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Abstract— In this paper, we propose an algorithm of adap-
tive optimal control scheme for systems whose dynamics are
unknown and the states are contaminated by noises. The basic
control law is Policy Iteration which can solve HJB equation
recursively. In the proposed method, the value function is
estimated using a nonlinear filtering but the state of the system
is not estimated since the system model is not available. Since
the proposed method can reduce the effects of the noises
without using the system model, we can apply this method
to many practical systems without model and parameters.

I. INTRODUCTION

In control problems for real plants, optimal control is

popular and effective method. The optimal control has an

advantage of minimizing cost functions which we define,

however, we can not obtain good responses in cases where

the system model includes modeling uncertainties. Since

it is difficult to identify the accurate system model of

nonlinear systems, the optimal control is not effective in

those cases. For linear systems with a quadratic cost function

the optimal control law can be derived by algebraic Riccati

equation(ARE), in the nonlinear systems, the optimal con-

trol law can be derived by Hamilton Jacobi Bellman(HJB)

equation. However, it is hard to be solved, and there are

only offline techniques for obtaining an approximate optimal

solution.

In a recent research, a method which can solve HJB equa-

tion for the nonlinear affine systems have been developed in

[1]. Since the online technique called “Policy Iteration” is

used in this method, it doesn’t need the knowledge of the

drift term of the system. It can solve HJB equation by up-

dating control law recursively using responses of the system.

Furthermore, an extended method which can be applied to

systems whose dynamics are unknown has been developed in

[2]. However, these methods require exact state observations,

and it is pointed out that they don’t work well when the states

are contaminated by noises. Therefore, in this paper, we

propose a method which can derive an approximate optimal

control law even when state observations are contaminated

by noises. We call the proposed method ’Robust Extended

Policy Iteration (REPI)’. REPI can estimate the true cost

function using a gradient method and a method of estimation

of parameters. The effectiveness of the proposed method is

shown by a numerical simulation.

This paper is organized as follows. In section II we state

the problem formulation and HJB equation. EPI algorithm is

explained in section III. We propose a method in section IV
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and V while the algorithm is summarized in section VI. A

simulation result is given in section VII. Finally we conclude

the paper in section VIII.

II. PROBLEM FORMULATION AND HJB EQUATION

The problem formulation is described in the former sub-

section. In the latter subsection, we explain HJB equation.

The solution of the problem is equivalent to the solution of

HJB equation.

A. Problem formulation

In this paper, we consider nonlinear affine systems de-

scribed by

ẋ(t) = f(x(t)) + g(x(t))u(t) , x0 = x(0) (1)

y(t) = x(t) + w(t) , w ∼ N (0,Σ) (2)

where x(t) ∈ R
n is a state, u(t) ∈ U ⊆ R

m is a control

input, y(t) ∈ R
n is an output and w(t) is an observation

noise normally distributed with 0 mean and a covariance

matrix Σ. f(x) ∈ R
n, g(x) ∈ R

n×m are also unknown

and f(x) + g(x)u is assumed to be Lipschitz continuous.

Furthermore, the covariance matrix Σ := [σij ] is also

unknown, but the range of each element is known. Namely,

for all elements σij , 1 ≤ i, j ≤ n,

σmin
ij ≤ σij ≤ σmax

ij

are satisfied while σmin
ij and σmax

ij are known.

We consider a cost function described by

J(x0, u(·)) =

∫

∞

0

r(x(τ), u(τ))dτ (3)

where r(x, u) := xT Qx + uT Ru is a stage cost while Q

and R are positive definite matrices.

The optimal control problem is to find a control input

u(t) such that it stabilizes the system (1) while minimizes

the cost function J(x0, u(·)).

B. HJB equation

In this subsection and next section, we assume there are

no observation noises for illustrative purposes. We introduce

a Hamiltonian described by

H(x, u, Vx) = r(x, u) + Vx (f(x) + g(x)u) (4)

where Vx := ∂V
∂x

. In the following sections, we call a

function V (x) value function. According to [3], V ∗(x) and
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u∗(x) are an optimal function and an optimal input if and

only if they satisfy the following equations:

0 = min
u∗

[

H
(

x, u∗(x), (V ∗

x )T
)]

, (5)

u∗(x) = −
1

2
R−1gT (x) (V ∗

x (x))
T

. (6)

III. EXTENDED POLICY ITERATION

The optimal input can be obtained by solving HJB

equation, however it is hard to be solved. To overcome

this problem, EPI algorithm is proposed in [2]. Before

exmlaining EPI, we summarize PI algorithm briefly(See the

details in [1]).

