provides a torque close to the

upper bound τH,i, the constraint on the lower bound τL,i can

be deactivated at the next sampling time, the corresponding

barrier term in the cost function being negligible. Similarly,

if, for a grasp configuration, it is required a given contact

force along a certain direction, it is reasonable to assume that

the corresponding joint torques will not change sign at the

next sampling time, and thus the constraints on the bounds

of opposite sign can be deactivated.

Starting from this observation, the number of the joint

torque constraints can be dynamically reduced from 2l to l

at each sampling time, by using the distance of the torque

evaluated at the previous sampling time from the lower and

upper bounds as the criterion for selecting the constraint (the

lower or the upper one) that needs to be activated. A further

simplification can be achieved by activating a constraint

only if the corresponding distance is higher than a torque

threshold, that can be choose as a fraction στ > 0 of the

corresponding torque limit.

Fig. 1. DEXMART hand skeleton.

C. Initial Point Self-Evaluation

A new technique for the on-line evaluation, at each sam-

pling time, of the initial point —the initial solution P 0 for

the optimization gradient flow algorithm— is proposed here,

based on the optimal solution at the previous sampling time.

The quantities that can vary between successive sampling

times are the hand configuration q, the external torque τ e,

and the grasp map G, while they are taken constant during

the iterations of the optimization algorithm between two

consecutive sampling times (optimization cycle).

To avoid the evaluation of an initial point at each sampling

time, the following approach is proposed. Initially, at time

t0, the method proposed in [16] (or an equivalent one) is

used to evaluate off-line a first valid initial solution, which

is employed for the first optimization cycle. For the next

sampling times tk, the initial point is computed from the

optimal solution ck−1 computed at the end of the previous

optimization cycle, through the iterative algorithm

c̄j =(I −G
†
kGk)c̄j−1+γjG

†
khe,k + (1− γj)G

†
k−1

he,k−1

τ̄ j =JT(γjqk+(1−γj)qk−1)c̄j+γjτ e,k+(1−γj)τ e,k−1,

(21)

with initial condition c̄0 = ck−1, where the subscript k is

referred to the sampling time (i.e., to the current optimization

cycle) while the subscript j and the variables with the bar

are referred to the iterations within the cycle. The coefficient

γj ∈ (0, 1] is chosen at each iteration according to a

monotone sequence, using a simple linear search algorithm,

as the maximum value that does not produce invalid solutions

(P 0 ≤ 0). In the worst case, γ0 must be set to a value close

to zero.

In detail, at each step of the optimization cycle, the first

equation of (21) gradually modifies the external wrench com-

ponent of the current solution until the full external wrench

he,k is balanced (i.e., γj = 1). Obviously, the optimization

cycle cannot be terminated until γj does not reach 1. If the

solution evaluated at the previous sampling time (ck−1) is

sufficiently far from the boundaries (the distance depends

also from the weights assigned to W b), γ0 can be set to 1
at the first iteration, and thus the initial point has the same

internal wrench component of the previous optimal solution.

On the other hand, when γ0 < 1, the effect of the barrier

1121



1

2

1

2

Fig. 2. Left: section of the bottle with graphical representation of the gravity
force and torque (black arrows), of the external forces (green arrows), of the
resultant force and torque applied by the fingers (red arrows), of the optimal
contact forces (orange arrows), and of the friction cones (yellow triangles);
the intensity of the forces and torques are proportional to the arrow lengths.
Top right: Arm and hand grasping the bottle. Bottom right: Time history of
the external forces acting on the bottle.

function produces a new solution that, at each iteration of

the optimization cycle, goes away from the boundaries; this

guarantees that γj increases at each step, until γj = 1. The

second equation is required to modify the joint torque with

the same rationale of the first equation.

V. CASE STUDY

The proposed GFO algorithm has been tested in simulation

using Matlab/Simulink and employing the DEXMART [19]

anthropomorphic hand mounted on a 7-dof anthropomorphic

arm as shown in Fig. 1 and Fig. 2.

It is assumed that the hand grasps a cylinder representing a

bottle half filled with water with a total weight of 0.25 N with

the main axis aligned to the vertical (gravitational) direction.

The task consists in holding the bottle with an human-like

grasp also in the presence of two external forces applied at

the top-left and bottom-left side of the bottle with a time

varying magnitude (see Fig. 2). Notice that a PCWF model

is considered with a friction coefficient µ = 0.4 equal for

each contact point.

