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Abstract— In this paper we develop a hybrid supervisory control
architecture in a real-time environment for constrained nonlin-
ear systems. The strategy is based on Command Governor (CG)
ideas that are here specialized in order to take into account both
time-varying set-points and constraints. Experimental results on
a laboratory four-tank test-bed are presented.

I. INTRODUCTION

The complexity of current computer control systems arises

from the engineering requirement to integrate computers,

actuators and sensors for control, signal processing and data

networks, visualization and display with the technology of

the application domain which ranges from manufacturing

control, temperature control, cruise control in cars and

planes, monitoring and regulation of various parameters etc.

[1].

The resulting feedback setup is often thus quite “large” and

is expected to adapt in a timely, rapid and correct fashion

to frequently changing environment variables and conditions.

Also, modern computer architectures, usually (highly) par-

allel, often distributed, using many heterogeneous resources

need to be designed to properly operate for decades, due

in part to the tremendous cost of their development. As

a consequence, the control system needs to incorporate, in

accordance with the requirements of the chosen application,

a wide variety of often conflicting functional/non-functional

objectives and it is then natural to characterize all these

setups within a real-time control system framework [2].

It is well known in literature that control schemes and/or

paradigms which are based on predictive control ideas may

efficiently handle all these requirements within a real-time

framework [3], [4].

Given these premises, the aim of this paper is to describe

a real-time implementation of a command governor (CG)

control strategy for the supervision of nonlinear dynamical

systems subject to sudden switchings amongst operating

points and whose constraints structure varies with time due

to unpredictable events [5]. The proposed scheme prescribes

that any changing in the plant structure affects the CG design

and for each modification affecting the plant structure a

different CG unit should be in principle designed complying

with the new conditions. The idea is then that a suitable su-

pervisory unit must be designed to take care of orchestrating

the switching among the CG candidates during the online

operations.
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della Calabria, Via Pietro Bucci, Cubo 42-C, Rende (CS), 87036, ITALY
{famularo,franze,a.furfaro}@deis.unical.it

M. Mattei is with DIAM, Seconda Università degli Studi
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Finally, to test the benefits of the proposed hybrid strategy,

experiments carried out on a laboratory interconnected four

tanks model will be discussed. All the numerical set up has

been implemented via a Real-Time software platform.

II. BASIC COMMAND GOVERNOR (CG) DESIGN

Consider the following linear time-invariant system:






x(t +1) = Φx(t)+Gg(t)+Gdd(t)
y(t) = Hyx(t)
c(t) = Hcx(t)+Lg(t)+Ldd(t)

(1)

where t ∈ ZZ+, x(t) ∈ IRn is the overall state which includes

the plant and primal controller states ; g(t) ∈ IRm is the

CG action, which would be typically g(t) = r(t) if no CG

were present, viz. g(t) is a suitably modified version of

the reference signal r(t) ∈ IRm; d(t) ∈ IRnd is an exogenous

disturbance satisfying d(t)∈D , ∀t ∈ ZZ+, with D a specified

convex and compact set such that 0nd
∈ D ; y(t) ∈ IRm is the

output, viz. a performance related signal which is required

to track r(t); c(t) ∈ IRnc is the vector to be constrained, i.e.

c(t) ∈ C , ∀t ∈ ZZ+ with C a specified convex and compact

set. It is also assumed that

A1 - Φ is a stability matrix and the system (1) is offset-free,

i.e. Hc(In −Φ)−1G = Im..
The CG design problem is that of generating, at each time

instant t, the set-point g(t) as a function of the current state

x(t) and reference r(t)

g(t) := g(x(t),r(t)) (2)

in such a way that, under suitable conditions and regardless

of disturbances, the constraints are always fulfilled along

the system trajectories generated by the application of the

modified set-points g(t) and possibly y(t)≈ r(t). Moreover,

it is required that: 1) g(t)→ r̂ whenever r(t)→ r, where r̂ is

either r or its best feasible approximation; and 2) the CG has

a finite settling time, viz. g(t) = r̂ for a possibly large but

finite t whenever the reference stays constant after a finite

time. By linearity, one is allowed to separate the effects of

the initial conditions and input from those of disturbances,

e.g. x(t)= x(t)+ x̃(t), where x(t) is the disturbance-free com-

ponent and x̃(t) depends only on disturbances. It has been

proved in [5] that one can consider only disturbance-free

evolutions of the system and adopt a ”worst-case” approach.

