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Abstract— This paper reviews triple mode predictive control
for linear time invariant systems and considers the analogies
with new approaches to conventional dual mode MPC algo-
rithms deploying Laguerre polynomials. It is shown that there
are strong analogies and moreover, that using the Laguerre
insights within a Triple mode approach may significantly
enlarge the feasibility region compared to recently proposed
triple mode approaches. The improvements, with respect to an
existing Triple mode algorithm, are demonstrated by examples.

I. INTRODUCTION

Linear model predictive control (MPC) [2], [11], [12]

is well established and widely used both in industry and

academia, but there are still some theoretical and practical

issues which have non-satisfactory answers. For instance, one

well understood conflict is how to obtain a large feasible

region, that is the operating region within which the closed

loop input, output and state do not violate constraints, and at

the same time retain optimum performance. The conundrum

is that algorithms giving large feasibility regions often give

suboptimal performance and vice versa. A simple example

of this trade off is the observation that detuning a control

law will typically result in smaller input variations but

consequently inputs are less aggressive and thus likely to

violate constraints.

Standard guidelines to ensure guarantees of feasibility

and/or stability are commonly accepted, that is, many authors

use the dual mode predictions paradigm [18] in conjunction

with an infinite horizon. Within this paradigm and assuming

therefore the use of infinite output horizons, the deployment

of a terminal control law tuned to give high performance will

often result in relatively small feasible region [10] unless

one uses prohibitively large number of decision variables

(or degrees of freedom, d.o.f.). There is a pragmatic limit

to the number of d.o.f. for the global feasible region as

this compromises the computational burden. A strategy with

the same number of d.o.f. giving good feasibility will be

achieved through detuning of terminal mode but may have

relatively poor performance [13].

The designer has to get balance between the feasibility,

computational load (implied by nc) and the implied per-

formance (affected by K and nc). There are currently no

systematic tools for achieving this balance. Authors [1], [14]

have therefore looked at ways of maximizing the feasibility

without sacrificing too much performance and while utilizing
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a computational inexpensive optimization. However, unsur-

prisingly, there is a hard limit on what can be achieved in

this trade off when in essence, for a fixed nc there is only

one variable to play with, that is, the terminal control law

K. Moreover changing K will change the shape as well as

the volume of the feasible region and it can be hard to make

precise judgements as to what is better.

One suggestion that is still relatively underexplored in

the literature is the concept of triple mode control [15]. In

this strategy one recognises that large feasible regions in

conjunction with good performance often imply nonlinear

or time varying (LTV) prediction dynamics [19]. In fact

one could argue that the optimal law is piecewise affine,

but that introduces directional dependence which is a further

complication this paper wishes to avoid. Hence, a sensible

objective is to find a suitable and fixed LTV control law

which enlarges feasibility without too much detriment to

performance.

The first triple mode controller [15] used the algorithm

of [9] to specify the additional mode of the MPC control

law. In [9] ellipsoidal feasible invariant sets were computed

for a conventional dual mode MPC setup and the implied

LTV law was extracted from these. Recently, the extension

of these results in [3], [6] was used in [7] to specify a more

flexible triple mode algorithm, but still for the nominal case.

However, as the algorithm in [9], [3], [6] were originally

developed for the robust case, later work [5] proposed a

robust triple mode MPC algorithm; this is the base algorithm

that will be used for comparisons in this paper.

Hereon the paper makes the assumption that the terminal

mode is well tuned and considers how one can improve

feasibility through a fixed, possibly LTV, control law for

mode 2 dynamics. Specifically, it the intention is to consider

the potential benefits of Laguerre based approaches that have

been deployed recently within dual mode MPC [17] because

it is known that in many cases changing the parametrization

allows substantial improvements in feasibility with little or

no detriment to performance. A dual mode MPC algorithm

allows d.o.f. for the first nc control movies and then assumes

some fixed (terminal) control law thereafter. This paper first

demonstrates that there are strong analogies between the dual

mode Laguerre algorithms and the mode 2 dynamics pro-

posed within existing Triple mode strategies, consequently

it is worth investigating to what extent a Laguerre approach

may be an effective alternative.

