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Abstract— The starting point for this paper is the control
theoretic paradigm for stock trading developed in [1]. Within
this framework, a so-called idealized market is characterized
by continuous trading and smooth stock price variations.
Subsequently, a feedback controller processes the stock price
history p(t) to determine the current level of investment I(t). In
this idealized setting, we show that that feedback control laws
exist which guarantee a profit for all admissible price variations.
This first result is only viewed as a benchmark because the
controller which achieves this trading profit relies on price
signal differentiation which is undesirable. Subsequently, the
paper concentrates on more practical differentiator-free con-
troller dynamics. For the simple case of a static linear feedback
on the cumulative trading profit or loss g(t), surprisingly, it
turns out that a profit is still guaranteed. The final part of the
paper involves numerical simulation using historical price; we
study the extent to which the idealized market results carry
over to real markets.

I. Introduction

This paper is part of a relatively new line of research

involving the application of classical control theoretic

concepts to stock trading; e.g., see [1]-[8]. A key idea in the

theory underlying the results in this paper is quite simple

to explain: As the price of a stock p(t) varies over time, a

feedback control trading strategy is used to modulate the

amount invested I(t).

To provide further context for this paper, it is also important

to take note of the existing literature in finance on technical

analysis; e.g., see [9] for an introduction and [10]-[14]

illustrating the type of technical analysis issues addressed.

In view of this literature, the obvious question to ask is:

What might classical control theory have to offer to the area

of stock trading? Unlike classical approaches in finance, in

this paper, we do not rely on any type of stochastic model

for the stock price p(t); e.g., see [15] where geometric

Brownian motion is the starting point. Instead, rather than

making price predictions, we view p(t) as an uncertain

external input against which we seek robust performance.

A second important distinction between our control theoretic

approach and the finance literature involves the notion of

an idealized market; see section below. Given the lack of

predictability of stock prices, we take the point of view that

a feedback control trading strategy must provide theoretical

certifications of performance in an idealized market, before

it should be considered for implementation in a real market.
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That is, we view the idealized market as the “proving

ground” for theoretical ideas. The trader/researcher first

proves theorems in this context as a way to gain credibility

regarding the efficacy of an approach in real markets where

price is much less predictable and back-testing is costly.

The remainder of this paper is organized as follows: Sec-

tions 2 and 3 describe the idealized market paradigm of [1]

and associated state equation dynamics. The first set of

results, on limits of performance, are given in Section 4.

Under the technical conditions associated with idealized

markets, we prove that “winning” can be guaranteed in the

sense that the account shows a positive trading gain. The

controller obtained, however, is not “practical” because it

involves price differentiation. Hence, Section 5 is devoted to

attainable levels of performance via static output feedback.

To this end, we introduce the so-called Simultaneous Long-

Short (SLS) feedback control and proceed to the main result:

In an idealized market with the SLS static output feedback

controller, the trading gain is still positive. Section 6 is

devoted to practical implementation of this controller in real-

world discrete-time markets and back-testing using historical

data. Finally, Section 7 provides conclusions and describes

a future direction for research.

II. THE IDEALIZED MARKET

In the sequel, at time t ≥ 0, we use notation p(t) for the

stock price, I(t) for the amount invested with I(t) < 0
being a short sale, g(t) and V (t) for the cumulative trading

profit or loss on [0, t] and account value respectively. When

speaking of a “short sale” above, we mean the following:

When the trader has negative investment I(t) < 0, this

means stock is borrowed from the broker and is immediately

sold in the market in the hope that the price will decline.

When such a decline occurs, this short seller can realize a

profit by buying back the stock and returning the borrowed

shares to the broker. Alternatively, if the stock price

increases, the short seller may choose to “cover” the trade,

return the borrowed stock to the broker and take a loss.

The idealized market is characterized by a number of

assumptions which we now provide:

Continuous and Costless Trading: It is assumed that

the trader can react instantaneously to observed price

variations with zero transaction cost; i.e., no brokerage

commissions or fees. That is, the amount invested I(t) can

be continuously updated as price changes occur. Motivation

for this assumption is derived in part from the world of

high-frequency trading; e.g., with the help of programmed
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trading algorithms, flash traders working for hedge funds

can execute literally thousand of trades per second with

minimal brokerage costs. In fact, even the small trader using

a high-speed internet connection can easily execute many

trades per minute. We also note that this assumption is

present in the celebrated Black-Scholes model; e.g., see [15].

