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Abstract— This paper presents a method for smoothing a
path in an environment with obstacles. Some characteristic
nodes of the path are updated in each iteration by solving a
quadratic program, which is formulated based on the smooth-
ness constraints and the local environment information. The
generated path satisfies the prescribed smoothness constraints,
such as bounds on the curvature, and avoids any collision
with obstacles. The proposed method is easy to implement and
computationally efficient.

I. INTRODUCTION

Let r(s) = {(x(s), y(s)) : 0 ≤ s ≤ sf} ∈ R
2 represent a

parameterized path to be followed by a vehicle, where s is

the arc length coordinate. While obstacles pose constraints

on the image of r, vehicle dynamics place constraints on its
higher order derivatives. The challenge with the smooth path

planning problem lies in the coordination between these two

types of constraints.
The most commonly used high order path constraint is

the curvature constraint. Although the Dubins vehicle path

addresses curvature constraints, the result is optimal only
for a vehicle with constant speed [1]. For more realistic

vehicles with acceleration/decceleration capability, curvature
has greater influence on both the optimality and feasibility of

the path. For example, the traveling time along a longer path

with small maximum curvature can be shorter than that along
a shorter path with large maximum curvature [2]. Besides,

a path may be infeasible due to a “minor” violation of the

curvature constraint such that the feasibility can be recovered
by a small variation of the path. Hence, smoothing a path

via local curvature regulation may lead to an improvement

in terms of feasibility and optimality.
A discontinuity in the curvature profile implies an instan-

taneous change of the steering wheel angle for a car-like

vehicle or the bank angle or angle of attack for a fixed-
wing aircraft, both of which require (theoretically) infinite

control force. Therefore, the curvature of the path should

be at least continuous for practical applications. For this
reason clothoid arcs have been used for continuous-curvature

path planning based on the Dubins’ path prototype [3],
[4], [5]. Reference [6] used analytical splines and heuris-

tics for smooth path generation. Reference [7] proposed a

path planning algorithm which generates a smooth path by
smoothing out the corners of a linear path prototype using

Bézier curves based on analytic expressions. Although all

these methods can generate paths with continuous curvature,
obstacle avoidance is not guaranteed by these methods per

se, and can only be done in an ad hoc manner.
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One approach for smooth path planning in the presence
of obstacles is to use a “channel” or “corridor,” which

is selected a priori, such that it does not intrude any of

the obstacles. A smooth path is then found within the
channel such that it is collision-free. For instance, [8] in-

troduced a method for generating curvature-bounded paths

in rectangular channels; reference [9] proposed a method for
constructing bounded curvature paths traversing a constant

width region in the plane, called corridors, and reference [10]

introduced a method for generating smooth two-dimensional
paths within two-dimensional bounding envelops using B-

spline curves. A nonlinear optimization scheme is used to

design collision-free and curvature-continuous paths in [11].
In this paper we follow a quadratic optimization approach

for smooth path generation subject to curvature and obstacle
clearance constraints. The proposed method minimizes the

weighted L2 norm of the curvature along the path, which

is analogous to the strain energy stored in a deflected
elastic beam. During the optimization process, a sequence

of obstacle-free perturbations are generated along the normal

direction of the path, which is based on the perturbation
technique proposed in [12] for eliminating noise in GPS

measurement data. When combined with other path planning

algorithms that provide the initial collision-free path pro-
totype, the proposed method generates collision-free paths

under length and local curvature constraints.

II. CURVE REPRESENTATION AND VARIATION

Instead of dealing with a curve (path) in the infinite

dimensional space, we reduce the dimensionality of the
problem by considering a finite number of characteristic

nodes on the curve, and represent the path using a piecewise

Bézier curve passing through those nodes.
To this end, suppose that the path is defined in parametric

form as r(s) = [x(s), y(s)]T, parameterized by its arc

length s. The curve passes through N characteristic nodes
r1, r2, . . . , rN ∈ R

2 at s1, s2, . . . , sN , respectively, i.e.,

r(si) = ri, i = 1, 2, . . . , N , where s1 = 0 and sN = sf . It
is required that the path must have continuous derivatives at

least to the second order. Within this context, the smoothing

of the path is equivalent to the deployment of the N − 2
characteristic nodes subject to certain smoothness criteria.

