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Abstract— Recently for the LQG framework, cost density-
shaping control paradigms for stochastic optimizations have
been proposed. These new control methods have enabled the
shape of a target cost density to be transformed into a linear
control law. However, the theory developed so far pertains
exclusively to the finite-horizon. The purpose of this work is to
develop a Multiple-Cumulant Cost Density-Shaping (MCCDS)
control solution as the terminal time approaches infinity. The
first-generation benchmark for seismically-excited buildings
will be used to validate the infinite-horizon MCCDS control
law.

Index Terms— infinite horizon, stochastic optimal control,
cost cumulant control, structural control, cost density-shaping

I. INTRODUCTION

Pham’s “k Cost Cumulant” (kCC) control paradigm [1]

generalizes the classical Linear Quadratic Gaussian (LQG)

theory through minimizing a linear combination of k initial

cost cumulants. In the referenced work, the kCC control

solution is shown to out-perform the best proposed con-

trol paradigms in the first-generation benchmark study for

seismically-excited buildings. This success emphasizes the

performance benefits of cost cumulant control. The finite-

horizon kCC theory of [1] is extended to the infinite-horizon

in [2], where a constant kCC control solution is derived

using a Lagrange multiplier technique. This infinite-horizon

kCC controller is applied to a benchmark for cable-stayed

bridges with good results. A limitation of kCC control is

that the weighting parameters in the performance index do

not directly correspond to the cost density achieved under

kCC control. This fact has largely provided the driving

force behind the creation of cost density-shaping control

paradigms.

Cost Density-Shaping (CDS) controls have been recently

developed for the LQG framework. In [3], a general

Weighted Least-Squares (WLS) paradigm has been pro-

posed, where a Single-Degree-of-Freedom (SDOF) building

problem is used to show that cost cumulants computed

from a family of nominal 3CC controls can be approxi-

mately realized with WLS-CDS controls using the aforemen-

tioned cost cumulants as targets. Mean-variance cost density-

shaping controls based on Maximum Bhattacharyya Coef-

ficient (MBC) and Minimum Kulback-Leibler Divergence

(MKLD) have been given in [4], [5]. The first-generation
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benchmark has been used for a validation exercise in [4] to

show that target cumulants resultant from a nominal 2CC

control can be realized with a MBC-CDS controller. This

MBC-CDS control, computed using only the target mean

and variance of the cost, preserves the control performance

and robust stability properties of the 2CC control driving

the target statistics. This observation shows that desirable

qualities of closed-loop system behavior are encapsulated

in the cost cumulants, and thus the approximate shape of

the cost density. Furthermore, a statistical target selection

design methodology in [4], [5] has revealed controls that

lead to alternative statistical characterizations of the random

cost which have higher control performance than the same

nominal 2CC control. The correspondence of control per-

formance to the shape of the cost density achieved under

a given control law provides good reason for the continued

investigation and development of MCCDS control theory [6].

Usually no fixed terminal time is specified in control

applications, and it would therefore be ideal that a MCCDS

controller be developed with good long-run performance.

This practical situation involves the system being controlled

over a time interval extending to infinity. This paper consid-

ers the aforementioned case in order to complete the theory

of linear, full-observation, state-feedback MCCDS control.

Simulation results will be provided to validate the derived

control solution.

II. PRELIMINARIES

Our work uses Pham’s framework for deriving the infinite-

horizon kCC control solution, as described in this section and

the next. It pertains exclusively to the process with dynamics

subject to additive white Gaussian noise,

dx(t) = Ax(t)dt +Bu(t)dt+Gdw(t),

x0 = E{x(t0)}, x0 ∈ R
n, t ∈ [t0,∞)

(1)

where A ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×p and w(t) is a p-

dimensional stationary Wiener process having a correlation

of increments defined by

E[(w(τ1)− w(τ2))(w(τ1)− w(τ2))
T ]

= W |τ1 − τ2|,W ≻ 0
p×p.

(2)

It is assumed that u ∈ L2
F(Ω, C([t0,∞);Rm)) so that x ∈

L2
F(Ω, C([t0,∞);Rn)). That is, E{

∫∞

t0
uT (t)u(t)dt} < ∞

ensures E{
∫∞

t0
xT (t)x(t)dt} < ∞.
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The cost J is an integral-quadratic form defined by

J(u) =

∫ ∞

t0

(
x(t)TQ(t)x(t) + u(t)TR(t)u(t)

)
dt (3)

where Q = QT ∈ Sn+ and R = RT ∈ Sm++. Under this

membership, we have Q � 0
n×n and R ≻ 0

m×m.