The main contributions of this paper are twofold: Firstly

to show the analogies between Triple mode strategies and the

recent work on Laguerre Optimal MPC. Secondly, using the

insight gained from this, to give a new avenue to the use of
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Laguerre polynomials to obtain large feasible regions without

sacrificing too much local optimality. Section II will give

the necessary background about dual mode MPC, conflicts

for optimal MPC, Laguerre polynomials and Triple mode

MPC. Section III gives essential detail on existing Triple

mode MPC algorithms based on ellipsoidal sets from which

a novel Laguerre Triple mode MPC algorithms is developed

in section IV. Analytical comparisons between existing Triple

mode and the new proposed algorithm are given in section V

followed by some numerical examples in section VI. Finally

conclusions and future work are in section VII.

Remark 1.1: It is straightforward to show, with conven-

tional arguments, that all algorithms have guaranteed stability

and recursive feasibility in nominal case.

II. BACKGROUND

This section summarises a conventional dual mode MPC

algorithm followed by a simple triple mode variant for the

LTI case. Both are formulated using polyhedral feasible

invariant sets, and hence online optimization is based on

quadratic programming (QP).

A. Dual mode or Optimal MPC

Consider a discrete-time state-space model of the form:

xk+1 = Axk +Buk; xk ∈ Rnx , uk ∈ Rnu . (1)

Assumes the following inputs and states constraints:

∆u ≤ ∆uk ≤ ∆u, u ≤ uk ≤ u, x ≤ xk ≤ x (2)

The performance index [18] to be minimized, at each sample

instant, with respect to uk, uk+1... is

J =

∞∑

i=0

(xk+i+1)
TQ(xk+i+1) + (uk+i)

TR(uk+i)

s.t.

{
(1), (2) ∀k ≥ 0,
uk = −Kxk ∀k ≥ nc

(3)

with Q and R positive definite state and input cost weighting

matrices. Where K is the optimal feedback gain minimizing

J in the absence of constraints (2). Practical limitations

imply that only a finite number, that is nc, of free control

moves can be used [12]. For these cases, uk = −Kxk is

implemented [6] by composing that the state nc must be

contained in a polytopic control invariant set (that is MAS):

S0 = {x0 ∈ R
nx : x ≤ xk ≤ x,

u ≤ −Kxk ≤ u, xk+1 = Axk +Buk, ∀k ≥ 0} (4)

For simplicity of notation, the MAS is described in the form

S0 = {x : Mx ≤ b} for suitable M and b and the d.o.f. can

be reformulated in terms of a new variable ck:

uk = −Kxk + ck, k = 0, ..., nc − 1,

uk = −Kxk, k ≥ nc, (5)

The MCAS (maximal controlled admissible set) is given as

SD = {xk : ∃ C ,Mxk +NC ≤ b} (6)

where C = [cTk , . . . , c
T
k+nc−1

]T and hence the equivalent

optimization to (3) is:

min
C

CTSC s.t. Mxk +NC ≤ b; (7)

Details of how to compute positive definite matrix S, ma-

trices N , M and vector b are omitted as by now well

known in the literature [4], [11], [12]. The optimal MPC

(OMPC) algorithm is given by solving the QP optimization

(7) at every sampling instant then implementing the first

component of C, that is ck in the control law of (5). When

the unconstrained control law is not predicted to violate

constraints (i.e. xk ∈ S0), the optimizing C is zero so the

control law is uk = −Kxk. The optimization of (7) can

require a large nc d.o.f. to obtain both good performance

and a large feasible region.

B. Conflicts for Optimal MPC

The major conflict is between maximizing the feasibility

and the achievable closed loop performance.

• If nc is large enough [18], the MCAS is the largest

feasible space possible and moreover the control law is

the global optimum.

• In general, for computational (and sometime robustness)

reasons, nc is chosen small.

• If nc is small, then the volume of the MCAS maybe

dominated by the implied state feedback K within (5),

hence a highly tuned K could give rise to small MCAS

and a lesser tuned K could give much larger feasible

regions.

• Conversely, if K is poorly tuned, then the cost function

could be dominated by poorly performing predictions

and hence the closed loop control will be suboptimal.

The designer has to get a balance between the feasibility,

computational load and the implied performance.