A. Continuous Curvature Path Representation

1) Approximation of path derivatives using Lagrange in-

terpolation: The second order Lagrange interpolating poly-
nomial curves to approximate the first and second order

derivatives of r. Each curve passes through the ith char-

acteristic node ri and its two neighboring nodes ri−1 and
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ri+1, i = 2, . . . , N − 1. Then we have

r
′

i = αi,−1ri−1 + αiri + αi,1ri+1, (1)

r
′′

i = βi,−1ri−1 + βiri + βi,1ri+1, (2)

where, r
′

i = r
′(si) and r

′′

i = r
′′(si). The coefficients

αi,−1, αi, αi,1, βi,−1, βi, βi,1 are determined by Lagrange

interpolation. For a planar smooth curve, the tangent vector

t(s) is the derivative of r(s) with respect to the arc length,
i.e., t(s) = r

′(s). The normal vector, which is perpendicular

to t, can be obtained by n(s) = At(s) = Ar
′(s), where

A =

[

0 −1
1 0

]

.

Since r
′′(s) = t

′(s), according to the Frénet formula t′(s) =
κ(s)n(s), where the signed curvature κ is given by

κ(s) = n
T(s)r′′(s) = 〈Ar

′(s), r′′(s)〉 , (3)

where 〈·, ·〉 denotes the standard inner product in R
2.

2) Bézier curve interpolation: In order to generate a
smooth path, a piecewise Bézier curve is used to interpolate

the characteristic nodes. Specifically, between each pair of

adjacent characteristic nodes, a Bézier interpolating curve
is constructed to match the previously introduced first and

second path derivative approximations. To this end, the fifth

order Bézier curve is a natural choice. The reader may
refer to [13] for more details about Bézier curves. The

overall path, as the concatenation of Bézier curves between

those neighboring nodes, provides continuous curvature by
construction.

B. Path Variation

Consider a specific variation of the path r(s) along its

“normal direction” n(s) only, i.e., the perturbed path r̃(s) is

given by

r̃(s) = r(s) + δ(s)n(s), (4)

where δ(s) is the variation function, s ∈ [0, sf ].
The signed curvature of the perturbed curve r̃ at each

characteristic node for i = 2, 3, . . . , N − 1 is given by

equation (5), which is a quadratic function in terms of the
perturbations δi−1, δi and δi+1 at three neighboring nodes.

The curvature at the first and last nodes are determined by

the boundary conditions, which are discussed later in this
paper. Assuming that the variation is small enough, the local

curvature κ̃i of the perturbed path at the ith characteristic

node can be approximated, by neglecting the quadratic terms
in equation (5), as follows:

κ̃i ≈ 〈Ar
′

i, r
′′

i〉
+(〈Ar

′

i, βi,−1ni−1〉+ 〈r′′i, αi,−1Ani−1〉)δi−1

+(βi + 〈r′′i, αiAni〉)δi
+(〈Ar

′

i, βi,1ni+1〉+ 〈r′′i, αi,1Ani+1〉) δi+1

= κi + χi−1,iδi−1 + χiδi + χi+1,iδi+1,

(6)

where χi−1,i, χi and χi+1,i are constants introduced for the

convenience of notation.

III. QUADRATIC PROGRAMMING FORMULATION FOR

THE PATH SMOOTHING PROBLEM

In this section we formulate the path smoothing problem
as a quadratic program, which approximately minimizes the

L2 norm of the curvature profile, while maintaining the path
length and local curvature constraints, boundary conditions

and collision-avoidance.

Definition 3.1: The problem

min J(x), x ∈ D ⊆ R
n

is a linear-quadratic mathematical programming problem (or

a quadratic program for short), if J is a linear-quadratic

function, that is,

J(x) =
1

2
xTHx+ FTx+ c, (7)

where H = HT ∈ R
n×n, F ∈ R

n, and c ∈ R, and D is a

convex polyhedron, namely D = {x ∈ R
n : Ax ≤ b}, where

A ∈ R
m×n and b ∈ R

m.
Note that D is a convex set. A linear quadratic programming

problem is a special case of a convex optimization problem

when H is a positive semi-definite matrix. Both can be
solved very efficiently using numerical methods.

A. Quadratic Cost Function

The weighted L2 norm of the signed curvature function
of the perturbed path is defined by

‖κ̃‖2 ,

(
∫ sf

s0

w(s)κ̃2(s)ds

)
1

2

, (8)

where w(s) is a positive definite weighting function. Next,
we propose an appropriate discretization of this cost function.