With x(t) being random the cost J is also random so

statistics of (3) can be considered, such as its cumulants.

III. COST CUMULANTS

The form of the cost cumulants on the infinite-horizon is

now given.

Definition 3.1: (Stabilizing Control)

A control u(t) = k(t, x(t)) is called stabilizing if the system

(1) is bounded-input/bounded-state stable. In addition, if w =
0 then the origin x = 0 is asymptotically stable.

Definition 3.2: (Stabilizing Gain)

A feedback gain K ∈ Rn×m is stabilizing if the following

state-feedback control law is stabilizing, u(t) = Kx(t), t ∈
[t0,∞).

Theorem 3.3: (Infinite-Horizon Cost Cumulants)

Let r ∈ Z+, and the matrices A, B, G, Q and R be as defined

previously. Suppose (A,B) is stabilizable, so that ∃K such

that the closed-loop matrix (A+BK) has only eigenvalues

with negative real parts and the controlled system (1) in the

absence of disturbances is exponentially stabilized. Under

these conditions, the r cost cumulants are defined by

κ∞,l = Tr(HlGWGT ), 1 ≤ l ≤ r

where the matrices {Hl}
r
l=1 are such that Hl � 0

n×n and

satisfy the equations,

F1(H,K) , (A+BK)TH1 +H1(A+BK)

+Q∞ +KTR∞K = 0
n×n

Fl(H,K) , (A+BK)THl +Hl(A+BK)

+ 2
l−1∑

j=1

(
l

j

)

HjGWGTHl−j = 0
n×n

(4)

where Q∞ = limt→∞ Q(t) and R∞ = limt→∞ R(t).
Proof: See Theorem 4.2.2 on pg. 106 in [7].

IV. NOTATION

We introduce some notation to make restatements of the

above equations more concise in the development. This

notation is heavily inspired by what Pham originated in [7].

Begin by defining the state variable H ∈ Rrn×n as below

H , (H1, . . . , Hr).

Using these state variables, define the function

F(H,K) , (F1(H,K), . . . ,Fr(H,K)).

where Fi(·) in the above definition is defined as in (4).

Also, let the vector of cumulants κ∞ ∈ R
r be defined as

κ∞ = (κ∞,1, . . . , κ∞,r).

Where appropriate, the dependence of κ∞ on H will be

indicated by κ∞(H).

V. TARGET COST STATISTICS

Given matrices for a system characterization (A, B, G),
an integral-quadratic cost characterization (Q,R), and the

second-order statistics of the noise (W ), consider the cost

cumulants as a result of the alternative (and unknown)

stabilizing linear state-feedback control ũ(t) = K̃x̃(t), where

K̃ ∈ Rm×n. Given the preceding results, r cost cumulants

are given by

κ̃∞,l = Tr(H̃lGWGT ), 1 ≤ l ≤ r

where the positive semi-definite matrices {H̃l}
r
l=1 satisfy the

algebraic equations F(H̃, K̃) = 0
rn×n. We will refer to the

quantities {κ̃∞,l}
r
l=1 as the target cost cumulants.

VI. PROBLEM FORMULATION

The optimization problem can be formulated by defining a

control space over which the infinite-horizon MCCDS perfor-

mance index can be minimized. The appropriate definitions

precede the problem statement.

Definition 6.1: (Well-Posed Control Law)

A feedback gain K is well-posed if F(H,K) = 0
rn×n

admits unique solutions Hl, 1 ≤ l ≤ r.

Definition 6.2: (Admissible Control Gain)

A feedback gain K is called admissible if F(H,K) =
0
rn×n admits unique solutions Hl, 1 ≤ l ≤ r that are

positive semi-definite. Denote this set of gains as K∞.

Definition 6.3: (Infinite-Horizon Performance Index)

Consider a function g : Rr×R
r → R denoted as g(κ∞, κ̃∞)

which satisfies the following properties:

• The function g is analytic in both of its vector arguments

• The function g is convex in κ∞ and the domain

dom gκ̃∞
(e.g. g’s restriction to κ̃∞) is a convex set

• The function g(κ∞, κ̃∞) is non-negative in κ∞ on

some neighborhood of κ̃∞

• The function g(κ∞, κ̃∞) is strictly non-decreasing in

κ∞

The MCCDS infinite-horizon performance index is

non-negative, and convex in the cost cumulants. As such,

it is well-suited for the objective function in the following

optimization problem.