A section of the bottle half filled with water is shown

in Fig. 2 where the intensity of the resultant force, sum of

gravitational and external forces, is proportional to the black

vertical arrow applied to the instantaneous center of mass,

while the intensity of the resultant torque with respect to the

center of the bottle is proportional to the black circular arrow.

The external forces and the corresponding contact points

are represented with green arrows and triangles, respectively.

The red arrows are the force and torque resulting from the

contact forces applied by the fingers, which are the orange

arrows. The sections of the friction cones in the contact

points are colored in yellow.

Two different simulations have been done. In the first

simulation only the friction constraint is considered, without

any constraint on the joint torque limits. In the second

1        2        3        4        5

4

1

3

5

2

Fig. 3. Time histories of the contact forces ([N]) for the 5 fingers of the
hand without (dotted lines) and with (continuous lines) torque constraints.
Top left: Areas covered by the contact forces within the friction cones
without (green color) and with (red color) torque constraints; the friction
cones are represented in yellow.

simulation, instead, different torque limits are set for the

fingers, considering the thumb actuators 5 times stronger than

the actuators of the other fingers (±0.5 vs ±0.1 Nm).

In Fig. 3 the time histories of the two significant contact

force components for each finger are shown, represented in

a frame fixed to the bottle and labeled from 1 to 5 from

the thumb to the little finger. The dotted lines correspond to

the first simulation, while the solid lines correspond to the

second simulation. At the top left of the figure, the areas

covered by the contact force vector of each contact point

during the bottle motion is shown, in green color for the

first simulation and in red color for the second simulation.

The time histories of the corresponding joint torques are

shown in Fig. 4, where the dotted lines correspond to the

first simulation, the solid lines correspond to the second

simulation, and the gray horizontal lines represent the joint

limits. The torques of the same finger are grouped together.

Notice that there are 3 actuators for each fingers, being the

last two joints of each finger coupled.

When only the friction constraints are imposed, fingers 2
(index) and 5 (little finger) are loaded more than the others by

the GFO algorithm during the action of the external forces,

while fingers 3 and 4 remain almost inactive. This can be

easily explained because fingers 2 and 5 have moment arms

with respect to the center of mass larger than the two central

fingers, and are able to produce a large moment with a

reduced contact force to balance the moment produced by the

external forces. However, the joint torque limits are exceeded

for both the fingers 2 and 5, resulting in an unfeasible grasp.

When torque constraints are considered, fingers 3 and 4 are

used more actively to sustain part of the load in charge to
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1

2 3

4 5

Fig. 4. Time history of the joint torques ([Nm]), for the 5 fingers of the
hand without (dotted lines) and with (continuous lines) torque constraints.
The gray horizontal lines represent the joint limits.

the adjacent fingers when the torque limits are approached,

and thus all the torque constraints can be respected.

The benefits resulting from the adoption of the dynamic

joint-torque constraints selection are showed in Fig. 5, where

the time history of the computational time effort are repre-

sented on the left and the number of employed constraints are

represented on the right. To remove the dependence from the

employed hardware, all the considered cases are normalized

with respect to the maximum value of the fully constrained

case (black line) to the value 100. In particular, four different

cases are compared: all constraints (black lines), στ = 0
(red lines), στ = 0.5 (green lines), στ = 0.8 (blue lines),

and unconstrained (gray lines), where στ is the threshold for

the activation of the joint torque constraints. The achieved

reduction of the mean of the computational time varies

between a minimum of about 10% for στ = 0 to a maximum

of about 80% for στ = 0.8.

VI. CONCLUSION

A new algorithm for dextrous-hand grasping force op-

timization has been presented in this paper, considering

also joint torque limits. The computational charge of the

algorithm has been considerably reduced by adopting an

iterative formulation based on a dynamic set of active con-

straints and by avoiding the evaluation of the initial point

at the beginning of each iteration, as required by existing

approaches. A simulation case study has been proposed to

show the feasibility and the effectiveness of the proposed

technique in a case study, assuming that time-varying and

unknown forces and moments are applied to the grasped

object. Future work will be devoted to test the proposed

technique in combination with a compliant control strategy

for the arm-hand system in the presence of interaction with

the environment or a human being.

Fig. 5. Time history of the normalized computational-time effort (left) and
of the number of employed joint torque constraints (right) for the cases of
all constraints (black), στ = 0 (red), στ = 0.5 (green), στ = 0.8 (blue),
and unconstrained (gray).
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