Let K be the vector of the signed curvature of the original

path evaluated at the characteristic nodes, i.e., K = [κ(s1),
κ(s2), . . . , κ(sN )]T and, similarly, let K̃ be the vector of

the curvature of the perturbed path evaluated at the same
nodes. We can then write equation (6) for all characteristic

nodes in a matrix form as K̃ ≈ K + CX , where X =
[δ1, · · · , δN ]T, and C is a full-rank N × N matrix with
its entries determined by equation (6) except for χ12 and

χN,N−1, which are computed from the boundary conditions,
i.e., the tangent directions at the start and end point of the

path.

Let W be a diagonal matrix with positive diagonal
elements w1, w2, . . . , wN such that wi = w(si), i =
1, 2, . . . , N . Then the integral in (8) can be approximated

using, say, the trapezoidal rule, as follows:

∫ sf

0

w(s)κ̃2(s)ds ≈
1

2
κ̃21w1 (s2 − s1)+

1

2

N−1
∑

i=2

κ̃2iwi (si+1 − si−1) +
1

2
κ̃2NwN (sN − sN−1)

= K̃TW∆sK̃ ≈ (K + CX)
T
W∆s (K + CX) ,

where ∆s = 1
2diag([s2 − s1, s3 − s1, s4 − s2, . . . , sN−1 −

sN−3, sN − sN−2, sN − sN−1]). In order to regulate the
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κ̃i =
〈

Ar̃
′

i, r̃
′′

i

〉

= 〈αi,−1Ar̃i−1 + αiAr̃i + αi,1Ar̃i+1, βi,−1r̃i−1 + βir̃i + βi,1r̃i+1〉

= 〈αi,−1Ari−1 + αiAri + αi,1Ari+1 + αi,−1Ani−1δi−1 + αiAniδi + αi,1Ani+1δi+1,

βi,−1ri−1 + βiri + βi,1ri+1 + βi,−1ni−1δi−1 + βiniδi + βi,1ni+1δi+1〉

=
〈

Ar
′

i + αi,−1Ani−1δi−1 + αiAniδi + αi,1Ani+1δi+1, r
′′

i + βi,−1ni−1δi−1 + βiniδi + βi,1ni+1δi+1

〉

(5)

=
〈

Ar
′

i, r
′′

i

〉

+
〈

Ar
′

i, βi,−1ni−1δi−1 + βiniδi + βi,1ni+1δi+1

〉

+ 〈r′′i , αi,−1Ani−1δi−1 + αiAniδi + αi,1Ani+1δi+1〉

+ 〈αi,−1Ani−1δi−1 + αiAniδi + αi,1Ani+1δi+1, βi,−1ni−1δi−1 + βiniδi + βi,1ni+1δi+1〉 ,

curvature profile, we therefore use the following cost func-

tion, which approximates the square of the L2 norm of the

curvature:

J(X) = (K + CX)
T
W∆s (K + CX) . (9)

It is easily seen that J is a convex linear-quadratic function
because the matrix CTW∆sC is positive definite.

B. Path Length Constraint

Because the length of the path affects the traveling time,
it is desirable to have a constraint on the total length of the

path. When a path is perturbed at each node along the normal

direction, the total length of the path is not necessarily
preserved—it could either increase or decrease depending

on the perturbation scenario. Therefore, it is necessary to

characterize the relationship between the perturbation and
the change of the total length of the curve, and implement

certain bounds on the latter.

When the spacing between adjacent characteristic nodes
is small enough, the total length of the curve can be approx-

imated by the total length of the line segments connecting
each pair of the adjacent nodes. Let Di denote the change

of the length of the line segment between nodes ri and

ri+1 induced by the perturbation δ. The new positions of
the nodes after the perturbation are given by r̃i = ri + δini

and r̃i+1 = ri+1 + δi+1ni+1. Then ‖r̃i+1− r̃i‖ is the length

of the corresponding line segment of the perturbed path. We
assume that the variations δi and δi+1 are small enough and

δi, δi+1 ≪ ‖ri+1 − ri‖. The length of the line segment of

the perturbed path between nodes si and si+1 is

‖r̃i+1 − r̃i‖ = ‖ri+1 + δi+1ni+1 − ri − δini‖

=

√

‖(ri+1 − ri) + (δi+1ni+1 − δini)‖
2
.

By the polarization identity for the Euclidean inner product,

‖r̃i+1 − r̃i‖ =
(

‖ri+1 − ri‖
2
+ ‖δi+1ni+1 − δini‖

2

+ 2 〈δi+1ni+1 − δini, ri+1 − ri〉
)

1

2 .