Definition 6.4: (MCCDS Infinite-Horizon Optimization)

The infinite-horizon MCCDS optimization can be stated as,

min
K∈K∞

g(κ∞(H), κ̃∞(H̃))

subject to:

F(H,K) = 0
rn×n, F(H̃, K̃) = 0

rn×n.

VII. INFINITE-HORIZON MCCDS SOLUTION

We follow the same Lagrange multiplier approach that

Pham used in [7] to derive our control solution. To do

so, first a regularity condition must be introduced that

guarantees a notion of 2r-fold smoothness is present in

the manifold formed by the constraint sets F(H,K) =
0
rn×n, F(H̃, K̃) = 0

rn×n.
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Definition 7.1: (Regularity Condition, Matrix Case)

Let the optimization point (H,K) satisfy the equations of

motion F(H,K) = 0
rn×n and the point (H̃, K̃) satisfy the

equations F(H̃, K̃) = 0
rn×n. Then it is said that (H,K)

and (H̃, K̃) are regular if the equations

grad

{ r∑

k=1

Tr
(
Fk(H,K)ΛT

k

)
+

r∑

k=1

Tr
(

Fk(H̃, K̃)Λ̃T
k

)}

= 0
2rn×n

admit the unique solutions Λ = 0
rn×n and Λ̃ = 0

rn×n.

Theorem 7.2: (Necessary Conditions for Optimality)

Assume (H∗,K∗) ∈ (Sn)r × K and (H̃, K̃) are regular

points for the respective constraint hyper-surfaces

F(H,K) = 0
rn×n, F(H̃, K̃) = 0

rn×n

for which the functional g(κ∞(H), κ̃∞(H̃)) is minimized.

Then there exists matrix multipliers Λ
∗ = (Λ∗

1, . . . ,Λ
∗
r) and

Λ̃
∗
= (Λ̃∗

1, . . . , Λ̃
∗
r) such that the gradient of the Lagrangian

L(H,K,Λ, Λ̃) = g(κ∞(H), κ̃∞(H̃))

+

r∑

i=1

Tr(Fi(H,K)ΛT
i ) +

r∑

i=1

Tr(Fi(H̃, K̃)Λ̃T
i )

vanishes for the optimal 4-tuple (H∗,K∗,Λ∗, Λ̃
∗
), that is

∇L
H,K,Λ,Λ̃(H

∗,K∗,Λ∗, Λ̃
∗
) = 0.

The technical lemma below follows directly from Pham’s

controller derivation, and holds for control solutions having

the structure of the kCC controller. In the following, we use

S , GWGT .

Lemma 7.3: (Cancellation Properties)

Let H†
l , 1 ≤ l ≤ r be the solutions of the following system

of equations Fl(H
†,K†) = 0

n×n, 1 ≤ l ≤ r under K†

where the gain K† for cl > 0, 1 ≤ l ≤ r is defined by

K† = −R−1BT

(

H†
1 +

r∑

l=2

cl

c1
H†

l

)

.

Let (A,B) be stabilizable and (Q,A) be detectable, and the

solution Γ exists to the following Lyapunov equation

(A+BK†)TΓ + Γ(A+ BK†) = −c1S.

Then the matrices H†
l satisfy

ΓH†
lS + SH†

lΓ = 0
n×n, 1 ≤ l ≤ r − 1. (5)

Proof: See [8].

We are now ready to state the main result of the paper.

Theorem 7.4: (Infinite-Horizon MCCDS Control)

Assume that (A,B) is stablizable and (Q,A) is detectable.

Fix r ∈ N and suppose there exist r cost cumulants of (3).

Under these conditions, the optimal solution to the Infinite-

Horizon MCCDS optimization concerning the process (1)

and the cost (3) is given by u∗(t) = K∗x(t) where the

extremalizing gain K∗ is

K∗ = −R−1BT

r∑

i=2




H∗

1 +






∂g(κ∗
∞, κ̃∞)

∂κ∞,i

∂g(κ∗
∞, κ̃∞)

∂κ∞,1




H∗

i






which is well-defined when the following equations admit a

solution F(H∗,K∗) = 0
rn×n, F(H̃, K̃) = 0

rn×n.

Proof: The regularity condition can be verified for

feasible optimization points, following the same approach

as in [7]. Now the necessary condition of optimality can be

applied to the Lagrange functional L(H,K,Λ, Λ̃) defined

by

L(H,K,Λ, Λ̃) = g(κ∞(H), κ̃∞(H̃))

+
r∑

k=1

Tr
(
Fk(H,K)ΛT

k

)
+

r∑

k=1

Tr
(

Fk(H̃, K̃)Λ̃T
k

)

which is ∇L
H,K,Λ,Λ̃(H

∗,K∗,Λ∗, Λ̃
∗
) = 0.