Moreover, it is convenient to introduce the following sets for

a given vanishing δ > 0

C
δ := C∞ ∼ B δ, W

δ :=
{

w ∈ R m : cw ∈ C δ
}

(3)

where B δ is a ball of radius δ centered at the origin. We

shall assume that W δ is the non-empty closed and convex set
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of all commands whose corresponding steady-state solutions

satisfy the constraints with margin δ.
The main idea is to choose at each time step a constant

virtual command v(·)≡ w, with w ∈W δ such that the corre-

sponding virtual evolution fulfills the constraints over a semi-

infinite horizon and its ”distance” from the constant reference

of value r(t) is minimal. Such a command is applied, a

new state is measured and the procedure is repeated. In this

respect we define the set V (x) as

V (x) =
{

w ∈W δ : c(k,x,w) ∈ Ck, ∀k ∈ ZZ+

}

(4)

where

c(k,x,w) = Hc

(

Φkx(t)+
k−1

∑
i=0

Φk−i−1Gw

)

+Lw (5)

is the disturbance-free virtual evolution at time k of the

constrained vector c from the initial condition x at time zero

under the constant command v(·) ≡ w. As a consequence

V (x) ⊂ W δ, and, if non-empty, it represents the set of all

constant virtual sequences in W δ whose evolutions starting

from x satisfies the constraints also during transients. Thus

the CG output is chosen according to the solution of the

following constrained optimization problem

g(t) = arg min
w∈V (x(t))

‖w− r(t)‖Ψ (6)

where Ψ = ΨT > 0p and ‖w‖Ψ := xT Ψx.
A detailed discussion about the CG approach and its main

properties can be found in [5].

III. HYBRID COMMAND GOVERNORS

In this section the previous basic CG scheme is generalized

to time-varying set-points and constraints configurations. The

proposed scheme is termed Hybrid CG (HCG) and, for

the sake of simplicity, we will refer to the following plant

description

x(t +1) = f (x(t),u(t)) (7)

where x(t)∈ X ⊆ IRn and u(t)∈U ⊆ IRm are the system state

and control input, respectively. It is worth to note that the

disturbance effects d(t) ∈ D can be also taken into account

without compromising all the next developments. Let us

assume that f (x,u) is continuously differentiable and that

the nonlinear plant (7) could operate in N different and pre-

specified working regions, characterized by N equilibrium

points denoted as (x
eq
i ,u

eq
i ), i = 1, . . . ,N.

For each equilibrium (x
eq
i ,u

eq
i ) a linearized model of (7)

can be derived

x(t +1)− xeq = Ai (x(t)− x
eq
i )+Bi (u(t)−u

eq
i )

+Fi(x(t)− x
eq
i ,u(t)−u

eq
i )

where Ai =
∂ f

∂x
(x,u) |x=x

eq
i ,u=u

eq
i

and Bi =
∂ f

∂u
(x,u) |x=x

eq
i ,u=u

eq
i

are Jacobian matrices. Let δx = x − x
eq
i and δu = u − u

eq
i ,

F(δx,δu) contains all the higher order terms of the Taylor

series. By defining the vector z= [δT
x , δT

u ]
T and by continuity

arguments, we have that

‖Fi(z)‖2/‖z‖2 → 0 as ‖z‖2 → 0 (8)

Therefore, for any γi
z > 0 there exists ri

z > 0 such that

‖Fi(z)‖2 < γi
z‖z‖2, ∀‖z‖2 < ri

z (9)

In principle, for each linearized model a corresponding CG

unit, hereafter termed CGi, can then be properly designed.

A. Time-varying set-points

The ideas behind the following CG framework are mainly

taken from [6]. Consider the following finite family of

reference set-points {r1, . . . ,rq} ∈ R ⊂ IRm and w.l.o.g. let

us assume that

A2 -

R ⊂
N⋃

i=1

W
δ

i (10)

whereW δ
i , i∈N := {1,2, . . . ,N} are the command sets each

one computed w.r.t. the i− th linearized model,

N⋃

i=1

W
δ

i is a

connected set and

∀i, j ∈ N W δ
i ∩W δ

j 6= /0 ⇒ Int{W δ
i ∩W δ

j } 6= /0 (11)

where Int{·} denotes the interior set of W δ
i ∩W δ

j .
It is well known that a single CGi unit can be efficiently used

if the initial and final set-points belong to W δ
i . Otherwise, if

the final set-point belongs to a different set W δ
j , a procedure

for switching between CGi and CG j needs to be defined. To

this end, we consider the following statement:

