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Abstract— In this paper an integral sliding mode control
allocation scheme is used to enhance the functional capability
and reliability of an existing commercial-aircraft controller
by introducing fault tolerance. The design philosophy is to
distribute the control signals to primary control surfaces in
the nominal fault free scenario, whilst the secondary control
surfaces are only activated when the effectiveness levels of
the primary control surfaces are not sufficient to handle the
situation in the presence of faults/failures. The key advantage of
the proposed scheme over other sliding mode control allocation
schemes is that the one proposed in this paper can be retro-fitted
to an existing state feedback controller designed using only
the primary actuators. Simulation results using the FTLAB747
software, show good results, and validate the effectiveness of
the proposed scheme.

I. INTRODUCTION

Faults in safety critical systems, if not mitigated can

result in catastrophic consequences. Fault tolerant control

(FTC) attempts to maintain closed loop performance in safety

critical systems in the face of multiple faults and failures.

Redundant actuators are key to the design of FTC systems,

because in emergency situations when faults or failures

occur in the primary control surfaces, this redundancy can

be exploited to retain acceptable performance [7]. Many

different approaches have been suggested: see for example

[22] for an overview of the various methods.

Control Allocation (CA) is one technique to manage

redundancy in overactuated systems, and can be used in

combination with other control design methods to distribute

the control signals to functioning actuators during fault free

as well as in fault/failure scenarios, without reconfiguring

the underlying controller. In [17], a comparison of different

control allocation methods is made, whereas in [12] optimal

control and CA are compared in terms of redistributing

a virtual control signal among redundant actuators. The

benefits of using CA in terms of FTC are exploited in

[3], [6] for high performance aircraft. The combination of

CA with sliding mode control approaches is used in [1],

[14], [18] and [2] to achieve fault tolerance. The use of

sliding mode ideas to achieve tolerance to actuator faults and

failures is a natural extension of the well-known robustness

properties to matched uncertainty exhitibed by sliding mode

control schemes [20], [8]. The idea behind the CA scheme

in [2] is to automatically stop sending control signals to

actuators which are faulty, and to redistribute the control

effort to healthy ones to maintain the desired performance
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objectives. This approach has been extensively tested on the

aircraft benchmark problem associated with the GARTEUR

AG16 programme [7]. To enforce a sliding mode throughout

the entire system response, the idea of an integral sliding

mode was proposed in [21], [20]. More recently in [5], [4]

integral sliding modes were investigated for systems with

unmatched uncertainty. In [11], an integral sliding mode

approach was considered as a candidate for FTC, where

robustness against faults and certain total actuator failures

is guaranteed throughout the entire system response.

In this paper a novel fault tolerant CA scheme incorpo-

rating integral modes is proposed. The approach proposed

in this paper is quite different from [11], since it represents

an a-posteri design approach building on a given existing

state feedback control law designed using the primary control

surfaces. The idea is that if there are no faults in the primary

actuators, the integral sliding mode control allocation scheme

behaves exactly as the given baseline controller. Only in the

case of faults and failures to the primary control surfaces,

are the FTC aspects of the integral sliding mode scheme

invoked. To accommodate this philosophy, a completely

different development and design methodology compared to

[11] must be adopted. In [11] all the design parameters

of the integral sliding mode CA scheme are synthesized

simultaneously. Here a given baseline controller is used as a

given starting point, and the integral sliding mode design

is interlaced with the existing controller. In this way the

integral sliding mode CA scheme proposed in this paper can

be retro-fitted to any existing control scheme to introduce

fault tolerance. It is different to the integral sliding mode

schemes originally proposed in [21], [20], [5] because of

the partitioned structure of the actuators into two sets: the

primary ones and the secondary ones. This results in a very

specific design formulation – which is solved in this paper.

The efficacy of the proposed scheme is tested in simulation,

on the high-fidelity nonlinear model, which forms the basis

of the GARTEUR AG16 benchmark from [7].

II. PROBLEM FORMULATION

Consider an uncertain linear system subject to actuator

faults or failures written as

ẋ(t) = Ax(t) +BWu(t) + f(t) (1)

where A ∈ R
n×n , B ∈ R

n×m and W ∈ R
m×m

is a diagonal semi-positive definite weighting matrix. The

function f(t) is a disturbance which is unknown but is

assumed to be bounded. Suppose the input distribution can

be partitioned as

B =
[
Bo Bs

]
(2)
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where Bo ∈ R
n×l and Bs ∈ R

n×m−l. Here Bo is the input

distribution matrix associated with the primary actuators,

whilst Bs is associated with secondary actuators which

impart redundancy into the system. Partition the weighting

matrix as W = diag[W1,W2] where W1 = diag[w1, .., wl]
and W2 = diag[wl+1, .., wm]. These matrices model the

effectiveness level of the primary and secondary actuators

respectively. If wi = 1, it means that the corresponding ith
actuator has no fault and is working perfectly, whereas if

1 > wi > 0, an actuator fault is present. If wi = 0, the

actuator has completely failed.