A key assumption for the fixed control K̃ is that it

satisfies the constraints F(H̃, K̃) = 0
rn×n, so that L(·)

is minimized for any choice of Λ̃ with the optimal triple

(H∗,K∗,Λ∗). We can thus choose Λ̃ = 0
rn×n, and

write L†(H,K,Λ) = L(H,K,Λ,0rn×n) and consider that

∇L†
H,K,Λ(H

∗,K∗,Λ∗) = 0 will yield the extremal point of

the original functional L(·). This condition requires that

∂L†(H∗,K∗,Λ∗)

∂Λl

= 0
n×n, 1 ≤ l ≤ r (6)

∂L†(H∗,K∗,Λ∗)

∂Hm

= 0
n×n, 1 ≤ m ≤ r (7)

∂L†(H∗,K∗,Λ∗)

∂K
= 0

n×n (8)

The equations (6) are just the constraints F(H∗,K∗) =
0
rn×n. The equations (7) give the relations 1 ≤ m ≤ r− 1,

∂

∂Hm

(

g(κ∞(H∗), κ̃∞(H̃)) +
r∑

k=1

Tr
(
Fk(H

∗,K∗)Λ∗T
k

)

)

= (A+BK∗)Λ∗
m + Λ∗

m(A+BK∗)T +
∂g(κ∗

∞, κ̃∞)

∂κ∞,m

S

+ 2

r−1∑

k=m+1

(
k

m

)
(
Λ∗
kH

∗
k−mS + SH∗

k−mΛ∗
k

)

= 0
n×n (9)

and for m = r the relation,

∂

∂Hr

( r∑

k=1

Tr
(
Fk(H

∗,K∗)Λ∗T
k

)
)

= (A+BK∗)Λ∗
r + Λ∗

r(A+BK∗)T +
∂g(κ∞, κ̃∞)

∂κ∞,r

S

= 0
n×n. (10)
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The derivatives are used above,

∂g(κ∞(H), κ̃∞(H̃))

∂Hl

=
∂g(κ∞, κ̃∞)

∂κ∞,l

·
∂κ∞,l

∂Hl

=
∂g(κ∞, κ̃∞)

∂κ∞,l

·
∂Tr(HlS)

∂Hl

=
∂g(κ∞, κ̃∞)

∂κ∞,l

S.

Now propose the multipliers Λl, 2 ≤ l ≤ r,

Λ∗
l =






∂g(κ∗
∞, κ̃∞)

∂κ∞,l

∂g(κ∗
∞, κ̃∞)

∂κ∞,1




Λ∗

1, 2 ≤ l ≤ r. (11)

From (10), clearly Λ∗
1 must satisfy

(A+BK∗)Λ∗
1 + Λ∗

1(A+BK∗)T = −
∂g(κ∗

∞, κ̃∞)

∂κ∞,1

S.

(12)

Above the standard assumption on the finite-horizon has been

invoked, more precisely
(
∂g(κ∗

∞, κ̃∞)

∂κ∞,1

)

6= 0.

Note that for 1 ≤ m ≤ r − 1, the expression below

(A+BK∗)Λ∗
m + Λ∗

m(A+BK∗)T +
∂g(κ∞, κ̃∞)

∂κ∞,m

S

by (11) becomes

(A+BK∗)Λ∗
1 + Λ∗

1(A+BK∗)T +
∂g(κ∞, κ̃∞)

∂κ∞,1

S

=−

(
∂g(κ∞, κ̃∞)

∂κ∞,1

S

)

+
∂g(κ∞, κ̃∞)

∂κ∞,1

S = 0
n×n.

Using the above relations in (9) reduces the equations to

∂

∂Hm

(

g(κ∞(H∗), κ̃∞(H̃)) +

r∑

k=1

Tr
(
Fk(H

∗,K∗)Λ∗T
k

)

)

= 2

r−1∑

k=m+1

(
k

m

)
(
Λ∗
kH

∗
k−mS + SH∗

k−mΛ∗
k

)

︸ ︷︷ ︸




∂g(κ∗

∞
,κ̃∞)

∂κ
∞,k

∂g(κ∗

∞
,κ̃∞)

∂κ
∞,1



(Λ∗

1H
∗

k−m
S+SH∗

k−m
Λ∗

1)

= 0
n×n

(13)

Introduce the notation

ck,m , 2

(
k

m

)







∂g(κ∗
∞, κ̃∞)

∂κ∞,k

∂g(κ∗
∞, κ̃∞)

∂κ∞,1







︸ ︷︷ ︸

6=0

.