PI algorithm¶ ³
1. Policy Evaluation

Determine a value function using responses of

the system from some initial states. Namely,

compute a value at time t described by

V (i)(x) =

∫ Te

t

r(x(τ), µ(i)(x(τ)))dτ. (7)

where Te is a time such that the system is

regarded as converged. Furthermore, approxi-

mate a value function as V (i)(x) := θT
i φ(x)

and determine the parameter by a least-square

method as

θi+1 = argminθ

L
∑

j=1

|V (i)(xj) − θT φ(xj)|
2,

(8)

where L is a number of data, φ(x) ∈ R
N is a

basis function and V (i)(xj) in (8) is computed

by (7).

2. Policy Improvement

µ(i+1)(x) = −
1

2
R−1gT (x)

(

V (i+1)
x (x)

)T

(9)

3. i ← i + 1, go to step 1.

µ ´
In the algorithm, µ(i)(x) and V (i)(x) indicate a state feed-

back law and a value function after i times updated. Further-

more, let an initial input µ(0)(x) stabilize (1) asymptotically.

If the function V (i)(x) is accurately approximated then

µ(i)(x) → µ∗(x) and V (i)(x) → V ∗(x) as i → ∞.

Since it requires input dynamics g(x) in (9), we cannot

obtain µ(i+1)(x) because g(x) is unknown. EPI introduces

integrators in front of unknown systems, in order to trans-

form the systems into augmented ones whose input dynamics

is known, i.e.,

ẋa =

[

ẋ

u̇

]

=

[

f(x) + g(x)u
0

]

+

[

0
I

]

v

:= fa(xa) + ga(xa)v (10)

where xa :=
[

xT , uT
]T

and a new feedback law is v =
µa(xa). We define a new cost function corresponding to (3)

as follows.

Ja(xa(t), v(·)) :=

∫

∞

t

ra(xa(τ), v(τ))dτ (11)

ra(xa, v) := xT
a Qaxa + vT Rav (12)

where Qa := diag(Q,R) and Ra are positive definite

matrices. Note that right hand side of (11) is equivalent to

the original cost function (3) when Ra → 0 [2].

This algorithm can approximately solve HJB equation for

the nonlinear affine systems without the knowledge of f(x)
and g(x).

IV. REDUCTION NOISE EFFECT FOR COST

The EPI algorithm assumes that a true state is available. In

the following sections, we consider a situation where there

are observation noises and an output (2) is available instead

of a true state. The proposed method is mainly described

in this and next section. The method is constructed by 3

steps, namely, (a) estimation of true values (b) averaging

the estimated values and (c) reduction the effects of noises

for a basis function. In this section, (a) and (b) steps are

stated.

The cost while t ∈ [kT, (k + 1)T ) in the iteration i =
0, 1, · · · is obtained by

C
µ(i)

k =

∫ (k+1)T

kT

r(y(τ), µ(i)(y(τ)))dτ. (13)

For simple notation, we consider a sample-path from an

initial state x0 to the origin under the policy µ(i)(x). Then,

C
µ(i)

k can be written as Ck in short. Although the output

and the value are dependent on the iteration number, it is

dropped unless otherwise stated.

Since the cost which we can observe is obtained by y(t)
instead of x(t), the value is given by

v̂k =

∫ MT

kT

y(τ)T Qy(τ) + µ(y(τ))T Rµ(y(τ))dτ

+v̂M , k = 0, 1, · · · ,M − 1.

(14)

where M is a sufficiently large number and satisfies Te =
MT . Hereafter, we call this value observed value and the

value expressed by

vk =

∫ MT

kT

x(τ)T Qx(τ) + µ(x(τ))T Rµ(x(τ))dτ

+vM , k = 0, 1, · · · ,M − 1.

(15)

true value. If there are no observation noises, costs are

nearly equal to zero near the origin, hence the values are

also nearly zero near the origin. However, integrated term in

(14) contains square of the noise w, hence E[v̂k − vk] 6= 0.