Continuously Differentiable Prices: We assume that the

stock price p(t) is continuously differentiable on [0, T ], the

time interval of interest. It should be noted that this is the

most serious assumption differentiating the idealized market

from a real market. That is, this assumption rules out the

possibility that price gaps may occur following various real

market events such as earnings announcements or major

news. As previously mentioned in the introduction, in

contrast to most of the finance literature, instead of making

predictions based on a geometric Brownian motion model

for price, we treat p(t) as an uncertain external input against

which we want to robustify the trading gain g(t).

Perfect Liquidity: We assume that the trader faces no gap

between a stock’s bid and ask prices. That is, orders are

filled instantaneously at the market price p(t). We do not

view this assumption as serious in the sense that stocks

trading large volume on major exchanges typically have

bid-ask spreads which are small fractions of a percent.

Trader as a Price-Taker: We assume that the trader is not

trading sufficiently large blocks of stock so as to have an

influence on the price. Note that this assumption would be

faulty in the case of a large hedge or mutual fund. For

example, when a hedge fund dumps millions of shares onto

the market, the stock price typically declines during the

course of the transaction.

Interest Rate and Margin: We assume that the trader accrues

interest on any uninvested account funds at the risk-free rate

of return r. However, when “extra” funds are brought into

the account via a short sale, consistent with the standard

practice of brokers, if these funds are “held aside” as cash,

no interest is accrued. If the trader opts to use this cash

to obtain leverage via purchase of additional stock, margin

charges accrue at interest rate m. Another way that margin

charges result is when a trader has I(t) > V (t). That is, the

trader is essentially being given a loan by the broker and

charged margin interest rate m for the use of the funds.

To avoid distracting technical details regarding the way

brokers “mark to market” to calculate margin charges, we

employ the following model which is a simplification on the

way margin accounts are typically handled: When |I(t)| >
V (t), margin charges a compounded at interest rate rate m.

Note that the absolute value used for I(t) takes care

of I(t) < 0 when a short is involved. Finally, for simplicity

of exposition, in the sequel, we assume that both interest

and margin rates are the same. That is, m = r. This is a

type of efficient market assumption. In practice, it would

usually be the case that m > r with the difference m − r
being a function of the size of the trader. For example, a

large brokerage house trading its own portfolio would have

virtually no spread between these two interest rates. With this

assumption, we have a very simple equation summarizing

interest accruals and margin charges accruals. That is, over

time interval [0, t], we calculate

i(t)
.
= r

∫ t

0

(V (τ) − |I(τ)|)dτ

with the understanding that i(t) < 0 represents margin

interest owed.

Simplified Collateral Requirement: In a brokerage account,

associated with the granting of margin is a collateral

requirement on securities. For example, if the account value

is V , some clients are allowed to carry 2V in equities

before forced liquidation of assets occur, larger clients may

have larger upper bounds, etc. More generally, our model

assumes γ ≥ 1 is specified as part of the trading scenario.

Then, we only allow instantaneous investments

|I(t)| ≤ γV (t)

for satisfaction of collateral requirements.

III. DYNAMICS AND RESULTING STATE EQUATIONS

Following [1], we consider an infinitesimal time increment dt
over which we update both the trading gain g and the

account value V . Letting dp be the corresponding stock

price increment, the corresponding incremental trading gain

is simply the percentage change in price multiplied by

the amount invested. Hence, dg = dp
p

I . During this same

time period, the incremental change in the account value is

the sum of the contributions from both stock and idle or

borrowed cash. That is, dV = dg + r(V − |I|)dt. With the

starting point above, for the trading profit or loss, we obtain

the differential equation

dg

dt
=

1

p

dp

dt
I(t)

and the correspond account value equation is

dV

dt
=

dg

dt
+ r(V − |I(t)|)

with these equations having initial conditions

V0
.
= V (0) ≥ I(0)

.
= I0; g(0) = 0.

As previously noted, for the differential equations above,

we view the price variation p(t) as an external input.

Remarks: We recall that the investment I(t) plays

the role of the controller and is yet to be specified. To

obtain our first result on performance limits, we first

allow I(t) to be rather arbitrary subject to account limits on

collateral. To this end, we will allow processing of of the

derivative

ρ(t)
.
=

1

p(t)

dp

dt

in the maximization of account value. However, recognizing

that real-world stock prices are not smooth, it is understood
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that this first set of results serves only as a benchmark.