Then the segment length Di can be written as in (10).

By the small variation assumption, and dropping the square
terms, expression (10) yields the following approximation

for Di

Di ≈

〈

ri+1 − ri

‖ri+1 − ri‖
, δi+1ni+1

〉

−

〈

ri+1 − ri

‖ri+1 − ri‖
, δini

〉

.

(12)

The summation of all Di’s over all line segments approxi-

mates the change of the total length of the curve owing to

the variation X .
In order to write equation (12) in a more compact form, let

B = diag([1/‖r2 − r1‖, . . . , 1/‖rN − rN−1‖]), and define
the matrix G as in (11). Also, let 1N−1 denote the N − 1
dimensional column vector with all elements equal to one.

Let ∆L(X) denote the change of the total length of the path
induced by the variation X . Then ∆L can be approximated

by ∆L(X) ≈ 1
T
N−1BGX , which is a linear function of X .

The constraint on the total length of the path is given by the
following linear inequality constraint on X :

Lmin − L ≤ ∆L(X) ≤ Lmax − L, (13)

where L is the length of the path before perturbation, and

Lmax and Lmin are the upper and lower bounds of the path
length, respectively. These inequalities are enforced element-

wise. Alternatively, if the length of the path is fixed, then the

linear equality constraint ∆L(X) = 0 is applied (Lmin =
L = Lmax):

C. Curvature Constraints

Local curvature constraints are important for practical
path planning. For example, a ground vehicle requires a

larger turning radius when moving on a slippery surface

compared with the same operation on normal ground. Let
Kmax,i and Kmin,i be the maximum and minimum curvature

constraints allowed in a neighborhood of ri (i = 1, 2, . . . , N)
which are determined by the vehicle dynamics and the local
environment. Let Kmax = [Kmax,1,Kmax,2, . . . ,Kmax,N ]T

and Kmin = [Kmin,1,Kmin,2, . . . ,Kmin,N ]T. The curvature
of the perturbed path then need to satisfy the linear inequality

constraint Kmin −K ≤ CX ≤ Kmax −K .

D. Bounds on the Variation and Collision Avoidance

Certain approximations in the formulation of the quadratic
programming problem impose limits on the allowable mag-

nitude of variation: because the second order terms in

equation (5) are neglected during the approximation of the
curvature, it is required that the variation is small enough

such that this approximation is valid. The small variation is
also required by the approximation used in the path length

constraint. On the other hand, the magnitude of the variation

is also limited by the requirement of collision-avoidance,
since a large variation of the path in a neighborhood of an

obstacle may lead to a collision. In order to determine the

bounds of the perturbation at the ith node (i = 2, 3, . . . , N−
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Di = ‖r̃i+1 − r̃i‖ − ‖ri+1 − ri‖

= −‖ri+1 − ri‖+

√

‖ri+1 − ri‖
2
+ ‖δi+1ni+1 − δini‖

2
+ 2 〈δi+1ni+1 − δini, ri+1 − ri〉

=
1

‖ri+1 − ri‖

‖δi+1ni+1 − δini‖
2
+ 2 〈δi+1ni+1 − δini, ri+1 − ri〉

1 +

√

1 +
‖δi+1ni+1 − δini‖

‖ri+1 − ri‖
2

2

+ 2

〈

δi+1ni+1 − δini

‖ri+1 − ri‖
,

ri+1 − ri

‖ri+1 − ri‖

〉

. (10)

G =









−〈r2 − r1,n1〉 〈r2 − r1,n2〉 0
−〈r3 − r2,n2〉 〈r3 − r2,n3〉

. . .
. . .

0 −〈rN − rN−1,nN−1〉 〈rN − rN−1,nN〉









. (11)

1), we consider the path segment between the i− 1th and
ith nodes, and the segment between the ith and i + 1th

nodes, respectively. For the former segment, initially choose

δi = δi−1 = δmax, where δmax is a predetermined small
positive number. If this segment is still collision-free after

the variation, then let Yu,i = δmax, otherwise decrease δi
while keeping δi = δi−1 until the perturbed segment is

collision-free, and let Yu,i = δi. Similarly, the variation

lower bound Yl,i of the same segment is determined by
initially choosing Yl,i = −δmax = δi−1 = δi. If collision

occurs, we gradually increase δi while keeping δi−1 = δi
until the perturbed path is collision-free, and let Yl,i = δi.
In this way, we also find the variation lower and upper

bounds of the path segment between the ith and i + 1th

nodes, which are given by Zl,i and Zu,i, respectively. De-
fine Xmax,i = min{Yu,i, Zu,i}, Xmin,i = max{Yl,i, Zl,i},