Definition 1: The output admissible set for the generic

CGi is given by

Zδ
i :=

{

[rT , xT ]T ∈ IRm× IRn |ci(k,x,r)∈C ,∀k ∈ Z+
}

(12)
Hence, we characterize the set of all states, which can be
steered to feasible equilibrium points without constraints
violation as

X
δ
j :=

{

x ∈ IRn |

[

w
x

]

∈Zδ
i for at least one w ∈ IRm

}

(13)

and the following property holds true:

Property 1: Let i, j ∈ N , then

Int{W δ
i ∩W δ

j } 6= /0 ⇒ Int{X δ
i ∩X δ

j } 6= /0 (14)

As a consequence, a convenient transition reference r̂ ∈
Int{W δ

i ∩W δ
j }, with x̂∈ Int{X δ

i ∩X
δ
j } and x̂ the equilibrium

steady-state corresponding to r̂, can be defined such that

[r̂T , x̂T ]T ∈ Zδ
i ∩Zδ

j .

Then, by assuming that CGi is in use at t̄, r(t̄)∈W δ
i ∩W δ

j

and r(t̄ +1) ∈W δ
j , a possible switching logic is as follows:

Switching procedure -

1) Solve and apply

g(t̄ + k) := arg min
w∈V i(x(t̄+k))

‖w− r(t̄)‖Ψ,k = 1, . . . , k̄

2) At t = t̄ + k̄ as soon as

x(t) ∈ Int{X δ
i ∩X δ

j } (15)

switch to CG j and solve

g(t̄ + k) := arg min
w∈V j(x(t))

‖w− r(t̄ +1)‖Ψ, t ≥ t̄ + k̄+1
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The rationale of the illustrated scheme is that for any x ∈ IRn,
the state evolution will enter into Int{X δ

i ∩X δ
j } after a finite

number of k̄ time instants. In conclusion, an HCG scheme,

named SV-HCG, can be adopting an adequate selection

criterion to characterize the set Int{X δ
i ∩X δ

j } in (15).

B. Time-varying constraints

In what follows, for ease of notation, we will retain fixed

the equilibrium, the corresponding linearized plant structure

and we will assume that a number of L constraints configura-

tions may occur. Let us denote with C i, i∈ I := {1,2, . . . ,L},
the i− th constraints configuration and introduce

W
δi

i := {w ∈ IRm : c̄w ∈ C δi
i }, ∀i ∈ I (16)

where W
δi

i is the set of all commands w whose steady-

state evolutions of the vector c satisfy the i− th constraints

configuration C i with a margin of tolerance δi. The sets C
δi
i

and W
δi

i satisfy the following properties:

Property 2: Let (i, j) ∈ I , then C
δi
i

⋂
C

δ j

j 6= /0 ⇔

W
δi

i

⋂
W

δ j

j 6= /0

Property 3:

L⋂

i=1

C
δi
i 6= /0 ⇔

L⋂

i=1

W
δi

i 6= /0

Hereafter, we suppose that the sets W
δi

i , ∀i ∈ I are

nonempty, closed and convex. Let us introduce the following

definitions.

Definition 2: Let i ∈ I , the state x(t) is defined C
δi
i -

admissible if c(k,x(t),w) ∈ C δi
i ,∀k ∈ ZZ+, with w ∈ W δi

i .

Moreover, the pair (x(t),w) is said C
δi
i -executable.

Definition 3: Let i ∈ I , x(t) a state C
δi
i -admissible and

C
δ j

j , j 6= i, a constraints configuration to be fulfilled. The state

x(t) is defined switching-C
δi
i -admissible if c(k,x(t),w) ∈

C
δ j

j ,∀k ∈ ZZ+, with w ∈ W
δ j

j . Moreover, the pair (x(t),w)

is said switching-C
δi
i -executable and the constraints configu-

ration C
δ j

j switchable.

Definition 4: Let i ∈ I , x(t) a state C
δi
i -admissible.

The state x(t) is defined full-switching-admissible if

c(k,x(t),w) ∈ C
δ j

j ,∀ j ∈ I , ∀k ∈ ZZ+, with w ∈ W
δ j

j . More-

over, the pair (x(t),w) is said full-switching-executable and

the constraints configuration C
δi
i full-switchable.