Accordingly, the second set of results, in Section 5, will

address the extent to which trading profits can be guaranteed

via a differentiator-free static output linear feedback control.

IV. PERFORMANCE LIMITS

Per discussion above, in this section, we seek to maximize

the account value without restricting the control dynamics to

be differentiator-free. Indeed, we begin with the idealized

market with admissible controllers consisting of measur-

able functions I(t) satisfying the account collateral con-

straint |I(t)| ≤ γV (t). Now, substitution of dg/dt and ρ(t)
above into the differential equation for dV/dt yields

dV

dt
= ρ(t)I(t) + r(V (t) − |I(t)|).

For this equation, we consider time intervals of two types.

Type 1 Intervals: On such an interval [t1, t2], we

have |ρ(t)| ≥ r. Taking the controller to be of the form

I(t) = γ∗V (t)sgn ρ(t)

with 0 ≤ γ∗ ≤ γ, the resulting account value equation is

dV

dt
= [γ∗|ρ(t)| + r(1 − γ)]V (t)

and the associated endpoint solution is readily calculated to

be

V (t2) = e
r(1−γ∗)(t2−t1)+γ∗

∫

t2

t1

|ρ(τ)|dτ
V (t1).

Type 2 Intervals: On such an interval, [t1, t2], we

have |ρ(t)| < r. In this case, taking the controller to be

I(t) ≡ 0, the account value equation degenerates to

dV

dt
= rV (t)

with endpoint solution given by V (t2) = er(t2−t1)V (t1).

A. Guaranteed Trading Profit and Use of Leverage

From the analysis for the two types of intervals above, it

follows that if the idealized market trader uses 0 ≤ γ∗ ≤ 1,

the inequality

r(1 − γ∗)(t2 − t1) + γ∗

∫ t2

t1

|ρ(τ)|dτ ≥ 0

is satisfied and it follows that V (t2) ≥ V (t1).

Remarks: Note that this trader, in opting for 0 < γ∗ < 1,

has locked in a profit by rejecting the use of available margin.

However, observe that this choice of γ∗ may be suboptimal

in the sense that γ∗ = 0 would yield a larger value of V (t2)
when

||ρ||1
.
=

∫ t2

t1

|ρ(τ)|dτ

is suitably small. That is, with inadequate price volatility, the

trader who remains entirely in cash by opting for γ∗ = 0
obtains the risk-free rate of return. On the other hand,

suppose the trader chooses to assume risk by using the

leverage associated with γ∗ > 1. Notice that enforcement

of V (t2) ≥ V (t1) reduces to

||ρ||1 ≥
(γ∗ − 1)

γ∗
r(t2 − t1).

Roughly speaking, this inequality basically tells us what

type of percentage variation in the stock price it takes to

make it worthwhile to lever the investment. In the limiting

case, when a trader is highly confident that this inequality

will be satisfied, the optimum is to be maximally levered

and use γ∗ = γ.

At the other extreme, for a highly non-volatile stock

with ||ρ||1 suitably small, γ∗ = 0 is optimal even though the

inequality 0 < γ∗ < 1 guarantees a profit. That is, exploiting

the variations in ρ(t) is less rewarding than simply accepting

the risk-free rate of return.

V. TRADING VIA STATIC OUTPUT FEEDBACK

We view the cumulative trading profit or loss g(t) as the

system output and consider a static feedback control law

of the form I = f(g) with f being a continuous function.

That is, the amount invested I(t) in the stock is modulated

as a function of the trading profits or losses g(t) accrued

over [0, t]. In the sequel, we focus on time-invariant linear

feedback controls f(g) = I0 +Kg with I0 = I(0) being the

initial investment.

A. Simultaneous Long-Short (SLS) Linear Feedback Control

To establish the main result, we first construct a controller

which is a superposition of two linear feedbacks as described

above, one being a a long trade with I0,K > 0 and the

other being a short trade with I0,K < 0. These trades can

be viewed as running simultaneously in parallel.

SLS Controller Construction: The amount invested in the

long trade is IL(t) and the amount invested in the short trade

is IS(t). Hence, the net overall investment is

I(t) = IL(t) + IS(t)

and, as time evolves, the relative amounts in each of these

trades will change. It may well be the case that one of

these two trades will become “dominant” as time evolves.

For example, in a raging bull market, one would expect to

see IL(t) get large and IS(t) tending to zero.