Therefore, the observed values are not nearly zero near the

origin. Namely, the observed values become much larger

than that in the case of no noises. Therefore, it is necessary

to suppress the effects of noises in (14). To achieve this

purpose, REPI estimates true values from the observed

values.
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A. Derivation of discrete time model

In this subsection, we introduce a discrete time model to

estimate the true values. Since a true value at time MT is

nearly zero, it is convenient to compute the value function in

a reverse time. Namely, we regard a time MT as an initial

time and the value is computed backward. The observed

value and the true value are described by

v̂k =

∫ kT

0

y(τ)T Qy(τ) + µ(y(τ))T Rµ(y(τ))dτ

+ v̂0 , k = 1, 2, · · · ,M (16)

vk =

∫ kT

0

x(τ)T Qx(τ) + µ(x(τ))T Rµ(x(τ))dτ

+ v0 , k = 1, 2, · · · ,M (17)

where v0 is the value of
∫

∞

MT
r(x, u)dτ and v̂0 is its observed

value respectively. Approximate (16) as

v̂k ≃

∫ kT

0

x(τ)T Qx(τ) + µ(x(τ))T Rµ(x(τ))dτ

+

∫ kT

0

wT Qw +

(

∂µ

∂x

∣

∣

∣

∣

x=y

w

)T

R

(

∂µ

∂x

∣

∣

∣

∣

x=y

w

)

dτ

+ v̂0, (18)

v̂0 = θT φ(x + w)

≃ θT φ(x) + θT ∂φ

∂x

∣

∣

∣

∣

x=y

w = v0 + W0. (19)

Please note here that a linear term with respect to w can be

considered zero for a fixed state x since the mean value of

w is zero. From (17), recursive relation of vk implies

vk =

∫ (k−1)T

0

x(τ)T Qx(τ) + µ(x(τ))T Rµ(x(τ))dτ

+

∫ kT

(k−1)

x(τ)T Qx(τ) + µ(x(τ))T Rµ(x(τ))dτ + v0

=

∫ kT

(k−1)

x(τ)T Qx(τ) + µ(x(τ))T Rµ(x(τ))dτ

+ vk−1 , k = 1, 2, · · · ,M. (20)

Therefore, a discrete time model of the value function is

derived from (18) and (20) as follows:










vk = vk−1 +
∫ kT

(k−1)
xT Qx + µ(x)T Rµ(x)dτ

ηk :=
∫ kT

0

(

wT Qw + wT γ(y)w
)

dτ + W0

v̂k = vk + ηk.
(21)

where γ(y) :=

(

∂µ
∂x

∣

∣

∣

x=y

)T

R

(

∂µ
∂x

∣

∣

∣

x=y

)

.

However, we cannot estimate vk with this model because

1)
∫ kT

(k−1)
x(τ)T Qx(τ) + µ(x(τ))T Rµ(x(τ))dτ is un-

known

2) A covariance matrix Σ is unknown

First, we consider the problem 1). We consider moving

mean random walk models defined by

αk = αk−1 + ξ , ξ ∼ N (bk−1, σ
2
1)

bk = bk−1 + ζ , ζ ∼ N (0, σ2
2).

(22)

and approximate αk−1 ≃
∫ kT

(k−1)T
x(τ)T Qx(τ) +

µ(x(τ))T Rµ(x(τ))dτ . Then, we have a new discrete

time model described by






























xk =





1 1 0
0 1 1
0 0 1



xk−1 +





0
ξ

ζ





v̂k = [1 0 0]xk + ηk

xk := [vk, αk, bk]
T

ηk :=
∫ kT

0

(

wT Qw + wT γ(y)w
)

dτ + W0

(23)

where ξ ∼ N (0, σ2
1) and ζ ∼ N (0, σ2

2). Note that this

system is observable.

Next, we consider the problem 2). Although Σ is time-

invariant, we introduce a slowly time-varying random walk

model sk = sk−1 + ν, ν ∼ N (0, U) in order to ro-

bustfy the algorithm, where U is a design parameter and

sk := [σk,11, σk,12, · · · , σk,1n, σk,21, · · · , σk,nn]
T ∈ R

n2

and Σk := [σk,ij ]. Then, an observation noise w(t) satisfies

following equations:

E[w(t)T Qw(t)] = E
[

tr
(

Qw(t)wT (t)
)]

= tr (QΣ) ,

E
[

w(t)T γ(y)w(t)
]

= tr (γ(y)Σ) .
(24)