Definition 5: Let i ∈ I , x(t) a state C
δi
i -admissible but not

switching-C
δi
i -admissible and C

δ j

j , j 6= i, a constraints config-

uration to be fulfilled. C
δ j

j is defined reachable if it belongs

to the finite sequence of constraints configurations Ssw:=

{C
δi1
i1

, C
δi2
i2

, . . . ,C
δ j1
j1

,C
δ j

j }, where (C
δi1
i1

, C
δi2
i2

) . . .(C
δ j1
j1

,C
δ j

j )
are couples switchable amongst them. Moreover, the state

x(t) is said indirectly-switching-admissible.
Finally, the sets

V i(x) :={w∈W δi

i : c(k,x,w) ∈C δi

i ,∀k ∈ ZZ+},∀i ∈ I (17)

represent all constant virtual sequences in W
δi

i whose c-

evolutions, starting from a C
δi
i -admissible state x, satisfy

the constraints configuration C
δi
i also during transients. As a

consequence, for a fixed i ∈ I , V i(x)⊂W
δi

i .

Then, whenever the supervisory unit selects the i− th CG

candidate (CGi), a command g(t) is computed as a solution

of the following constrained optimization problem

g(t) = arg min
w∈V i(x(t))

‖w− r(t)‖Ψ (18)

Hence, an admissible HCG strategy can be developed if

at each switching time instant t̄, the current state x(t̄)
is switching-admissible or, alternatively, full or indirectly-

switching-admissible. Finally, we introduce

X
δi
i := {x ∈ IRn : c(k,x,w) ∈ C δi

i ,

for at least onew∈W δi
i ,∀k ∈ZZ+},∀i∈ I

(19)

that represents the set of all C
δi
i -admissible states, i.e. each

state x ∈ X δi
i can be steered to an equilibrium point without

constraints violation.

One crucial point is to prove that the proposed time-

varying constraints CG strategy enjoys the viability property.

Proposition 1: Let us consider (1) and a family of con-

stant command sequences w ∈ W δi
i , i ∈ I . Let x̄w̄ be an

equilibrium point reached under a constant virtual command

w̄ ∈ W δi
i from a whatever C

δi
i -admissible state. Let the

assumptions (A1) be fulfilled, the sets C
δi
i , ∀i ∈ I compact

and convex, and the sets W
δi

i , ∀i ∈ I , non-empty, closed and

convex. Then, there exists a concatenation of finite virtual

constant commands w̄ ∈W δi
i , with i ∈ I , and of constraints

configurations C i, chosen by a supervisory unit at switching

time instants t̄, capable of asymptotically driving the system

(1) from xw̄ to xw, any other w ∈W
δ j

j .

Proof - The proof uses similar arguments of [5] and is here

omitted for the sake of space. 2

Moreover, the next result proves the asymptotic stability

property of the overall system.

Proposition 2: Let the assumption A1 be fulfilled and

the sets V i(x(t̄)), ∀i ∈ I be nonempty for any switching

time instant t̄. Moreover, it is assumed that there exists

an instant time t∗ under which the switching of constraints

configurations terminates and the reference signal r(t) stays

constant, r(t)≡ r, for all t ≥ t̂, with t̂ ≥ t∗. Then:

lim
t→∞

[g(t +1)−g(t)] = 0m lim
t→∞

[x(t)− xg(t)] = 0n (20)

where xg(t) = (I−Φ)−1Gg(t). There exits a finite time t f > t̂

such that

g(t) = ḡ := arg min
w∈W

δi
i

‖w− r(t)‖Ψ, ∀t ≥ t f (21)

where i being identified as the last constraints configuration

activated by the supervisory from t f onward.

Proof - The proof follows mutatis mutandis the same lines

used for the basic CG scheme. For details see [5]. 2

Finally by resorting to the Switching procedure a hybrid

scheme, hereafter termed CV-HCG, comes out.
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IV. REAL-TIME HYBRID COMMAND GOVERNOR

(RT-HCG) SCHEME

In this section, a supervisory CG-based real-time archi-

tecture for constrained dynamical systems subject to time-

varying set-points and/or constraints is detailed. The follow-

ing assumptions hold true:

B1 - A set of working points
{

(x
eq
i ,u

eq
i )
}N

i=1
is given;

B2 - At each time instant t, the supervisory unit is informed

on the plant structure (set-point and constraints config-

uration) to be fulfilled exactly at time t +1;

B3 - An off-line computed CG unit acts as the initialization

controller, e.g. CGi;

B4 - The maximum requested time TON for the on-line com-

putation of the CG action is such that TON < Ts, with

Ts the sampling time.