With K > 0 and I0 > 0 fixed, we define the two

feedback controllers by

IL(t) = I0 + KgL(t); IS(t) = −I0 − KgS(t)

where gL and gS are the trading gains or losses for the long

and short trades respectively. Hence, the overall investment

and trading gains for the combined trade are

I(t) = K(gL(t) − gS(t)); g(t) = gL(t) + gS(t)

which begins at I(0) = 0 and g(0) = 0. In accordance

with Section 3, the individual trades satisfy the differential

equation
dgL

dt
= ρ(t)(I0 + KgL);
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dgS

dt
= −ρ(t)(I0 + KgS)

with initial conditions gL(0) = gS(0) = 0.

The setup above leads to many results which are consistent

with common sense. For example, with K > 0 and

price p(t) increasing, IL(t) will increase and |IS(t)| will

decrease. That is, the trader becomes “net long.” The

question then arises whether the trading gains from the long

position will be sufficient to offset losses from the short

leading to a net profit. The Arbitrage Theorem to follow

answers this question and others in the affirmative provided

the the so-called “adequate resource condition” below is

satisfied. Given that an idealized market is assumed, this

framework should be viewed as one which shows us the

limits of state feedback control.

Adequate Resource Condition: In the theorem follow, it is

assumed that the combination of initial account value V (0) =
V0, feedback gain K and constant γ and prices p(t) are

such that the collateral requirement |I(t)| ≤ γV (t) is

assured over the time interval of interest. Equivalently, if the

investment I(t) demands more resources than are currently

available in the account, the trader has the ability to respond

to a margin call by bringing in more funds.

B. Arbitrage Theorem

At all times t ≥ 0, assume the adequate resource condition

V (t) ≥ γ|I(t)| is satisfied. Then, the Simultaneous Long-

Short static linear feedback controller leads to trading profit

g(t) =
I0

K

[

(

p(t)

p(0)

)K

+

(

p(t)

p(0)

)−K

− 2

]

satisfying

g(t) > 0

for all non-zero price variations.

Proof: The differential equations for gL and gS above can

be readily integrated to obtain solutions

gL(t) =
I0

K

[

(

p(t)

p(0)

)K

− 1

]

;

gS(t) =
I0

K

[

(

p(t)

p(0)

)−K

− 1

]

;

with corresponding investments

IL(t) = I0

(

p(t)

p(0)

)K

IS(t) = −I0

(

p(t)

p(0)

)−K

.

Summing the two solutions above, the formula for g(t)
follows. To prove g(t) > 0, without loss of generality, for

notational convenience, we assume p(0) = 1 and I0 = 1.

Now, beginning with

g(t) =
1

K
(pK(t) + p−K(t) − 2).

non-negativity of the profit follows from the fact that the

strictly convex function

F (p) =
1

K
(pK + p−K − 2)

has a global minimum at p = 1. That is, it is simple to

verify that F (1) = F ′(1) = 0; F ′′(1) > 0.

Remarks: In is of interest to understand how the trading

profit g depends on the feedback gain K. Using the formula

for g(t) above, it is easy to verify that the profit increases

monotonically with respect to K. While this makes “high

gain” attractive in an idealized market, it may not be the case

in a real market. On an intuitive level, in a real market, K
should be set as a function of the underlying volatility; this

topic is relegated to future research.

C. Improvement Via Controller Reset

Over a time interval [0, T ], it is important to note that

the theorem above leads to break-even, g(T ) = 0 when a

roundtrip on the stock price occurs; i.e., say p(T ) = p(0).
The motivation for the discussion to follow is that

it is possible to do better than g(T ) = 0 on such a

roundtrip. The key idea is as follows: At some strategically

chosen time t∗ > 0, we re-initialize the controller by

setting IL(t∗) = I0 and IS(t∗) = −I0. This reset option is

triggered by stipulating a minimum investment Imin > 0 and

modifying the controller as follows: If at some time t∗ > 0,

either IL(t∗) < Imin or IS(t∗) > −Imin, the controller is

re-initialized to its starting value IL(t∗) = I0, IS(t∗) = −I0

and the trade continues. We can view this reset process

as simply decomposing the initial trade into two separate

trades. The first trade goes from zero to t∗ and the second

trade goes from t∗ to T . In accordance with the Arbitrage

Theorem, for non-trivial price variations, each of these two

trades has a positive trading gain.