C. Laguerre OMPC(LOMPC)

A fundamental weakness of the OMPC algorithm when

K is well tuned is relatively poor feasibility, that is small

MCAS, when nc is small. The weakness can be overcome by

increasing the nc to allow more steps for reaching the MAS,

but obviously this is at the expense of an increased com-

putational burden. Another way of increasing the feasibility

is by detuning the terminal law K which may compromise

performance. However, an alternative highlighted in [17] is

to parameterise the d.o.f. differently so that the impact of

the perturbation sequence C on the input predictions (5) is

over a longer horizon, thus relaxing the time requirement for

entering MAS. This section summarises an algorithm which

uses Laguerre polynomials for this parameterisation; readers

may be interested that alternatives do exist but constitute

ongoing work.

1) Laguerre Polynomials: Laguerre polynomials are de-

fined as follows:

Li(z) =
√

(1− a2)
(z−1 − a)i−1

(1− az−1)i
; 0 ≤ a < 1 (8)
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These are orthonormal with time constant of a and hence

span the input prediction space effectively. Laguerre poly-

nomials allow the perturbation signals ck to evolve over

a slower time scale than single perturbations as in the

conventional MPC algorithm, consequently the associated

feasible region or MCAS can be bigger [16], [17]. The

Laguerre sequences can be computed using the following

state-space model.

L(k + 1) =








a 0 0 0 . . .

β a 0 0 . . .

−aβ β a 0 . . .
...

...
...

...
. . .








︸ ︷︷ ︸

AL

L(k); (9)

L(0) =
√

1− a2[1,−a, a2, . . . ]T ; β = 1− a2

where Li(z) = eTi [L(0), L(1), L(2), . . . ][1, z
−1, z−2, . . . ]T

and eTi is the i-th standard basis vector. Note that if a = 0
than the matrix AL is a shift matrix, that is ones on the

lower diagonal. The dimension of the state-space predictor

(9) can be taken as large (or small) as needed to capture

the desired polynomial sequences. A combination of these

sequences could be computed as:

C =











ck
...

ck+nc−1

0
...











=






L(0)T

L(1)T

...




 η = HLη (10)

where η is the nL dimension decision variable when one

uses the first nL column of HL.

2) LOMPC: Laguerre polynomial and MPC: Laguerre

OMPC (LOMPC) is a dual mode MPC algorithm [17] where

the input perturbations ck are parameterised in term of

Laguerre polynomials (10). First define the input perturbation

sequence C as in (10) as opposed to the finite form of

OMPC. The key difference here is that the HL matrix has

a large number of rows, technically infinite (it is better to

capture the asymptotic behavior with Lyapunov equations).

The prediction cost can be represented in term of η as:

J = ηT [
∞∑

i=0

Ai
LL(0)SL(0)

T (Ai
L)

T ]η = ηTSLη (11)

with ck+i = L(i)T η and L(i) = ALL(i − 1). Constraints

represented by the MCAS can also be rewritten in the form

Mxk +NHLη ≤ l (12)

for appropriate M,N . The LOMPC algorithm is defined by

minimising J of (11) w.r.t. η and subject to (12). Define the

optimum ck = L(0)T η and implement the control law in (5).

D. Basic Triple mode MPC algorithm

A different suggestion for overcoming the conflict be-

tween performance and feasibility is to allow more complex

terminal control laws [15], [19]. For example, a LTV law

may be closer to the true piecewise affine (PWA) optimal

law, and also allows much larger feasibility regions and

moreover gives an exact quadratic cost. So, instead of the

dual mode prediction structure of (5), some authors have

proposed terminal controls such as:

uk = −Kxk + ck, k = 0, . . . , nc − 1(MODE1),

uk = −Kxk + dk−nc
, k = nc, . . . , nc + nd − 1(MODE2),

uk = −Kxk, k ≥ nc + nd(MODE3).
(13)

where the notable change is the introduction of terms di, i =
0, . . . , nd − 1 and hence the addition of a 3rd mode into

the predicted control law. Here, ci are the only d.o.f. to be

optimized online, whereas, ideally, the di could be inferred

online based on offline or previous optimizations (it is

mentioned in [5] that occasionally this needs to be reseeded).

For example, in [15], [19], the second model mode control

moves are defined as

d = [dT0 , . . . , d
T
nd−1] = Hxnc

, (14)

that is, the di values depend only on the predicted state at

the commencement of mode 2. Then, with trivial algebra

(simulating the model (1) with (13) and (14)), one can show

that the Mode 2 predictions take the form of LTV feedback,

uk = −Kk−nc
xk, k = nc, . . . , nc + nd − 1, (15)

where Ki depend on K, H , A and B.