The supervisor logic retains valid the CGi unit as long as

the distance between the equilibrium x
eq
i and the actual state

x(t) is minimal. On the contrary, the supervisor switches to

the CG j unit when

j := min
j
‖x

eq
j − x(t)‖ (22)

Based on r(t, t +1) (the reference known at the time instant

t and to be tracked at t +1), C t,t+1 (the constraints configu-

ration known at the time instant t and to be fulfilled at t+1),

r(t) and x(t) (the actual reference and state measurements),

one of the following events could happen:

Set-point change - If the new set-point r(t, t + 1) /∈ W δi
i ,

a switching to the j− th linearized model selected by (22)

is prescribed. Then, the time interval [t, t + 1], is split in

two fractions: the first fraction is used to compute the new

command g(t) via the nominal CGi, while the remaining

available time is used to start the computation of the new

CG j unit.

Constraints configuration change - Because the on-line

design of the CG j unit could require more than one sampling

time and the action of the CGi is no longer admissible, to

ensure the constraint fulfillment at each time instant t a new

controller must be considered. Such a controller, in place

of the primal control law Ki and the CGi device, should

be capable to satisfy all the constraints regardless set-point

tracking properties until the computation of CG j is accom-

plished. Hereafter, we denote it as the safe controller Ksa f e.
The above means that the CGi unit and its corresponding

primal controller Ki will be disconnected from the plant and,

before the next time instant t + 1 the plant is connected to

Ksa f e. Therefore within the time interval [t, t +1], the Ksa f e

is first achieved, then the command g(t) is computed based

on CGi unit and finally, if possible, the design of the CG j

unit starts.

Equilibrium change - By checking (22) it results that a

switching to the j−th model is more adequate to describe the

nonlinear dynamics of (7). Then, the time interval [t, t+1] is

split in two fractions: the first portion is used to compute the

new command g(t) via the CGi device, while the remaining

available time is used to start the computation of the CG j

unit.

A. Supervisor finite state automaton

The aim of this section is to describe the hybrid structure

of the proposed real-time architecture. To this end, the

Supervisor discrete behaviour is described by means of a

three state automaton (see Fig. 1):

• HOME: normal operating condition under a CG action;

• EQ-SW: set-point or equilibrium point change event;

• CNF-SW: constraints configuration change event.

HOME

EQ-SW

CNF-SW

new-conf

new-conf

new-conf

new-eq

switch-done

switch-done

Fig. 1. Supervisor automaton

Initially, the Supervisor is set to the HOME state where

the control action is carried out by a single periodic task

τCGi
,, which runs at the highest priority level and executes

all the standard CG operations. In particular, the τCGi
ac-

tions are: reference and state measurements acquisition, on-

line computation of the CG output g(t), primal controller

execution and application of g(t).
When a set-point or an equilibrium point change occur-

rence is detected (new-eq event) the Supervisor moves to

the EQ-SW state where the operation mode is instructed for

the computation of the new CG. The design of the CG is

assigned to an aperiodic task τSW which is released when

EQ-SW is entered and which runs at a lower priority level

with respect to τCGi
. In the general case, τSW is not able

to complete its task (CG design) within a single sampling

period because a fraction of it must be used for the execution

of τCGi
. Therefore, τSW is pre-empted by τCGi

for a finite

number of time instants. As soon as τSW accomplishes its

job (switch-done event), the Supervisor switches to the new

CG j and the system operation mode is set to HOME.

A different mode transition occurs when a constraints

configuration change is detected (new-conf event). In this

case, the Supervisor applies a transition to the CNF-SW

state where the CG design is accomplished by an instance

of the aperiodic task τSW . On the other hand, at the actual

time instant t, the actions provided by τCGi
are not adequate

because the fulfillment of the new constraints set is no

longer guaranteed. Then, within [t, (t + 1)] the Supervisor

establishes the execution of a new task, denoted as τCS,
whose actions are: computation of the switching controller

Ksa f e and its application in order to ensure at least constraints

satisfaction. Then, at each future [(t + i), (t + 1+ i)], i ≥ 1,
a periodic task τsa f e applies the control action due to Ksa f e.
Note that both τCS and τsa f e tasks inherit the priority level
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of τCGi
. Finally, when τSW ends its job (switch-done event),

the Supervisor de-schedules the task τsa f e, restarts the task

τCGi
, now equipped with the new on-line computed CG, and

the system operation mode is re-set up to the HOME state.