Assume Bo has full column rank and therefore there exists

an orthogonal matrix To ∈ R
n×n such that

ToBo =

[
0

B21

]

(3)

where B21 ∈ R
l×l (and B21 is nonsingular). This represents

so-called QR decomposition. It is assumed that the function

f(t) satisfies the matching condition [8], [21]

f(t) = Boξ(t) (4)

where ξ(t) is some bounded unknown disturbance. By a

suitable change of coordinates x 7→ Tox it can be assumed,

the input distribution matrix Bo has the form on the right

hand side of (3) and therefore the original matrix B in (1),

in suitable coordinates, has the form

B =

[
0 B12

B21 B22

]

(5)

where B22 ∈ R
l×(m−l). Also scale the states to ensure that

BT
21B21 = Il. This can be achieved easily without any loss

of generality. Assume for the system (A,Bo) a controller,

based only on the primary actuators, has been designed.

Specifically assume a state feedback gain matrix F ∈ R
l×n

has been designed so that the closed loop system

ẋ(t) = (A+BoF )x(t) (6)

is stable and has a suitable dynamic response which satisfies

the requirements imposed on the designer. In the remainder

of the paper it will be assumed without loss of generality that

states associated with (1) have been chosen so that the input

distribution matrix B has the form given in (5). A control

allocation scheme will now be retro-fitted to the existing

controller for the primary surfaces given by

uo(t) = Fx(t) (7)

The physical control signals which are sent to all the actua-

tors are assumed to be given by

u(t) = Nν(t) (8)

where ν(t) ∈ R
l is the virtual control effort which will be

discussed later. The control allocation matrix is given by

N =

[
Il

N2(Il −W1)

]

(9)

where

N2 = BT
22B21(B

T
21B22W2B

T
22B21)

−1 (10)

In order that det(BT
21B22W2B

T
22B21)

−1 6= 0, because

by construction det(B21) 6= 0, this is equivalent to

det(B22W2B
T
22) 6= 0. This imposes a limitation on the num-

ber of elements of W2 that can become zero and therefore

limits the number of total failures in the secondary actuators

that can be accommodated.

Substituting (8) and (4) into (1) gives

ẋ(t)=Ax(t)+

[
B12W2N2(Il −W1)

B21W1 +B22W2N2(Il −W1)

]

ν(t)+Boξ(t)

(11)

Notice that since by construction BT
21B21 = Il and B21 is

square, then B21B
T
21 = Il and it follows that

B22W2N2 = B21B
T
21B22W2N2

= B21 (12)

since BT
21B22W2N2 = I from the definition of N2 in (10).

Substituting from (12) in (11) yields

ẋ(t) = Ax(t) +

[
B12W2N2(Il −W1)

B21

]

︸ ︷︷ ︸

Bw

ν(t) +Boξ(t) (13)

It is easy to see that during a fault-free situation (i.e. when

W = I), equation (13) becomes

ẋ(t) = Ax(t) +

[
0

B21

]

︸ ︷︷ ︸

Bo

ν(t) +Boξ(t) (14)

Consequently if ν(t) = uo(t), then nominal baseline perfor-

mance is achieved. Furthermore when W = I , substituting

in (8) and (9), it follows if ν(t) = Fx(t) then

u(t) =

[
Fx(t)
0

]

and only the primary actuators are used. However to in-

troduce robustness and tolerance faults, rather than using

ν(t) = Fx(t), an integral sliding mode scheme will be

introduced for the synthesis of the virtual control signal ν(t).