The cost function J for the triple mode predicted feedback

structure can be written J = CTSC+dTWd+ṕ (W defined

analogously to S). As d = Hxnc
and with Φ = A − BK,

xnc
= Φncx0 + [Φnc−1B, . . . , B]C, we can write

J = CTWTC + CTVTx0 + pT , (16)

for suitable WT , VT and pT [15] with constraint of the form

MTx+NTC ≤ bT (17)

The matrix H is chosen such that it implies, in some sense, a

maximal feasible invariant set. The next section will discuss

earlier ellipsoidal based algorithms developed for selecting

the best H to use in triple mode MPC.

III. TRIPLE MODE MPC USING ELLIPSOIDAL INVARIANT

SETS

Early Triple mode algorithms were motivated by the robust

case and thus began with the work of [8] and ellipsoidal

invariant sets, e.g.:

SE = {x : xTPx ≤ 1}; P > 0 (18)

where ΦTPΦ ≤ P , Φ = A−BK and P small enough such

that within SE , constraints (2) are always satisfied with the

control law u = −Kx. However, ellipsoidal invariant sets are

conservative in volume and thus give artificially tight limits

on feasibility; points outside the set may still be feasible.

Within Triple mode algorithms, the ellipsoidal sets are used

as an systematic but interim step to finding a suitable H and

are not deployed in the final algorithm.
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Dual mode control is so effective because one is able

to make implicit assumption the terminal mode and hence

only compute the initial mode explicitly using polytopic con-

straints. Similarly, to form an efficient triple mode algorithm,

it is necessary to make implicit assumptions for the terminal

mode and mode 2 while selecting the initial Mode explicitly

using polytopic constraints.

In order to find an implicit choice for Mode 2, different

type of choices based on ellipsoidal sets with only few

parameters were proposed in [15] and [9]. The idea of

defining an augmented system model incorporating the mode

2, 3 d.o.f. was proposed in [9] to handle the feasibility

maximisation offline by optimizing the size of an invariant

ellipsoidal subject to constraints. This offline problem is

convex and known as an Efficient Robust Predictive Control

(ERPC) and an equivalent convex semidefinite programing

(SDP) based problem was also proposed in [6] known as

generalized ERPC (GERPC). The rest of this section will

specify the GERPC offline problem (with ERPC as a special

case) for triple mode MPC.

A. ERPC

Define an augmented system model which incorporates

the ’d.o.f.’ dk as follows:

zk+1 =

[
A−BK BE

0 G

]

︸ ︷︷ ︸

Ψ

zk; zk =

[
x

d

]

(19)

where E and G are variables that are used to optimize size

and shape of the associated feasible invariant ellipsoid. ERPC

used G = IL, where

E = [I, 0, . . . , 0], IL =








0 I 0 . . . 0
0 0 I . . . 0
...

...
. . .

0 0 . . . 0 I







.

Define control perturbations through dynamics

uk = −Kxk + Edk

dk+1 = Gdk

The existence of an ellipsoidal εz = {z : zTQ−1
z z ≤ 1}

ensure feasibility if there exist E,G,Qz and W such that

ΨTQ−1
z Ψ−Q−1

z < 0,
[
W [M ND]
[M ND]T Q−1

z

]

> 0, W ≤ b2. (20)

The size of the projection of εz to the x-space i.e. εx which

is proportional to the ln det(TQzT
T )−1, where x = Tz.

Hence maximization of εx is obtained by

min
Qz,D,G

ln det(TQzT
T )−1 s.t. (20) (21)

B. GERPC

GERPC improved on ERPC by allowing dynamics in the

update of dk (that is G 6= IL) rather than just the shift

operator deployed in ERPC. Hence the augmented model

for full triple mode (that is with the initial mode also added)

becomes:

zk+1 =





A−BK BD BE

0 G 0
0 0 IL





︸ ︷︷ ︸

Ψ

zk; zk =





x

d

C



 (22)

with modified triple mode control law

uk = −Kxk +Ddk + ck, k = 0, . . . , nc − 1,

uk = −Kxk +Ddk, k = nc, . . . , nc + nd − 1,

uk = −Kxk, k ≥ nc + nd.