Furthermore, we define Γ(yk−1) and Λ(yk−1) by

Γ(yk−1) := [Γij(yk−1)] = (Q + γ(yk−1)),

Λ(yk−1) := [Γ11(yk−1), · · · , Γnn(yk−1)] .

and assume that this system is ergodic and ∂µ
∂x

is constant

over t ∈ [(k − 1)T, kT ). Then we have

ηk ≃ ηk−1 + tr ((Q + γ(yk−1))Σk−1) T (25)

= ηk−1 + TΛ(yk−1)sk−1. (26)

We estimate Σ in an interval such that the system has

converged almost to zero. Then vk ≃ 0 and v̂k = vk + ηk ≃
ηk. Therefore, another discrete time model is given by






[

ηk

sk

]

=

[

1 TΛ(yk−1)
0 I

] [

ηk−1

sk−1

]

+

[

0
ν

]

v̂k = ηk.
(27)

Note that σij = σji and Γij = Γji, hence we can use a

reduced model instead of (27). Furthermore, if we know the

structures of Σ e.g., x1 and x2 are uncorrelated, then we can

further reduce the dimension of (27) using the information

explicitly.

The estimation procedure is summarized as follows. First,

obtain the data along a sample-path. Second, estimate Σ
using (27). Finally, estimate the true values using (23) where

w(t) ∼ N (0, Σ̂) while Σ̂ is an estimated value of Σ.

B. Estimation of true values using E-CEnKF

We derived discrete time models for the estimation in

previous subsection. Since there are some state constraints

e.g., vk is always non-negative and we know each bounds

of σij , we apply E-CEnKF( Efficient - Constraind Ensemble

Kalman Filter) which can explicitly deal with nonlinear and

non-gaussian noise and state constraints. For details, see
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[4],[5]. The estimated value of v(i)(yk) is denoted v
(i)
est(yk)

in the following.

C. Averaging estimated values

An averaged value E [V (yk)] may be more accurate ap-

proximation for a true value V (xk) rather than the estimated

value v
(i)
est(yk). For an arbitraly output yk, a new value is

defined by

v̄(i)(yk) :=
1

i + 1





i
∑

j=0

V (j)(yk) + v
(i)
est(yk)



 (28)

where i is a current iteration number, and V (j) is an

approximated value function at j-th step. Since (28) requires

full memories of parameters θj at j = 0, 1, · · · , i, we use

the following equivalent equation:

v̄(i)(yk) = (1 − αi)V
(i)(yk) + αiv

(i)
est(yk) (29)

where αi = 1
i+1 . We determine the optimal parameter using

v̄
(i)
k for policy improvement.

V. REDUCTION OF NOISE EFFECT FOR BASIS FUNCTION

The value function is approximated by weighted sum of

input data φ(y) and output data V (i)(y), and the parameter

is determined by a least-square method. So far we have

considered the influence of noises only to the output. In this

section, we consider to suppress the effects of the noises to

the basis function φ(y).

A. Policy Improvement

In a least-square method, an optimal parameter θ∗ is

derived by

θ∗ =
(

ΦΦT
)−1

ΦY (30)

where

Φ := [· · · |φ(yk)| · · · ] , Y :=









...

v̄(i)(yk)
...









.

Since the noises are squared due to square operation ΦΦT in

(30), the parameter is always updated as θi 6= θi+1. Hence,

we employ an update law by

θi+1 = θ∗ − βi (θ∗ − θi) . (31)

The second term in (31) is a feedback to keep the parameter

’small’ and βi is a gain.

Furthermore, not to continue to update, we also employ a

dead zone method as

|θ∗ − θi| < ǫθ ⇒ βi = 1, (32)

where ǫθ is a design parameter.

VI. REPI ALGORITHM

In sec.IV,V, we proposed a method to solve the optimal

control problem given in Sec. II-A approximately. We call

the algorithm ’Robust Extended Policy Iteration’ in the sense

of robustness against an observation noise and the pseudo-

code is summarized as follows.

Step 0: Initialize

Step 0a: Set k = 0, i = 0,m = 0, x(0) =
x0, δ1, δ2,Ω and θ0

Step 0b: Set the iteration number for Policy Iter-

ation I , a number of initial states L and a

sampling interval T

Step 0c: Determine the first policy satisfied such

that µ(0)(0) = 0 and µ(0)(x) is continuous

and stabilizes the system.