Xmax = [Xmax,1, Xmax,2, . . . , Xmax,N ]T and Xmin =
[Xmin,1, Xmin,2, . . . , Xmin,N ]T. Note that because the path
is required to pass through the start and target positions, the

variation δ must be zero at these two points, which can be

achieved by setting the bounds as Xmin,1 = Xmax,1 = 0,
Xmin,N = Xmax,N = 0. Then the perturbed path would be

collision-free as long as the variation X satisfies Xmin ≤
X ≤ Xmax. Collision is checked at each node and a certain

number of interpolating points in each segment of path,

as shown in Fig. 1. Because collisions are not checked
everywhere along the path, it is possible that the perturbed

path slightly intrudes some obstacle, but this can be avoided

by slightly expanding the boundary of the obstacles when
performing the collision checking.

ri ri+1

obstacle

|δmin|
δmax

Fig. 1. Bounds of variation.

E. Initial and Final Condition

If no constraint exists on the tangent direction of the path

at the start and target points, then the constraints at those
two points are similar to hinge joints, i.e., the displacement

δ2 or δN−1 does not alter the path curvature at node 1 or N ,
hence χ12 = χN−1,N = 0. On the contrary, if the tangent

direction of the path is fixed at the boundary with heading

angles ψ1, ψN ∈ R, then the tangent vectors at those two
points are

t1 = [cosψ1, sinψ1] , tN = [cosψN , sinψN ] ,

and the corresponding normal vectors are n1 = At1 and

nN = AtN , respectively. This is analogous to the fixed end

constraint for a beam. The tangent directional constraints on
δ2 and δN−1 are

〈δ2n2 + r2 − r1,n1〉 = 0,

〈δN−1nN−1 + rN−1 − rN ,nN 〉 = 0,

which uniquely determine the values of δ1 and δN .

In order to compute the curvature of the path at the start
and end points when the tangent directions are fixed, we

introduce two extra points using finite differences as follows:

r0 = r1 − (s2 − s1) t1 and rN+1 = rN + (sN − sN−1) tN .
Then χ1,2 and χN,N−1 can be computed using equation (6).

F. Connection to Beam Theory

Consider a classical beam subject to pure bending. The
bending moment and the local curvature satisfy:

κ (s) =
M (s)

EI(s)
,

where κ(s) is the local curvature of the neutral surface of the

beam, M(s) is the bending moment at the cross section at s,
and I(s) is the second moment of area of the cross section
about its neutral surface, and E is the Young’s modulus of

the beam material. The product EI is often referred to as

the flexural rigidity or the bending stiffness of the beam.
The total strain energy U of the bending beam can be

written as:

U =

∫ sf

0

M2 (s)

2EI (s)
ds =

1

2

∫ sf

0

EI(s)κ2(s)ds,
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which is exactly the square of the weighted L2 norm of
the curvature function. Hence, the result of the quadratic

program essentially corresponds to a minimum bending

energy configuration in a neighborhood of the original path.
It is also observed that the weight function w(s) in (8)

corresponds to the flexural rigidity EI(s).

IV. PATH SMOOTHING ALGORITHM

A. Discrete Evolution and the Path Smoothing Algorithm

Consider a family of smooth paths P(s, j), where s is

the path coordinate parameterizing the path and j is the

index parameterizing the family. The path evolves among
the family P(s, j) at the representative nodes according to

the evolution equation

P (si, j + 1) = P (si, j) +X∗

i n (si, j) , (14)

P (s, 0) = P(0) (s) ,

where X∗

i is the ith component of the solution to the

quadratic program with initial path P(s, j). For each j,
the path is given by the piecewise fifth order Bézier curve

interpolation between the characteristic nodes as described

in Section II-A.
The proposed path smoothing algorithm is designed based

on the evolution equation (14):

1) Let j be the count of iterations, starting from j = 1,
2) Discretize the path with N nodes, say, s1 = 0, s2, s3,

. . . , sN = sf .