Example of Reset: To understand why such a reset

procedure may be beneficial, we consider the following

simple intuitive example: Suppose the idealized price

trajectory is given by p(t) = 1+0.5 sin πt
100 for 0 ≤ t ≤ 100

with controller gain K = 4 and initial investment and

account value I(0) = V (0) = 10, 000. Then, for 0 ≤ t ≤ 50,

in accordance with the analysis above, as the price p(t)
increases from p = 1 to p = 1.5, gL and IL also increase

as the long part of the trade prospers. At the same time,

in accordance with the formulae, gS goes negative and IS

heads towards zero as the short side of the trade is losing

and the controller is reducing the short side exposure to cut

losses. By the time t = 50 arrives, the formulae above result

in g(50) ≈ 26, 000, IL(50) ≈ 22, 800 and IS(50) ≈ −330.

Over the second part of the roundtrip, the stock price

decreases from p(50) = 1.5 to p(100) = 1 and all the

trading profits are given back with final result g(T ) = 0.

It is apparent from the above that the small short position

at time t = 50 makes it very difficult to recoup losses as

the stock price falls from t = 50 to t = 100. Hence, over

this time period, the long part of the trade is losing a lot of

money while the short side is producing minuscule profits.
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The value of IS is not building up quickly enough to exploit

the falling price. To remedy this problem, we incorporate

the reset option with trigger Imin = 2000 representing 20%
of the initial investment. That is, once either the long or

short side of the trade is attenuated by 80%, a reset occurs.

Equivalently, we deem the initial trade as complete and begin

a ”brand new trade.” The results obtained are summarized by

Figures 1 and 2.

Figure 1: Trading Profit for Sinusoid with Reset

Figure 2: Investment for Sinusoid with Reset

VI. PRACTICAL IMPLEMENTATION OF SLS CONTROLLER

As emphasized in this paper, the use of prices p(t) which

are continuously differentiable is an idealization. In real

markets, charts of prices at discrete times can appear highly

non-differentiable and discontinuous. This raises questions

about the efficacy of the static feedback SLS controller

in real-world markets. Motivated by the fact that the SLS

controller performs well in idealized markets, it becomes

a candidate for implementation and back-testing in real

markets. Hence, we now assume trading occurs at dis-

crete times ti and note that the inter-sample time can

be either small such as one minute for a high-frequency

trader or large such a one day for a mutual fund. Indeed,

we let p(k), V (k), I(k) and g(k) denote the discrete-time

counterparts of p(t), V (t), I(t) and g(t) respectively. Now,

introducing the one-period percentage change in stock price

ρ(k)
.
=

p(k + 1) − p(k)

p(k)
,

we consider various cases for the discrete-time model.

Simplest Case: The simplest scenario occurs when

we assume no controller reset and that long and short

investments IL(k) and I(k) maintain their proper sign; i.e.,

whereas IL(t) ≥ 0, IS(t) ≤ 0 is assured by the dynamics

in continuous time, in the discrete-time case, a large value

of ρ(k) might lead to an undesirable sign reversal. If, in

addition we assume no collateral requirements (say γ is

large), it follows from the continuous-time analysis that

suitable dynamic update equations are

IL(k + 1) = (1 + Kρ(k))IL(k);

IS(k + 1) = (1 − Kρ(k))IS(k);

I(k + 1) = IL(k + 1) + IS(k + 1);

gL(k + 1) = gL(k) + ρ(k)IL(k);

gS(k + 1) = gS(k) + ρ(k)IS(k);

g(k + 1) = gL(k + 1) + gS(k + 1);

V (k + 1) = V (k) + g(k) + r(V (k) − |I(k)|).

with r now denoting the one-period risk-free rate of return.

More General Case: To handle the sign restriction

conditions on IL and IS we modify their update equations

to be

IL(k + 1) = max{(1 + Kρ(k))IL(k), 0};

IS(k + 1) = min{(1 − Kρ(k))IS(k), 0}

and then build in the account collateral requirement by

modifying the total investment to be

I(k + 1) = min{IL(k + 1) + |IS(k + 1)|, γV (k)}.

Finally, we enforce min{IL(k), |IS(k)|} < Imin to trigger

controller reset.

A. Example: Trading the Quadruple Q’s

In this example, we consider trading the Nasdaq index during

the period September 1, 2006 until August 31, 2008. This

is the two year period before the precipitous crash of 2008-

2009 began. To carry out this trade, we buy and sell shares

of the exchange-traded fund QQQQ which tracks the index.

As seen in Figure 3, this period includes two round trips of

the Nasdaq with price variations between $37.75 and $54.18

and the largest daily price change being about four percent.