Step 1: Do for i = 0, 1, · · · , I

Step 2: Do for m = 1, 2, · · · , L

Step 3: Do for k = 0, 1, · · · ,M − 1

Step 3a: ym
k = x(kT ) + w(kT )

Step 3b:Transit states following system dynamics

while t ∈ [kT, (k+1)T ) using a feedback

law u(y) = µ(i)(y(t)), y(t) = x(t) +
w(kT )

Step 3c: ym
k+1 = x((k + 1)T ) + w((k + 1)T )

Step 3d:If |ym
k+1| > δ2 then reject data, set x0 on

Ω randomly, go back to Step 3.

Step 3e:

C
µ(i),m
k =

∫ (k+1)T

kT

r(y, µ(i)(y))dτ

Step 3f: k ← k + 1

Step 3g: If |Cµ(i),m
k | < δ1 then go to Step 4.

Step 4: v̂
m,(i)
M = θT

i φ(yM )
Step 5: Do for j = M − 1,M − 2, · · · , 1

Step 5a: v̂
m,(i)
j = C

µ(i),m
k + v̂

m,(i)
j+1

Step 5b:j ← j − 1

Step 6: As sec.IV-A ,IV-B, obtain estimated values

v
m,(i)
est (yj) , j = 1, 2, · · · ,M using the sequential

data v̂m
j , j = 1, · · · ,M − 1

Step 7: Do for j = M − 1,M − 2, · · · , 1

Step 7a: v̄m,(i)(yj) = (1 − αi)V
(i)(ym

j ) +

αiv
m,(i)
est (yj)

Step 8: Set x0 on Ω randomly.

Step 9: m ← m + 1, if m ≤ L then go to Step 2.

Step 10: Compute the parameter θ∗ as minimizing a sum

of squared approximation error Ĵ (i).

Ĵ (i) :=
L

∑

m=1

M−1
∑

j=0

(

ǫ̂
m,(i)
j

)2

ǫ̂
m,(i)
j := v̄

m,(i)
j − θT

∗
φ(ym

j )

Step 11:Update the parameter and the value function as

θi+1 = θ∗ − βi(θ∗ − θi) , V (i+1)(x) = θT
i+1φ(x).
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Step 12:Update policy as

µ(i+1)(x) = −
1

2
R−1gT (x)

(

∂V (i+1)(x)

∂x

)T

Step 13: i ← i + 1, if i ≤ I then go to Step 1.

Remarks:

• Step 3d rejects the data if the system is destabilized

and it is better that not to use the data. The reason is

as follows. The destabilized state causes a very large

observed value. In a least-square method, an optimal

parameter is strongly affected by the value. Therefore,

the data in the case where a state is destabilized should

be rejected and δ2 indicates the threshold value.

• Step 3g judges whether a state converges to zero and

δ1 is the threshold value. It can be replaced by t > Te

where Te is a sufficient large time.

VII. SIMULATION

For simplisity, we assume that the covariance matrix is

defined by

Σ =

[

σ 0
0 σ

]

and the range is described by σmin ≤ σ ≤ σmax.

We consider the following nonlinear system:
[

ẋ1

ẋ2

]

=

[

x2

x3
1 − 3x2

1x2 − x1 + x2

]

+

[

0
−1

]

u (33)

and the following cost function as Q = I , R = 1. Namely,

J(x0, u(·)) =

∫

∞

0

(

xT x + uT u
)

dτ. (34)

As Sec. III, REPI is applied to the system in the case that

g(x) is unknown. A standard deviation is σ = 0.04, weights

of an augmented cost function are Qa = diag(I2×2, 1) and

Ra = 0.05, a basis function is defined as follows, and other

settings are shown in Tab.I:

φ(x) = [x2
1, x1x2, x

2
2, x1u, u2, ux2, x

4
1, x

3
1x2, x

2
1x

2
2,

x1x
3
2, x

4
2, x

3
1u, x3

2u, x2
1u

2, x2
2u

2, x1u
3,

x2u
3, u4, x1x2u

2, x1x
2
2u, x2x

2
1u]T

Accuracy of estimation

The estimated value vk with respect to time is shown in

Fig.1. The blue line indicates observed values, red and green

ones indicate true values and estimated values respectively.

This figure shows that REPI suppress the effects of the

noises.

Convergence of a parameter

Transition of a parameter θ with respect to iteration is

shown in Fig.2. Altough in the case of using original EPI,

a parameter becomes so large and unstable, in the case of

using REPI, it is converged.