III. INTEGRAL SLIDING MODE CONTROLLER DESIGN

A. Integral switching function:

The integral switching function suggested in [5] and [11],

aims to eliminate the reaching phase present in traditional

sliding mode control – i.e. the sliding mode will exist from

the beginning. Choose as the sliding surface S = {x ∈ R
n :

σ(x, t) = 0}, where

σ(x, t) := Gx(t)−Gx(t0)−G

∫ t

t0

(
A+BoF

)
x(τ)dτ (15)

and G ∈ R
l×n is the design freedom. In this paper

G := BT
o (16)

is suggested. With this choice of G it follows

GBo = BT
21B21 = Il
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and

GBw =
[
0 BT

21

]
[

B12W2N2(Il −W1)
B21

]

= BT
21B21 = Il

It is necessary to analyze the sliding motion associated with

the surface in (15) and the choice of G in (16), in the

presence of faults or failures. Taking the time derivative of

(15) yields

σ̇(t) = Gẋ(t)−GAx(t) −GBoFx(t) (17)

Substituting the value of (13) into (17) and after simplifying

gives

σ̇(t) = GBwν(t) +GBoξ(t) −GBoFx(t) (18)

An expression for the equivalent control [20], [8] can be

obtained by setting σ̇(t) = 0 in (18) and by solving for

νeq(t). By taking into account the fact that GBw := Il and

GBo := Il it follows

νeq(t) = Fx(t)− ξ(t) (19)

The equations of motion during sliding can be obtained by

substituting (19) into (13) to obtain

ẋ(t)=Ax(t) +

[
B12W2N2(Il−W1)

B21

]

(Fx(t)− ξ(t)) +Boξ(t)

(20)

Using the fact that

Bo =

[
0

B21

]

equation (20) can be written as

ẋ(t)=(A+BoF )x(t)+

[
B12W2N2(Il −W1)

0l

]
(
Fx(t)−ξ(t)

)

(21)

which can be rewritten as

ẋ(t) = (A+BoF )x(t) + B̃
[
Φ(t)

(
Fx(t)− ξ(t)

)]
(22)

where

B̃ :=

[
B12

0

]

(23)

and

Φ(t) := W2N2(Il −W1) (24)

The representation in (22) will be used as the basis for the

closed-loop analysis.

B. Closed-loop Stability Analysis:

It is clear that during fault-free conditions (i.e. when W = I),

Φ(t) = 0, and equation (22) becomes

ẋ(t) = (A+BoF )x(t) (25)

which is stable by design of the original a-priori baseline

controller uo = Fx(t). Also the effect of disturbance signal

ξ(t) during sliding in the nominal case (when W = I)

is completely rejected. However the sliding motion in (22)

depends on the matrix W , and a stability analysis needs to

be carried out to ensure closed-loop stability for different

faults and failures. To this end write the equation (22) as

ẋ(t) = (A+BoF )
︸ ︷︷ ︸

Ã

x(t) + B̃

ũ
︷ ︸︸ ︷

Φ(t)Fx(t)
︸ ︷︷ ︸

ỹ

−B̃Φ(t)ξ(t) (26)

and define

γ2 = ‖G̃(s)‖∞ (27)

where

G̃(s) := F (sI − Ã)−1B̃ (28)

As argued earlier in (12), it is easy to verify that W2N2 is a

pseudo inverse for BT
21B22, and so using arguments similar

to those in [1], the boundedness of properties of the pseudo

inverse proved in [19] ensures ‖W2N2‖ < γ1 for some γ1
provided det(B22W2B

T
22) 6= 0. Define a scalar γ∗

1 to be the

smallest number satisfying

‖Φ(t)‖ < γ∗
1 (29)

Since ‖Φ‖ ≤ ‖Il −W1‖‖W2N2‖ < ‖W2N2‖, the existence

of γ∗
1 is guaranteed.

Proposition 1: During fault or failure conditions, for any

combination of 0 < wi ≤ 1, the closed loop system will be

stable if:

γ2γ
∗
1 < 1 (30)

Proof: The closed-loop system in the presence of faults and

failures in (26) can be written as

ẋ(t) = Ãx(t) + B̃ũ(t) (31)

ỹ(t) = Fx(t) (32)

where

ũ(t) = Φ(t)ỹ(t) (33)

(Note the term B̃Φ(t)ξ(t) constitutes an external disturbance

and does not affect closed-loop stability). This form of

equation (26) can be effectively thought of as the feedback

interconnection of the feedforward linear system G̃(s) with

an uncertain feedback term Φ(t). According to the small gain

theorem [15], this interconnection, and hence equation (26),

will be stable if

γ2γ
∗
1 < 1 (34)

C. Integral Sliding Mode Control laws:

The proposed integral sliding mode control law, which

depends on the nominal system (14) is defined as

ν(t) = νl(t) + νn(t) (35)

where the linear part of the control law is

νl(t) = Fx(t) (36)

and the nonlinear part, which is responsible for inducing

sliding despite faults/failures, is defined as

νn(t) = −ρ
σ(x, t)

‖σ(x, t)‖ for σ(x, t) 6= 0 (37)
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where ρ is a scalar gain to enforce the sliding motion.