(23)

where ck is d.o.f. to be optimized online, while dk is defined

from the GERPC offline solution as dk+1 = Gdk (dk will

need to be seeded). Whereas ERPC use a default choice of

d = Hx for a suitable H , in fact the initial value of d can

be also be considered as a d.o.f., so the total d.o.f. in triple

mode could be nc+nd. Corresponding inequalities to ensure

constraint satisfaction take the form:

Mx+N1d+N2c ≤ b (24)

and the cost J(x, d, C) to be minimised, subject to (24) can

be constructed as

J(x, d, C) = [x d C]TPT [x d C], (25)

for suitable PT which is simple to find in the nominal LTI

case. The reader should note that there are some minor

conditions on PT in the uncertain case which require SDP

solver, but those are outside the remit of this paper. Algorithm

A (Triple mode MPC):

1) Given design parameters nc,W and R, calculate D

,Qz, G and PT from (21).

2) If x0 ∈ S0 implement terminal mode control law.

Otherwise,

a) Solve the optimization problem

minC,d J(xk, dk, C) s.t. to Mxk + N1dk +
N2C ≤ b.

b) Implement uk = −Kxk+Ddk+Eck to the plant.

3) Set k = k + 1, go to step 1.

IV. USING LAGUERRE FUNCTIONS IN TRIPLE MODE MPC

The main weakness in triple mode MPC is linked to

the efficiency of the middle mode; can this be computed

implicitly or explicitly and also is the offline optimisa-

tion for identifying a suitable dynamic G overly complex?

This section explores a more intuitive technique based on

predefined dynamics in the middle mode; for this paper

Laguerre polynomials are proposed as these have been shown

to be effective elsewhere in improving feasibility without

detriment to performance [16], [17]. This section shows how

Laguerre functions are analogous to the mode 2 of GERPC

based Triple mode and thus can be deployed in the middle

mode for a triple mode MPC algorithm. Later sections use

examples to demonstrate the benefits.
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A. Laguerre triple mode MPC

It was noted earlier (e.g. eqn.(9)) that using Laguerre poly-

nomials, one can define the input perturbations as ck+i =
L(i)T η where L(i) = ALL(i − 1). Unpacking this into a

different format one gets:

ηk+1 = AT
Lηk, dk = LT

0 ηk, (26)

uk = −Kxk + dk = −Kxk + LT
0 ηk (27)

It is clear therefore that this is equivalent to Triple mode

where the choices are G = AT
L, D = LT

0 . Consequently, an

equivalent augmented GERPC system is:

zk+1 =





A−BK BLT
0 BE

0 AT
L 0

0 0 IL





︸ ︷︷ ︸

Ψ





xk

ηk
ck



 (28)

where E = [I, 0, . . . , 0]. These dynamics should fulfill the

constraints given by

Mx+N1HLη +N2C ≤ b. (29)

To ensure the proper synergy with the triple mode MPC and

to allow strict statements about recursive feasibility and con-

vergence, we will demonstrate how easily the corresponding

cost J can be computed which includes the entire implied

dynamic. The predicted cost can be represented in terms of

perturbations defined as dk+i = L(i)T η as:

J(C, η) = CTScC + ηTSηη, (30)

s.t. Mx+N1HLη +N2C ≤ b,

with

Sη = HT
LScHL; Sc = BTΣB +R;

Σ− ΦTΣΦ = Q+KRK; Φ = A−BK (31)

Algorithm B (Laguerre triple mode MPC)

Given design parameters nc, nd, Q and R and calculate

LT
0 and AL from (9). Calculate HL form (10) and finally

calculate Sc and Sη from (31).

1) K=0; if x0 ∈ S0 implement terminal mode control law

i.e. u = −Kx0 else

2) Solve the optimization problem

minC,η J(C, η) subject to

Mxk +N1HLηk +N2C ≤ b.

3) Implement uk = −Kxk + LT
0 ηk + Eck to the plant.

4) Set k = k + 1, go to step 2.

V. COMPARISON BETWEEN TRIPLE MODE MPC AND

TRIPLE LAGUERRE MPC

The previous section has shown that Laguerre polynomials

[17] are an alternative to GERPC [5] for generating mode

2 dynamics in triple mode MPC algorithms using polytopic

constraints. Triple mode MPC algorithm takes dual mode

predictions as a base and increases the region of attraction

by adding a third mode (in act what is denoted as mode 2 is

the additional mode). The motivation is to improve feasibility

without detriment to performance and preferably with little

impact on the computational burden.