Furthermore, we apply REPI to an augmented system in

the cases of σ = 0 and σ = 0.04 are shown in Fig.3.

The number of augments of a value function is 3, namely

[x1, x2, u]T . For illustration, Fig.3 shows projected value

function to a hyperplane of u = 0. This figure shows REPI

can efficiently suppress the effect of the noises to the value

function.

Although we can consider a method which uses EPI with

a filtered output, it is not practical. In the case that using

one dimensional discrete time LPF with a cutoff frequency

0.5[Hz], the delay of signal destabilizes the system. On the

other hand, in the case of a cutoff frequency 1.0[Hz], it

cannot suppress the effects of noises to values well, as a

result, the parameter is destabilized. These result indicate

superiority of REPI.

Computation time

The mean computation time under a condition as in Tab.II

is as follows:

A mean length of a sample-path is M̄ = 241, a mean

computation time to obtain observed values is T̄compute =
14.6[ms] and a mean time for estimation is T̄estimate =
7.9[sec]. Hence, a mean time to update a parameter is

(

M̄ × T + T̄compute + T̄estimate

)

× L = 2549[sec].

Systems with more dimension require the larger state-space

to explore. Since REPI requires enough data in Ω, the

number L is increasing as dimension n. Furthermore, the

number of σij is increasing as a square of n. Since ac-

curate estimation requires to use some estimated standard

deviations, the number of particles N is increasing as n.

Hence, the more number n forces the more computation time

T̄estimate.

But we can avoid this curse of dimensionality by using

fixed Σ after it is estimated accurately. Then we only have

to estimate xk, hence the dimension of the estimator is

3 independent on the dimension of the system (1). Fur-

thermore, the length of a sample path M̄ implies a time

of convergence, hence it is independent on the dimension.

T̄compute is independent on the dimension of the original

system and this computation time is only proportional to the

length.

Accuracy of an approximated value function

The value function Vunknown(x) in the case where σ =
0.04 and g(x) is unknown and the value function Vknown(x)
in the case where σ = 0, and g(x) is known are shown in

Fig.4. It shows that Vunknown(x) can approximate true value

function Vknown(x). Furthermore, the cost at initial state

xa(0) = [0.4, 0.4, 0.2]T is Ja(xa(0), µ
(30)
a (x)) = 0.840, on

the other hand, the true cost is J(x0, µ
∗(x)) = 0.833. This

figure and the result show that REPI can approximately solve

the optimal control problem given in Sec. II-A.

VIII. CONCLUSION

We proposed an algorithm which can derive an approx-

imate optimal control law for unknown dynamical systems

even when the states are contaminated by an observation

noise. The validity of this method was shown by a numerical

simulation and we confirmed robustness and superiority of

this method. The other discussion are as follows:

4211



1) Although the observation noise was assumed to be

additive as in (2), it can be also replaced that it is

nonlinear affine if it is additive like

y = x + G(w), G is nonlinear function

where G(w) and the distribution of w are known and

mean value of G(w) is equal to zero. The above sim-

ulation is a special case of G(w) = w, w ∼ N (0, Σ).
2) φ(y) may be estimated by a filtered y, however, REPI

has a feature to derive an approximate optimal control

without state estimation.

3) Step 5a is generally described by

v̂
m,(i)
j = C

µ(i),m
k + γv̂

m,(i)
j+1

where γ is a discount rate and our case means γ = 1.

Although γ is usually determined by 0 < γ < 1, note

that the case of γ = 1 has no problem because the

system is stabilized.

Although REPI can derive the approximate optimal parame-

ter for a fixed cost function, if the cost function is changed,

the same process should be repeated. Therefore, development

of the algorithm which can directly learn optimal control

laws without re-learning is a future work.

TABLE I

SETTINGS FOR THE SIMULATION

Notation Numerical value

θ0 [0.1, 0, 0.1, 0, 1, 01×16]T

I 30
L 20
M 2500
T 20[ms]

δ1 5 × 10−5

δ2 5

Ω [−1.5,−1.5,−0.2]T < x0 < [1.5, 1.5, 0.2]T

[σmin, σmax] [0.035, 0.045]

TABLE II

SETTINGS TO MEASURE TIME

CPU Athron 2600+, 2.0[GHz]

Language MATLAB ver 6.1.0.450(not compiled)

OS Linux

Memory 1[GB]
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