Now it will be shown that the control law in (35) satisfies

the reachability condition [20], which guarantees that the

designed control law drives the system trajectories to the

switching surface and maintains it on the surface. Substitut-

ing equation (35)-(37) into (18) yields

σ̇(t) = Fx(t)− ρ
σ(t)

‖σ(t)‖ + ξ(t)− Fx(t)

= −ρ
σ(t)

‖σ(t)‖ + ξ(t) (38)

Consider the positive definite, candidate Lyapunov function

V (t) =
1

2
σTσ (39)

Taking the time derivative of the Lyapunov function in (39)

and substituting from (38) results in

V̇ = −ρ‖σ‖+ σT ξ(t) (40)

Since it is assumed that the upper bound of the disturbance

term ξ(t) is known, to overcome ξ(t) in (40), the scalar gain

ρ should have the value

ρ ≥ max
t

‖ξ(t)‖+ η (41)

where η is a positive design scalar. Substituting (41) into

(40) gives

V̇ ≤ −η‖σ‖ = −
√
2ηV 1/2 (42)

This is sufficient to guarantee that the sliding motion is

attained in finite time and maintained for all subsequent time.

Finally to get the physical control law, substituting

(35)-(37) into (8) yields

u(t) =

[
Il

N2(Il −W1)

]
(
Fx(t)− ρ

σ(x, t)

‖σ(x, t)‖
)

(43)

where N2 is from (10).

IV. FAULT TOLERANT CONTROLLER DESIGN

The objective here is to design an FTC based on an

existing baseline control law by using the proposed integral

sliding mode CA scheme described earlier. The design pro-

cess will be demonstrated by means of the lateral dynamics

of a large transport aircraft.

A. Baseline Control Law for Yaw Damper

A yaw damper is a stability-augmentation system for

the lateral dynamics of an aircraft [10]. Here the baseline

control law F for the nominal system (14) is obtained

using eigenstructure assignment [16]. The desired closed-

loop eigenvalues have been obtained from chapter 10 in

[10] and the best possible eigenvectors for this situation

are documented in [9]. As in [10], a linearization of the

benchmark model from [7] is obtained around an operating

condition of straight and level flight at 40, 000 ft and a

forward speed of 774 ft/sec (Mach 0.8) as given in [13].

Together with a washout filter (high-pass) on the yaw rate,

the augmented state space representation is

A =









−0.3330 0 0 1 0
0 0 0 0.0816 1
0 0.0413 −0.0537 −0.9944 0.0823
0 −0.0012 0.6090 −0.0869 −0.0335
0 0.0002 −2.9236 0.3681 −0.4514









B =









0 0 0 0 0
0 0 0 0 0

0.0070 0 0.0008 0.0003 −0.0003
−0.4438 −0.0082 −0.0145 −0.0046 0.0046
0.1451 −0.1329 −0.2033 −0.0625 0.0625

0 0 0 0 0
0 0 0 0 0

−0.0008 0.0001 0.0001 −0.0001 −0.0001
0.0145 0.0314 0.0179 −0.0179 −0.0314
0.2033 0.0054 0.0031 −0.0031 −0.0054









The states are x = {xwo, φ, β, r, p}T , where xwo is

the washout filter state, φ is roll angle (rad), β is side

slip angle (rad), r is yaw rate (rad/sec) and p is roll

rate (rad/sec). The available control inputs are δlat =
{δr, δa, δsp1−4, δsp5, δsp8, δsp9−12, th1, th2, th3, th4} which

represent aileron deflections (rad), spoiler deflections (left:

1-4, 5 and right: 8, 9-12)(rad), rudder deflection (rad), and

individual engine thrusts (N ) scaled by 105. For this design

it is assumed that the left aileron moves in an anti-symmetric

fashion to the right one (the outer ailerons on each wing are

not active during cruise flight). Note further transformations

are required to the model above to enforce the structure

in (5) and to ensure BT
21B21 = I2. The ideal closed-loop

eigenvalues suggested in [10] are,

{−0.0051,−0.468,−0.279± 0.628j,−1.106}
where the natural motion corresponding to the complex

eigenvalues is referred to as dutch roll, and the motion corre-

sponding to the stable real eigenvalues is referred to as spiral

mode (−0.0051), washout filter (−0.468) and roll mode (-

1.106). The ideal selection of eigenvectors for decoupling

the modes suggested in [9] are








∗
0
1
∗
∗

















∗
0
1
∗
∗









︸ ︷︷ ︸

Dutch roll mode









∗
1
0
∗
∗









︸ ︷︷ ︸

roll mode









∗
1
0
∗
∗









︸ ︷︷ ︸

spiral mode









0
0
0
1
0









︸ ︷︷ ︸

washout filter

where ∗ denotes that the magnitude of the element is

unimportant. To achieve the ideal eigenstructure suggested

in [9] for the system (A,Bo), where Bo is the input con-

trol distribution matrix associated with the primary control

surfaces (rudder and aileron in this case), the ideal baseline

control law F is obtained as

F =

[
−0.4086 −0.0101 0.2824 1.1705 −0.1476
−0.3259 0.0340 −21.2779 4.3306 4.7983

]

(44)
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This controller is assumed to exist a-priori.