The back-testing was carried out using the daily closing

prices, feedback gain K = 8, leverage constraint γ = 2 and
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Figure 3: Price of QQQQ Over Trading Period

initial conditions V0 = I0 = 10, 000. For controller reset

purposes, we used Imin = 2000. Over the time period, a

five percent interest and margin rate was assumed with daily

compounding. As seen in Figures 4 and 5, the inclusion of

reset in the controller turns out to be efficacious. The long or

short position avoids becoming so small that the controller

cannot react to changes in market direction.

Figure 4: Trading Gains/Losses in QQQQ

VII. CONCLUSION AND FURTHER RESEARCH

In this paper, we provided a demonstration of the potential

for use of control theoretic methods in the stock market.

The so-called idealized market is the vehicle through which

certifications of performance can be given. Our view is

that a necessary but not sufficient condition for use of a

trading algorithm in a real market is that it has demonstrable

performance properties in an idealized market. This view is

based on the idea that variability of prices in real markets

makes it possible to easily find historical data which defeats

any algorithm in a back-test. In terms of future research,

we mention two problems of immediate interest. The first

problem might appropriately be called control gain selection.

How should the feedback gain K be chosen? One possibility

would be to address this problem via a data-based adaptive

Figure 5: Investment in QQQQ Over Trading Period

method which uses a training set to optimize K. The

second problem of interest would be to study other classes

of idealized markets. For example, in an idealized market

having prices generated via geometric Brownian motion, it

would be of interest to see what type of performance results

are possible.

REFERENCES

[1] Barmish, B. R., “On Trading of Equities: A Robust Control Paradigm,”
Proceedings of the IFAC World Congress, Seoul, Korea, 2008.

[2] Meindl, P., and J. Primbs, “Dynamic Hedging with Stochastic Volatil-
ity Using Receding Horizon Control,”, Proceedings of Financial En-
gineering Applications, MIT, 2004.

[3] Mudchanatongsuk, S., J. Primbs, and W. Wong, “Optimal Pairs Trad-
ing: A Stochastic Control Approach,” Proceedings of the American
Control Conference, Seattle, 2008.

[4] Primbs, J., and C. H. Sung, ”A Stochastic Receding Horizon Control
Approach to Constrained Index Tracking,” Asia-Pacific Financial
Markets, vol. 15, no. 1, pp. 3-24, 2008.

[5] Primbs, J., “Portfolio Optimization Applications of Stochastic Reced-
ing Horizon Control,” Proceedings of the American Control Confer-
ence, New York, 2007.

[6] Calafiore, G., “An Affine Control Method for Optimal Dynamic Asset
Allocation with Transaction Costs,” SICON, 48, pp. 2254-2274, 2009.

[7] Calafiore, G., “Multi-Period Portfolio Optimization with Linear Con-
trol Policies,” Automatica, vol. 44, pp. 2463-2473, 2008.

[8] Iwarere, S. and B. R. Barmish, “A Confidence Interval Triggering
Method for Stock Trading Via Feedback Control,” Proceedings of the
American Control Conference, Baltimore, 2010.

[9] Achelis, S. B., Technical Analysis from A to Z, McGraw Hill, New
York, 2000.

[10] Brown, D. P. and R. H. Jennings, “On Technical Analysis,” Review
of Financial Studies, vol. 2, no. 4, pp. 527-551, 1989.

[11] Brock, W., Lakonishok, J. and B. LeBaron, “Simple Technical Trading
Rules and the Stochastic Properties of Stock Returns,” Journal of
Finance, vol. 47, pp. 1731-1764, 1992.

[12] Frankel, J. A. and K. A. Froot, “Chartists, Fundamentalists and Trading
in the Foreign Exchange Market,” American Economic Review,”
vol. 80, no. 2, pp. 181-185, 1990.

[13] Lo, A. W., Mamaysky, H. and J. Wang, “Foundations of Technical
Analysis: Computational Algorithms, Statistical Inference, and Empir-
ical Implementation,” Journal Finance, vol. 55, pp. 1705-1765, 2000.

[14] Neely, C. J., “Technical Analysis in the Foreign Exchange Market: A
Layman’s Guide,” Federal Reserve Bank of St. Louis Review, vol. 79,
no. 5, pp. 23-28, 1997.

[15] Black, F. and M. Scholes, “The Pricing of Options and Corporate
Liabilities,” Journal of Political Economy, vol. 81, pp. 637-654, 1973.

3879