The non-zero ratio of derivatives above reflects the assump-

tion that g(κ∗
∞, κ̃∞) is convex and strictly non-decreasing

in κ∞. Re-write the equations (13) as

r−1∑

k=m+1

ck,m
(
Λ∗
1H

∗
k−mS + SH∗

k−mΛ∗
1

)
= 0

n×n (14)

Using the multipliers (11), consider now the optimality

condition (8),

∂L(H∗,K∗,Λ∗)

∂K
= 2BT

r∑

l=1

H∗
l Λ

∗
l + 2RK∗Λ∗

1

becomes




2BT

r∑

l=2




H∗

1 +






∂g(κ∗
∞, κ̃∞)

∂κ∞,l

∂g(κ∗
∞, κ̃∞)

∂κ∞,1




H∗

l




+ 2RK∗




Λ∗

1

= 0
n×n

For any Λ∗
1, this equation is satisfied when the gain is

K∗ = −R−1BT

r∑

l=2




H∗

1 +






∂g(κ∗
∞, κ̃∞)

∂κ∞,l

∂g(κ∗
∞, κ̃∞)

∂κ∞,1




H∗

l




.

(15)

Since
∂g(κ∗

∞, κ̃∞)
∂κ∞,l

> 0, 1 ≤ l ≤ r are just positive

constants, from the form of our control gain above, and it’s

assumed that (12) has a unique solution, from the previous

lemma it must be that the following relations are true.

Λ∗
1H

∗
l S + SH∗

l Λ
∗
1 = 0

n×n, 1 ≤ l ≤ r − 1.

With the above relation, clearly (14) is rendered true,

which is the ultimate simplification of (7) given the con-

sequences of the selection (11). The gain (15) is thus

extremalizing in that (6), (7), and (8) are all satisfied with

the triple (H∗,K∗,Λ∗). When Λ∗
1 � 0

n×n this gain is

minimizing, as seen by

∂2L(H∗,K∗,Λ∗)

∂K2
= 2R⊗ Λ∗

1 � 0.

VIII. SIMULATION RESULTS

The first-generation benchmark problem will be used to

validate the infinite-horizon MCCDS control algorithm. Due

to length limitations, the details of benchmark study cannot

be provided here but can be found in [9]. Also, readers are

directed to Chapter 5 of [8] for additional information on this

numerical experiment, as this description is fairly concise.

The system matrices (A,B,G) and output matrices (C,D)
of the reduced-order model for control design in the bench-

mark are used for this computation. Furthermore, weighting

matrices (Q,R) are employed that appear in the original

benchmark study. The target 4CC control is calculated using

iterative techniques. The infinite-horizon averaged cost cu-

mulants are realized in solving the family of algebraic Riccati
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equations to arrive at the H̃ matrices. In particular, we solve

(A+BK̃)T H̃1 + H̃1(A+BK̃) + K̃TRK̃ + Q̃ = 0
n×n

(A+BK̃)T H̃2 + H̃2(A+BK̃) + 4H̃1GWGT H̃1 = 0
n×n

(A+BK̃)T H̃3 + H̃3(A+BK̃) + 6H̃1GWGT H̃2

+ 6H̃2GWGT H̃1 = 0
n×n

(A+BK̃)T H̃4 + H̃4(A+BK̃) + 8H̃1GWGT H̃3

+ 12H̃2GWGT H̃2 + 8H̃3GWGT H̃1 = 0
n×n

(16)

using Pham’s iterate solutions technique with the control gain

K̃ = −BTR−1

(

H̃1 +
µ2

µ1

H̃2 +
µ3

µ1

H̃3 +
µ4

µ1

H̃4

)

with

(µ1, µ2, µ3, µ4) = (1, 1.0× 10−5, 9.0× 10−12, 2.0× 10−20)

This yields the vector of targets κ̃∞ ∈ R4 having compo-

nents

κ̃∞,i = Tr(H̃iGWGT ), 1 ≤ i ≤ 4. (17)