B. Fault tolerant yaw damper controller design

The baseline control law associated with (44), which is

responsible for the nominal performance, considers only the

primary control surfaces. For fault tolerance, the controller

suggested in (43) will be employed. The proposed CA

scheme ensures that during a primary control surface failure,

the control signals can be redistributed to the available sec-

ondary control surfaces automatically without reconfiguring

the controller to maintain the nominal performance. During

fault/failure scenarios the closed-loop stability condition in

(30) must be satisfied. From the particular choice of matrix

F in (44), using equation (27), ‖G̃(s)‖∞ = γ2 = 0.0295.

During normal operation, the ailerons are the primary control

surfaces for φ regulation, and the spoilers are the redundancy;

whereas the rudder is the primary control surface for β, and

differential engine thrust is the redundancy. From a numerical

search, it can be verified that γ1 = 12.7667. Hence simple

calculations show that the stability condition of Proposition

1 in (30) is satisfied since γ2γ1 = 0.3768 < 1. This shows

the system is stable for all 0 < wi ≤ 1 provided that suitable

redundancy is available: i.e. det(B22W2B
T
22)

−1 6= 0.

V. FAULT TOLERANT SIMULATION RESULTS

A. FTLAB747 V 6.5/7.1/2006b

This software runs under MATLAB/Simulink, and repre-

sents a ‘real world’ model of B747-100/200 aircraft. This

high-fidelity nonlinear model contains 77 states, incorporat-

ing rigid body variables, actuators, sensors and aero-engine

dynamics. It has been used as the basis for the GARTEUR

AG16 benchmark [7].

B. Nonlinear Simulation Results

The simulations in this paper are all based on the nonlinear

benchmark model of a large transport aircraft from [7]. In the

simulations the discontinuity in the nonlinear control term

in (37) is smoothed by using the sigmoidal approximation
σ

‖σ‖+δ [8], where the value of the scalar is chosen as

δ = 0.001. The simulation objective here is to investigate

the lateral dynamics response due to an initial β(0) = 1o

disturbance.

In Figures 1 and 2, the closed-loop system response of

the nonlinear benchmark together with the ideal response

of the (A,Bo) system with only the baseline control law

uo = Fx(t) with an initial β(0) = 1o perturbation is shown

in the case of fault free primary actuators. The states show the

decoupled response of the roll and yaw motions. Furthermore

note that the secondary actuators are not active during the

closed-loop response.

Figures 3 and 4, show the system states and actuators

deflections when both the primary actuators become stuck

at some offset positions. It can be seen in Figure 3 that

even in this extreme failure case the nominal performance is

still maintained. The spoilers and the engine thrusts (left and

right) work together to counteract the effect of the primary

actuator failures.
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Fig. 2. Nominal scenario: actuators deflections

Figures 5 and 6, show another severe failure case, where

the rudder becomes stuck (at some offset position) and the

engines develop faults (Engines 1 and 2 on the left wing, and

engine 3 on the right wing). To compensate for the failure,

engine 4 works actively, together with contributions from

the left spoilers (sp1-4 and 5) and the ailerons. Figure 5

shows that due to the availability of redundant actuators near

nominal performance is still maintained.

VI. CONCLUSION

In this paper a novel fault tolerant control scheme to

augment an existing baseline control law is proposed. The

objective is to maintain closed loop performance in the face

of faults and failures to the primary actuators. The integral

sliding mode control allocation method which is proposed

can be retro-fitted to an existing baseline controller designed

for the primary actuators, and in the fault free case, the

controller exactly reproduces the original baseline control

action. An advantage of the proposed scheme is that the

baseline controller structure does not need to be changed,

and one controller can be used in nominal as well as in

fault/failure scenarios. When the primary control surfaces

become faulty, the proposed scheme redistributes the control

signals to the functioning secondary actuators, to maintain

the nominal performance, via the integral sliding mode

scheme coupled with the control allocation.
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Fig. 3. Primary failure: System States Vs ideal states with baseline F
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