We have also taken into consideration the chance that the

event new-conf could occur while an instance of τSW is

still running (i.e. the system operation mode is defined by

the EQ-SW or CNF-SW states). In such a situation, the

Supervisor is instructed to execute the following steps: the

instance of τSW is aborted, a system mode transition to

CNF-SW is (re-)applied and the scheduled actions (Ksa f e

computation, τCS and τsa f e tasks executions) are carried out.

B. Real-time computational aspects and main results

In this paragraph all the real-time events will be inves-

tigated by detailing the conditions under which set-point

tracking and viability properties can be ensured for the

proposed supervisory scheme. Let CGi be the unit used at

the current time instant t and the system mode operation

set to the HOME state. Then, the following system mode

operation transitions will take place:

HOME → EQ-SW: Two events could occur:

• x(t) /∈ T i
• r(t, t +1) 6= r(t) and r(t, t +1) /∈W δ

i

Then if j = min
j
‖x

eq
j −x(t)‖, j 6= i, a switching to the j− th

plant linearized model has to be considered and the SV-

HCG policy has to be carried out. As a consequence, a

primal controller K j is computed and the CG j design starts

by imposing Int{W δ
i ∩W δ

j } 6= /0. Once the CG j design is

accomplished at the time instant t̄, the Supervisor disconnects

Ki and CGi, and from t̄ onward the new control architecture

(K j,CG j) is used;

HOME → CNF-SW: The one-step ahead constraint con-

figuration C t,t+1 * C i, such that C t,t+1 ∩ C i 6= /0, requires the

computation of the new unit CG j. At t + 1 the action of

CGi is no longer admissible because it cannot ensure the

satisfaction of the constraints configuration C t,t+1. Therefore,

until the CG j computation is not completed, the set-point

tracking mode is suspended and the constraints fulfilled

by using the safe controller Ksa f e. Hence the actions of

the Supervisor are: first, at t + 1 the system switches from

the control architecture (Ki,CGi) to the Ksa f e controller

complying with C t,t+1; then the CV-HCG policy is carried

out and, once the CG j design is accomplished at the time

instant t̄, the Supervisor disconnects Ksa f e and from t̄ onward

the couple (K j,CG j) is applied;

EQ-SW → CNF-SW: At a certain time t̂ ≥ (t+1), while the

Supervisory is executing the tasks due to HOME → EQ-SW

and computing the CG j unit, it is detected that C t̂|t̂+1 * C j,

then the CG j design is aborted and a new K
j

sa f e controller is

computed to be applied at t̂ +1. Hence, the same actions of

the transition HOME → CNF-SW will take place;

CNF-SW → CNF-SW: While the Supervisory is executing

the tasks due to HOME → CNF-SW, it is detected that

C t̂|t̂+1 * C j, therefore the same steps of EQ-SW → CNF-

SW have to be carried out.

The main properties of the RT-HCG are here summarized:

Proposition 3: Suppose that assumptions A1, B1-B4, A2,

for the time-varying set-point scenario and properties 2-3 for

the time-varying constraints scenario hold.

Then: No constraint configuration change occurrences - All

properties of the CG device (see [6] Theorem 1, pg. 345)

are preserved. In particular the constraints are fulfilled for all

t ∈ ZZ+, the tracking performance optimized and the overall

asymptotic stability ensured.

Constraint configuration change occurrences - The Ksa f e

controller ensures persistence of operations: tracking perfor-

mance may be lost while asymptotic stability and constraints

fulfilment are guaranteed.