Consider the function

g(κ∞, κ̃∞) =
κ2
∞,3 + κ̃2

∞,3 − 2κ∞,3κ̃∞,3

24κ̃4
∞,2

+
κ2
∞,4 + κ̃2

∞,4 − 2κ∞,4κ̃∞,4

92κ̃5
∞,2

+
21κ̃4

∞,3 + 7κ4
∞,3 − 28κ∞,3κ̃

3
∞,3

92κ̃7
∞,2

+
(κ∞,3κ̃∞,3 − κ̃2

∞,3) · κ̃∞,4

8κ̃6
∞,2

+
(κ̃2

∞,3 − κ2
∞,3) · κ∞,4

16κ̃6
∞,2

+
1

2

(
κ∞,2

κ̃∞,2

− 1− log

(
κ∞,2

κ̃∞,2

))

+
1

2

(κ∞,1 − κ̃∞,1)
2

κ̃∞,2

.

(18)

that expresses the distance between 4-cumulant Edgeworth

approximations to the cost density and the target cost density

in terms of κ∞ and κ̃∞. This function is a cumulant-

representation of a hybrid variant for the KLD derived using

techniques described in [10], and will be positive under the

assumption of convexity. This assumption seems reasonable

since g(·) is comprised of functions related to KLD, which

is convex. Consider the optimization

min
K

{

g(κ∞, κ̃∞)

}

dx(t) =(A+BK(t))x(t) +Gdw(t), t ∈ [t0,∞).

From the proof, the solution is

K = −R−1BT (H∗
1 + γ∞,2H

∗
2 + γ∞,3H

∗
3 + γ∞,4H

∗
4) .
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Fig. 1: Infinite-Horizon Cost Density-Shaping

with

γ∞,i =







∂g(κ∗
∞, κ̃∞)

∂κ∞,i

∂g(κ∗
∞, κ̃∞)

∂κ∞,1







, 2 ≤ i ≤ 4

where H∗
i , 1 ≤ i ≤ 4 are determined by the algebraic

equations

(A+BK∗)TH∗
1 +H∗

1(A+BK∗) +K∗TRK∗ +Q = 0
n×n

(A+BK∗)TH∗
2 +H∗

2(A+BK∗) + 4H∗
1GWGTH∗

1 = 0
n×n

(A+BK∗)TH∗
3 +H∗

3(A+BK∗) + 6H∗
1GWGTH∗

2

+ 6H∗
2GWGTH∗

1 = 0
n×n

(A+BK∗)TH∗
4 +H∗

4(A+BK∗) + 8H∗
1GWGTH∗

3

+ 12H∗
2GWGTH∗

2 + 8H∗
3GWGTH∗

1 = 0
n×n.

(19)

The components of the vector κ
∗
∞ ∈ R4 can then be

computed by

κ∗
∞,i = Tr(H∗

iGWGT ), 1 ≤ i ≤ 4. (20)
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The results of the numerical experiment are captured in

Figure 1 (a) and (b), which show the iterate value n on the x-

axis and corresponding iterate value κi[n] on the y-axis. The

iterate cumulants κi[n] and iterate targets iterate cumulants

κ̃i[n] are both time-invariant, being computed according to a

procedure analogous to the iterate solutions technique for

solving algebraic Riccati equations outlined in [7]. It is

clear that the cost cumulants align well with the targets,

approximately achieving the target statistical characterization

for the MCCDS control design. This evidences that the

infinite-horizon MCCDS control uses the target information

to successfully achieve the target cost cumulants.

IX. SUMMARY AND CONCLUSION

The recent development of cost density-shaping control

paradigms has stirred-up some interest in the controls com-

munity, and lends reason to the continued development of

the theory. These controllers enable the designer to translate

the shape of a target density for the random cost functional

into a linear control law, and have produced clear gains in

control performance [3-6].

This paper focuses on the infinite-horizon extension of

the MCCDS theory. A cancellation property and the same

adaptation of Lagrange multiplier theory for the infinite-

horizon MCCDS problem, as originally made by Pham, have

been used together to establish optimality of a linear state-

feedback control with an optimal constant control gain. The

solution takes the same form as the finite-horizon MCCDS

controller, and confirms that higher-order cost cumulant-

generating variables in linear optimal controls are weighted

by constants that depend on the rates of change for the

MCCDS optimization’s performance index with respect to

its cost cumulant arguments.

The theoretical MCCDS controller derivation and the

cumulant-tracking validation exercise presented in this work

leave further areas of investigation for infinite-horizon MC-

CDS control that have yet be studied. A separate investi-

gation of stability properties and performance for infinite-

horizon MCCDS controls constitute excellent next steps in

the continued development of MCCDS control theory.
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