3) Determine the bounds of variation, and solve the
quadratic programming problem. Interpolate the result

with a piecewise fifth order Bézier curve to generate

the new path,
4) Compute the difference between the new and the old

path by

ξj =

∫ sf

0

‖P(s, j)− P(s, j − 1)‖
2
ds.

Stop the iteration if ξj is smaller than some predeter-

mined threshold, or if j reaches the maximum number
of iterations. Otherwise increase j by one and go to

Step 2).

B. Reconciling Conflicts Between Variation Bounds and

Constraints

Due to the bounds on the allowed variation, the domain

of optimization in each step of the proposed algorithm is
relatively small, and sometimes the variation bounds are in

conflict with the boundary conditions and curvature con-

straints, in the sense that the prescribed boundary conditions
and curvature constraints cannot be satisfied by any variation

within the bounds during a single iteration.
To resolve such conflicts, the curvature constraints and

the boundary conditions are enforced progressively during

the iterations when necessary, rather than being enforced
explicitly in each iteration. For example, suppose the path

needs to satisfy the curvature constraints Kmin ≤ K ≤
Kmax. Then for each iteration j, the following relaxed
curvature bounds are used

Kmin − c1e
−β1j ≤ Kj ≤ Kmax + c2e

−β2j ,

where c1, c2, β1, β2 > 0. It is seen that the left and right
hand sides in the above inequalities initially provide relaxed

curvature bounds when j = 0, yet approach the prescribed

bounds Kmin and Kmax asymptotically as j increases. A
similar technique is applied for the enforcement of the

tangent directional constraints at the start and end points.
Specifically, if the initial and final tangent directional con-

straint can not be satisfied in one iteration, then the following

constraints are used:

| 〈δ2n2 + r2 − r1,n1〉 | < c3e
−β3j ,

| 〈δN−1nN−1 + rN−1 − rN ,nN 〉 | < c4e
−β4j ,

with c3, c4, β3, β4 > 0.

V. NUMERICAL EXAMPLES

A. Fixed Length Path Smoothing with Collision Avoidance

We consider an example in which a UAV flies from point

A to point B. The obstacles are represented by the gray
regions in Fig. 2. The original path is generated using the

A∗ algorithm for minimum length and smoothed using a

fourth order spline curve. This initial path is shown in blue
in Fig. 2. The initial and final tangents of the path are fixed.

The length of the path is fixed during the path smoothing

process. The path smoothing algorithm finishes in 0.39 sec
after 15 iterations. The curvature profiles for the original

and smoothed paths are compared in Fig. 3. The L2 norm

of the curvature function with respect to the path coordinate
decreased by 73% after smoothing, while the L∞ norm was

reduced by 70%. In Fig. 4, the optimal speed profiles of
the original and smoothed paths are compared. It is clear

that the smoothed path provides a shorter travel time. The

optimal speed profiles are computed using the time-optimal
parameterization method introduced in [15] with free final

speed at point B.

obstacle

obstacle

obstacle

A

B

x (km)

y
(k

m
)

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 2. Path smoothing in the presence of obstacles.

B. Path Smoothing with Localized Curvature Bounds

In this example, a ground vehicle starts from point A at

one side of a frozen river, avoids the obstacle, crosses the
river while passing through point B, and finally reaches the

target at point C at the other side of the river. Due to the

small coefficient of friction of the icy river surface, it is
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Fig. 3. Curvature profile comparison.
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Fig. 4. Optimal speed profile.

required that the segment of the path on the ice surface

must have zero curvature (no turning allowed). The initial

path consists of three line segments. During the smoothing
process, the constraint on the total length of the path is

relaxed. Furthermore, there exists no directional constraint

at the start and the end of the path. In order to ensure that
the path passes through point B, a node is added to the path

at point B, and the variation at this node is set to be zero

during the smoothing process. The result from smoothing is
shown in Fig. 5. It is clear that the ground vehicle does not

need to perform any turning maneuver on the ice surface.
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Fig. 5. Smoothed path with local curvature constraint.

VI. CONCLUSIONS

In this paper, we considered the problem of two dimen-
sional path smoothing with obstacles and local curvature con-

straints. The problem is formulated as a quadratic program,

which minimizes the weighted L2 norm of the curvature
along the path. By incorporating additional linear constraints

into the quadratic programming problem, extra constraints

on the tangent of the path, path length, and local curvature

can also be accommodated. The proposed path smoothing
algorithm has been applied to several examples, and its

efficiency and effectiveness have been validated. Future work

will focus on extending the current path smoothing method
to the three-dimensional space.
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