Proof - It follows from the above discussions. 2

C. The safe controller Ksa f e

Let Ξi := {x ∈ IRn |xT Pi x ≤ 1} be the invariant ellipsoidal

region associated to the control law Ki. Then, because the

switching from Ki to Ksa f e must guarantee the asymptotic

stability of the closed-loop system and the constraints sat-

isfaction ci(t) ∈ C t̂|t̂+1,∀t ≥ t̂ + 1, the controller Ksa f e is

computed by solving the following problem:
Ksa f e Problem - Find a state feedback law Ksa f e such that

the following conditions hold true

Ksa f ez ∈U,∀z ∈Ξsa f e := {x ∈ IRn |xT Psa f ex ≤ 1}⊂X (23)

x( t̂ ) ∈ Ξi ∩Ξsa f e (24)

where Ξsa f e is the ellipsoidal invariant set for the i − th

linearized system under the Ksa f e action. 2

Note that condition (24) is imposed to ensure the admis-

sibility of the Ki-to-Ksa f e switching and it can be shown

by exploiting the same arguments as e.g. in [8], while the

requirement C t̂|t̂+1 ∩C i 6= /0 guarantees that Ξi ∩Ξsa f e 6= /0.

V. EXPERIMENTS

A four-tank process, fully described and analyzed in [9], is

used to validate the performance of the proposed supervisory

strategy. The goal is to regulate the water levels h3(t) and

h4(t) (plant outputs) at given set-points by acting on the

incoming water flows via the supply pump voltages V1(t)
and V2(t) (plant inputs).

We have considered the following three equilibrium points

x
eq
1 = [0.6065 1.3050 5 5]T , u

eq
1 = [7.1550 6.9424]T ,

x
eq
2 = [1.0310 2.2185 8.5 8.5]T , u

eq
2 = [7.2504 7.3421]T ,

x
eq
3 = [1.6981 3.6540 14 14]T , u

eq
3 = [7.3664 7.8281]T ,

where x(t) = [h1(t) h2(t) h3(t) h4(t)]
T and u(t) =

[V1(t)V2(t)]
T . Then, the linearized models have been

discretized using forward Euler differences with a

sampling time Ts = 0.1sec. and the physical constraints on

maximum water levels and maximum pump supply voltage

have been considered: hi(t) ≤ 16, [cm], i = 1, . . . ,4 and

6 ≤Vi(t)≤ 8, [Volt], i = 1,2. The following CG parameters,

δi = 10−6, i = 1,2,3, and Ψ = I2 have been chosen and the

constraint horizon k0 = 130 was computed via the numerical

procedure proposed in [5]. Further, to characterize the

set of admissible disturbances/measurement errors, the

following convex and compact region has been considered

309



and used in the CG setting: D :=
{

d ∈ IR4 |Ud ≤ h
}

, where

U =

[

I4

−I4

]

and h = 0.3 ∗ [1 1 1 1 1 1 1 1]T [cm]. The

primal compensators Ki, i = 1,2,3, have been designed as

two-degree of freedom LQ controllers.

For comparison purposes a single CG unit has been off-

line designed by referring to the equilibrium (x
eq
1 , u

eq
1 ). The

following scenario has been taken into consideration:

Starting from the initial state x(0) = [0.5458 1.1745 4.5
4.5]T , first the set-points h3re f = h4re f = 14.5cm are consid-

ered. Then at 210sec. a set-point (h3re f = h4re f = 10cm) and

a constraints configuration (0.5 ≤ hi(t) ≤ 15, [cm], i = 1,2
and 9.5 ≤ hi(t)≤ 15, [cm], i = 3,4) changes jointly occur.

All the experiments are reported in Figs. 2-4. As it results the

HGC device is capable to adequately comply both with the

tracking requirements of the first phase [0, 210], sec. and the

successive time-varying scenario. It can be observed in fact

that (Fig. 2) first both the Tanks 3 and 4 settle down to the

prescribed set-points and then such a strategy is capable to

deal with the new set-point/constraints configuration without

constraints violation, see also Fig. 3. This is clearly achieved

by means of appropriate CG switchings as highlighted in

Fig. 4. Conversely, the single CG1 action is not capable to

settle down to 14.5cm because hire f = 14.5cm, i = 3,4, do

not belong to W δ
1 . Moreover, as expected, the time varying

scenario cannot be managed by CG1 and therefore constraints

violations occur (Fig. 2).
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Fig. 2. Water levels behaviors: solid-line with HCG and dot-line with CG1.
The dashed lines represent the prescribed constraints.

VI. CONCLUSIONS

A real-time hybrid strategy for orchestrating switching

between CG units has been presented. The main feature

is the ability to take care of both time-varying set-points

and constraints scenarios by on-line computing the proper

control architecture. Results on viability, constraints fulfil-

ment and convergence have been derived. Finally, real-time

experiments on a laboratory four-tank test-bed subject to

voltage saturations and water levels constraints demonstrate

the effectiveness of the proposed supervisory scheme.
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