Triple mode is known to be effective in improving fea-

sibility and without detriment to performance so the key

question to discern is whether the strategy is better than just

increasing the number of d.o.f. available to a standard OMPC

algorithm. Secondly, there is interest in whether the proposed

Laguerre approach has benefits over the earlier GERPC

based approaches. It should be noted that all cases lead to

a quadratic programming (QP) problem - investigations into

the structure of these QPs and their exploitation is ongoing

work.

In terms of offline computations, the proposed approach

is a significant improvement on the GERPC based approach:

(i) GERPC requires a challenging SDP in order to determine

the dynamic G whereas (ii) the Laguerre algorithm requires

only the choice of a where in general a larger a inproves

feasibility but slows predicted responses and thus this is an

intuitive design parameter and a pragmatic choice. Neverthe-

less GERPC is more systematic, but because it is based on

ellipsoidal rather than polytopic sets, it is unreasonable to

make this case too strongly.

In terms of online computations, Triple mode has nc+nd

d.o.f. which is an increase on OMPC - although it is implicit

in choosing Triple mode that OMPC with nc d.o.f. has too

small a feasible region so more d.o.f. are required and the

question is more, how best to use these? Should we use

a Triple mode approach or add nd d.o.f. to a conventional

OMPC approach? It is already known that Triple is more

effective in general and so in this paper focus will given

on comparing the efficacy of the GERPC approach and the

Laguerre approach.

VI. NUMERICAL EXAMPLES

The purpose of this section is to demonstrate by exam-

ple the differences in GERPC and Laguerre based Triple

mode algorithms. Two examples are given and plots of the

feasibility regions are given for: (i) MAS; (ii) the ellip-

soidal invariant set for augmented system (for information as

GERPC is based on this); (iii) the feasible regions for the two

Triple mode approaches. For the purposes of visualization,

examples are restricted to second order systems for which it

is possible to plot regions of attraction.

The region of attraction for examples 1 and 2 are plotted

in Fig.1 and Fig.2 respectively. It is clear from both figures

that Laguerre triple mode MPC has a larger feasible region

than triple mode MPC for the same number of d.o.f.. For

completeness it is also noted that these feasible regions are

far larger than that for OMPC with a comparable number of

d.o.f.. It is self-evident from Table I that Laguerre MPC is

expected to give the best dynamic performance.

1) Example 1:

A =

[
0.6 −0.4
1 1.4

]

; B =

[
0.2
0.05

]

; C =
[
1 −2.2

]
(32)

with constraints

− 1.5 ≤ uk ≤ 1.5; −5 ≤ xk ≤ 5;− 5 ≤ yk ≤ 5 (33)
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Fig. 1: Comparison MCAS for nc = nd = 2 - Example 1
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Fig. 2: Comparison MCAS for nc = nd = 2 - Example 2

Using Q = I , R = 0.5, a = 0.8 and nc = 2, nd = 2.

2) Example 2:

A =

[
1 0.1
0 1

]

; B =

[
0

0.0787

]

; C =
[
1 0

]
(34)

with constraints (33). Using Q = CTC, R = 0.1, a = 0.8
and nc = 2, nd = 2.

VII. CONCLUSIONS AND FUTURE WORKS

The main contribution of this paper was to demon-

strate analogies between earlier triple mode MPC algorithms

and recently published MPC algorithms deploying Laguerre

TABLE I: Runtime costs for example 1 and 2.

Example x0 Optimal Triple Mode MPC Laguerre MPC

1 0.1,0.05 0.4147 0.4577 0.4304

2 -2.0,1.8 8.0473 8.0473 8.0473

polynomials. Following on from this it was shown how

Laguerre polynomials can be embedded within a Triple

mode approach. Examples demonstrate that there are many

cases where such an approach is an improvement on earlier

work and thus this avenue of research is worth pursuing

further. However, whereas Laguerre is a pragmatic choice,

there is a need to investigate in parallel issues such as:

what alternatives are there to Laguerre and what choices

lead to a QP structure which lends itself to efficient online

optimisation? Finally, this paper has focussed on the LTI case

whereas algorithms such as GERPC were originally posed

for the robust case and thus there is interest in considering

how best to extend results to the robust case.
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